
Using Measurements to Support Real-Option Thinking in
Agile Software Development

Zornitza Racheva
University of Twente

Drienerlolaan 5, Enschede 7500,
The Netherlands

++31 53 489 4344

z.racheva@utwente.nl

 Maya Daneva
University of Twente

Drienerlolaan 5, Enschede 7500,
The Netherlands

++31 53 489 2889

m.daneva@utwente.nl

ABSTRACT
This position paper applies real-option-theory perspective to agile
software development. We complement real-option thinking with
the use of measurements to support midcourse decision-making
from the viewpoint of the client. Our position is motivated by
using empirical data gathered from secondary sources.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Management – cost estimation,
D.2.8 [Software Engineering]: Requirements/Specifications –
methodologies (e.g. agile).

General Terms
Measurement, Economics.

Keywords
Agile Software Development, Real Options, Measurements,
Decision Making.

1. INTRODUCTION
Software metrics exist to provide project decision makers, as early
as the stage of requirements, with key information to understand
or control aspects of the software product or process. In practice,
however, most of the metrics were not designed with the agile
project context in mind and therefore only partially address this
context. Moreover, the unique role the clients have in agile
software processes is not reflected or supported by the existing
metrics. A fundamental characteristic of agile development is that
the client is responsible for prioritizing the requirements and thus
in charge for the outcome of the project. In this paper, we discuss
the joint use of real-options-thinking and measurements in agile
development of software. This effort is part of a larger research
initiative with the objective to provide midcourse decision support
vehicles for the client, for example, when prioritizing
requirements. Our position is that viewing decisions as options

helps decision-makers to become aware of alternatives, to
compare them and, consequently, to make the decision that
insures best fit between the business goals and the current
software functionality. We propose to use metrics of the product
and of the process for this purpose. In what follows, Section 2
presents related work on measurement in agile software
development. Section 3 summarizes the real-option perspective,
Section 4 discusses its application in agile projects from clients’
standpoint, and Section 5 describes how measurements and option
thinking can be jointly used. Section 6 presents future work and
Section 7 concludes the paper.
2. METRICS IN AGILE DEVELOPMENT
Recent studies indicate an increased attention by the software
engineering research community in the application of metrics in
an agile context [16], [18]. Existing measurement techniques have
been modified [6], [8] or new ones have been created [15], [16],
[24] to serve the agile development approach. Based on our
review of literature sources (referenced in this section), we can
classify the existing measurement approaches in three classes: The
first class includes measurements at code level aiming at quality
improvement (also known as internal metrics). Examples are the
System Design Instability (SDI) metric [1], the Running Tested
Features [14], Knoernschild’s code quality and design metrics
[15] and Leffingwell’s Iteration and Release Retrospectives [17].
Some internal metrics are bundled as quality management tools,
for example, Kunz et al. [16] describe distinct metrics and their
implementation into a measurement tool for quality management,
to support refactoring. Ambler [2] recommends Quality Counts.

The second class refers to productivity/effort metrics which are
applied in each iteration and serve project management purposes.
Examples are the Burn-down charts [2], the Project Size Unit [8],
the outcome measures in the XP Evaluation Framework [27] and
the COCOMO-style effort model in [6].

The third class includes economic metrics which consider the
outcome of the development process in terms of the added value
that the product generates. Examples are the results of Rawsthorne
[24] who suggests the new metric of Earned Business Value
(EBV), and of Elssamadisy [10] who defines rhythms related to
delivering value to the client. Metrics as return on investment or
EBV may help the client to make midcourse decisions about the
future of the project. Another commonly known metric is the
Break/Even Point [2] which can be used for this purpose as well.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
APSO’08, May 10, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-021-0/08/05...$5.00.

The first class of metrics can give valuable information about the
quality of the code, but has the inherent drawback that it is not
informative from client’s point of view and offers almost no help
in making decisions about project development. The economic
and productivity metrics can support decision-making process.
Nevertheless, they also represent some problems: In many cases
these metrics use - as a source for the estimation, the design
documents or the work breakdown structure, (as in the Project-
Size-Unit model [8] and the EBV metric [24]) and might consider
these documents as rigid and representative for the duration of the
whole project. In turn, this would not reflect the dynamic and
iterative nature of the agile development as these documents are
not fixed at the start and are not known a priori for the whole
project. Moreover, these measurement processes take as input
client’s estimations or judgements, which rests on the assumption
that the client has in advance a clear idea about (i) the business
value of each feature that is developed in the project, and (ii) the
future business environment and project development. In fact, in
an agile project the requirements and their priorities change
during the project, thus reflecting current business situation.

3. OPTIONS THINKING IN IT PROJECTS
The Real Options Analysis (ROA) [9] is first known as a decision
support technique in the area of capital investments. The concept
of ‘real’ means adapting mathematical models used to evaluate
financial options to more-tangible investments. Since 1999, this
concept has found its way into the area of appraising IT
investments [4]. The core of the ROA for IT assets consists of: (i)
the identification and the assessment of optional components in a
project, and (ii) the selection and the application of a
mathematical model for valuing financial options that serves to
quantify the current value of choosing these components for
inclusion at a later time. Optional components are project parts
that can either be pushed ahead or pulled out at a later point in
time when new information becomes available to the decision-
makers. The option, therefore, is the right but not the obligation to
spend a budget or put resources on a project. For example, it is
often possible to first implement a data mart, and then later decide
to implement a data warehouse.

4. OPTIONS AND AGILE PROJECTS
Erdogmus [12] demonstrate that the agile method is especially
appropriate for projects with high uncertainty. This, in turn,
implies applying different decision-making approaches like ROA,
decision theory [23], or robustness analysis [25]. This paper is
solely focused on the use of real-options thinking. We think it is
worthwhile exploring the use of ROA-concepts as a decision-
making vehicle because:

1. Unlike traditional techniques, it comprehends uncertainty and it
responds to the dynamics inherent in agile project context.

2. It supports the clients of agile projects in the context of a
spectrum of possibilities rather than in the context of a single or
three (the best, likely or worst case) discrete set-ups, and it
facilitates reprioritization as client’s realities unfold over time.

3. It allows incremental expenditures while focusing on the
critical pieces of software functionality essential to accomplish the
project mission.

4. It rests on the understanding that not all requirements and
architecture design options are of equal value.

There exists awareness of the use of ROA in the agile software
development. Erdogmus and Favaro [11] have already applied
options-thinking to XP and put forward two XP value
propositions, namely, that (i) ’delaying the implementation of a
fuzzy feature creates more value than implementing the feature
now’ and that (ii) ‘small investments and frequent releases create
more value than large investments and mega-releases’ [28, p.13].
Matts and Maassen [20] have put option thinking at work in XP
and Scrum contexts. An important aspect in the analyses by these
authors [11],[20] is their focus on the viewpoint of the developers.
The client’s role and decision-making process has received only
scamp attention. This motivated us to focus on the clients’
perspective. In this sense, our work is complementary to their
approach. To the best of our knowledge, applying option thinking
in support of clients’ midcourse-decision-making processes has
not been addressed so far by the research community. In the
community of software metrics practitioners, Longstreet [18]
found that studying the client happens very rarely, too.

This position paper considers real-options thinking to be applied
two-fold in agile context: First, from client’s perspective, real-
option thinking can be deployed to prioritize the requirements in
the start of each iteration so that the delivery of business value is
optimized. Suppose, the EBV for each individual requirement is
known to the client, s/he can re-arrange the requirements in sets
that form options. Clearly, an option will be worth having when
the cost of setting it up is less than its EBV (which in our case is
the sum of the EBVs of all requirements that form the option).
The client can, then, compare the advantages of each option and
select the one that has the optimal EBV. The client can wait to the
last responsible moment to make his decision on the set of
requirements to be implemented and this allows her/him the
chance to incorporate late breaking information and consider
alternative sets of requirements. The term ‘responsible’ means
that the client needs to understand the last point of time to make a
decision without affecting the delivery of the project. If bad
information comes in it costs the client nothing whereas if good
information comes in the client gains value by having the option.

Second, from developers’ perspective, the real-option thinking
can support the implementation prioritization process. For
example, the authors of [20] report on a practice of XP and Scrum
developers who defer the decision about which story to develop
until just before the coding starts. This allows them to incorporate
information that arrives at the last moment, such as a new client
request. In fact, the Scrum Backlog provides a forum where any
idea for functionality can be recorded without requiring an
immediate commitment to build it.

Taking an options approach to the decision-making process in
agile software development is not about applying a new class of
mathematical models. Instead, we look at it as a way of re-
framing the discussion about spending and investment decisions
in terms of options. The first step in re-orienting our way of
looking at agile projects is to identify the options that exist in
software decisions. Then, we will describe how practitioners can
incorporate options thinking into their decision-making processes.

When regarding the agile development method as a sequence of
decisions to be made (that is, as compound option model), we
treat it as a series of options before or after each iteration. We call
‘option’ the set of user requirements to be implemented in each
iteration. Here we don’t make a difference between functionality,
quality of the product or documentation requirements. Each peace

of work that the client requires from the developers has an impact
on the resources spent (e.g. budget, time), and thus on the
outcome of the project. What remains important is to consider a
dynamic decision-making process, typically taking part in the
beginning of each iteration. The following options could be
considered from client’s perspective (Table 1):

Table 1: Description of Options.
Option Description

Postpone Wait to determine whether to implement certain
requirements without imperiling the potential
benefits.

Abandon Abandon the project (terminate at the current stage).

Scope up Add new functionality or quality features, not
scheduled previously.

Scope down Remove already implemented or negotiated features.

Switch Change or re-arranging the stack with requirements.

Note that we don’t consider the growth option, as it contradicts in
its essence with the ‘just enough’ agile philosophy. ‘(However,
we think, it is worth investigating the state of the practice in this
regard.) Furthermore, we looked at literature in agile software
engineering to find examples of the types of options as presented
in Table 1. Some of the results of this effort are described below:

1. The option of Postponing: the experience of Poppendiek LLC
[22] highlights the fact that the agile software process permits the
clients to decide late when they have the best understanding it is
going to get to achieve the best fitness for use it can within the
constraints of the project.

2. The option of Abandoning: In many agile projects, the client
has the right to cancel at the end of any phase, receiving the
working, tested software from all phases completed so far. A
published experience of a Control System Manufacturer [19]
indicates how clients can cancel a project early if they find it is
not going as expected and thus loose minimal investment; for
example, a project review found that only 20% of the projected
business value had been achieved, which was used by the clients
to conclude that the project should no longer be pursued.

3. The option of Scoping-up: This is an inherent part of any agile
process and the varieties of features or functionality pieces that
might be added in any iteration, all depend on the types of
stakeholders on the client’s side involved. As [3] indicates,
operations and support people, architects, regulatory compliance
auditors, senior management, all may change their requirements.
An interesting example of scoping up for large agile projects is
provided in the Canadian Pacific case study [21]. Their agile
philosophy was to “not close any doors” and accounted that the
option of adding new features comes at the price of some rework
which was “inevitable, acceptable and manageable”.

4. The option of Scoping-down: It refers to settings in which the
projects advance slower than the client expects. For example,
Optimation, a software firm in New Zealand, reports of a project
in which the client scoped down the functionality when it was
found that the project was 25% complete and that the amount of
work required would significantly exceed the initial estimates
[26]. The client cut, then, the project scope to fit the budget.

5. The option of Switching: because agile applications are being
developed in vertical slices instead of horizontal ones, the client
never receives 100% of one tier completed before moving to the
next one. This lets him/her switch some features and hook them
together differently from the original set up. For example, at
Sabre Airlines Solutions, clients compared alternative sets of
features and switched to ‘simplified functionality’ at the
beginning of each iteration they deemed an alternative set of
requirements be at odds with their principle of ‘make it run, make
it right, make it fast’ [28].

5. INCORPORATING MEASUREMENTS
INTO THE DECISION-MAKING PROCESS
Clearly, the delivery of business value is the ultimate goal of an
agile project and this is a common opinion throughout the agile
community [2],[7],[12],[13],[24]. However, there is no published
approach of how to achieve this in a systematic way. One way to
go about it is to provide clients at inter-iteration time with
accurate and easily available project information that is
translatable in business terms, and hence, could support the
analysis of the clients’ options. We draw on a recommendation by
Bowers [7], who after walking a mile in client’s shoes, stresses
the importance of keeping focused on business value. She
indicates that the client is supposed to be in control of the product,
but has no power over the process. Yet, his role is maintaining at
all times the vision about business value. One of Bowers’s
recommendations is to give the updates & high quality
information for decision making. This is exactly where we want to
provide help by offering a systematic decision-making procedure.

When regarding a project from a client’s perspective, what we see
is a sequence of iterations. Each one can be considered as a mini-
project, representing a relatively independent and closed entity. At
the beginning, it is a prioritized list with requirements and, at the
end, it is working software, with certain features and qualities. We
suppose (take for granted) that the goal of a project is to maximize
the business value. That is why the measure of EBV [24] is
central for our further considerations. As the EBV is measured
based on the WBS, we propose the following procedure
(represented on Fig. 1) for the decision-making process:

List with
features

Work
breakdown
structure
(WBS)

Earned Business
Value (EBV) per

feature

Size
measurement

(effort estimation)

Prioritized list
for the

Iteration

Real
Options
Analysis

Experience,
historical record

EBV Iteration n

Development
– Iteration n

Figure 1. The iteration from client’s perspective.

Assume preliminary sets of requirements for the project is
defined. Based on that, the EBV per each user story (feature) can
be estimated. The client, then, prioritizes the list based on
max(EBV). Simultaneously, the WBS serves as a basis for the

developing team to estimate the effort, for example, by using PSU
[8] as a sizing technique. Based on these two estimates, the scope
of the iteration 1 can be defined. The remainder of the project can
be considered as a start of a new mini-project – in which, again,
the client has to prioritize the user stories, can decide to add new
features, change the order of requirements to be implemented, or
change quality characteristics. The decision for prioritization is
taken based on options-thinking, as described in section 4. As an
input at the start of this mini-project (iteration) the developer has
to provide the client with information for his decision-making –
namely size and effort estimation per feature or per set of features.
This process is incremental and dynamic and any changes in the
context can be taken into consideration.

6. FUTURE RESEARCH
Our analysis on how to re-think the decision-making processes in
agile software project context points out that it is possible to find
arguments which, when assembled, call for a new quantitative
approach to costs and benefits to be considered when determining
when and how much to invest in software functionality. Although
the agile community does emphasize the importance of
investigating cost/benefits relationships in agile projects, their
published works [20], [24], cite isolated “islands” of solutions.

We propose the topic of options-based decision support be
approached in a disciplined way as suggested by authors who
applied ROA to other IT areas [5]. We plan to carry out this
research, complementing it with four activities: (i) carrying out a
systematic review on the topic of agile measurement, including
metrics of the process (i.e. effort estimation, project size), of the
product, as well as business metrics (ROI, EBV), (ii) identifying
information necessary for the client’s decision making, (iii)
creating a dynamic measurement procedure reflecting the iterative
and incremental nature of the agile development process [6], and
(iv) exploring the influence of parameters of the project’s context
on the existing options.

7. CONCLUSIONS
We propose the idea to use the real options approach to help the
client part in an agile project make decisions. We state that the
prioritization of requirements and other decisions concerning
project evolution can be regarded as a set of options. Metrics
could be used to support this process. The client’s role as a
decision-maker has been under-researched and we strongly
believe that this direction is worth investigating.

8. REFERENCES
[1] Alshayeb, M., W. Li, An Empirical Study of System Design

Instability Metric and Design Evolution in an Agile Software
Process, J of Systems and Software, 74(3), 2005, pp. 269–274

[2] Ambler, S., Scaling On-Site Customers, Dr Dobb’s Journal, Dec,
2007.

[3] Ambler, S.W., Measure Me Wisely, Dr Dobbs’s Journal, July 2005,
http://www.ddj.com/architect/184415360

[4] Amram, M., Kulatilaka, N.: Real Options: Managing Strategic
Investment in an Uncertain World. HBS Press, Cambridge, 1999.

[5] Benaroch, M, Managing Information Technology Investment Risk:
A Real Options Perspective. J of Management Info Systems, 19(2),
Fall 2002, pp. 43-84.

[6] Benediktsson, O., D. Dalcher, K. Reed, M. Woodman, COCOMO-
Based Effort Estimation for Iterative and Incremental Software
Development, Software Quality Journal, 11(4), 2003, pp. 265-281.

[7] Bowers, A., Leading From A Position Of No Power: A Customer’s
Perspective of an Agile Team,
http://www.infoq.com/presentations/alexia-bowers-agile-leadership

[8] Buglione, L., Project Size Unit,
http://www.geocities.com/lbu_measure/psu/psu.htm

[9] Childs, P. D.; Ott, SH.; Triantis, A.J. Capital Budgeting for
Interrelated Projects: A Real Options Approach, J of Financial &
Quantitative Analysis, 33(3), 1998, pp 305-335.

[10] Elssamadisy, A., A.Johnson, Rhythms As Agile Diagnostics, Agile
Journal, June 2006, http://www.agilejournal.com/articles/articles/
rhythms-as-agile-diagnostics.html

[11] Erdogmus, H., Favaro, J. Keep Your Options Open: Extreme
Programming and Economics of Flexibility. In Extreme
Programming Perspectives, M. Marchesi et al (eds). Addison-
Wesley, 2002.

[12] Erdogmus, H. The Impact of Learning and Flexibility on the
Economics of Iterative Development. IEEE Software, Nov/Dec
2005.

[13] Hartmann, D.; Dymond, R., Appropriate Agile Measurement: Using
Metrics and Diagnostics to Deliver Business Value, AGILE 2006.

[14] Jeffries, R., A Metric Leading to Agility, in XProgramming, June
2004 http://www.xprogramming.com/xpmag/jatRtsMetric.htm

[15] Knoernschild, K., Using Metrics To Help Drive Agile Software, in
Agile Journal, June 2006, http://www.agilejournal.com/articles/the-
agile-developer/using-metrics-to-help-drive-agile-software.html

[16] Kunz, M.; Schmietendorf, A.; Dumke, R.: How to measure Agile
Software Development, Int’l Conf. on Software Process and Product
Measurement, Palma, Spain, 2007, pp. 319-325

[17] Leffingwell, D., Iteration and Release Retrospectives: The Natural
Rhythm for Agile Measurement, Agile Journal, June 2006,
http://www.agilejournal.com/articles/articles/iteration-and-release-
retrospectives:-the-natural-rhythm-for-agile-measurement.html

[18] Longstreet, D., Agile Methods and Other Fairy Tales, 2007,
http://www.softwaremetrics.com/Agile/Agile%20Paper.pdf

[19] Mahanti, A., Challenges in Enterprise Adoption of Agile Methods –
a Survey, J of Computer & Information Technology, 14(3), 196-207

[20] Matts, C., Maassen, O., „Real Options" Underlie Agile Practices,
http://www.infoq.com/articles/real-options-enhance-agility

[21] Meszaros G., J.Aston, Agile ERP: “You don’t know what you’ve got
‘till it’s gone!”, AGILE 2007.

[22] Poppendiek, http://www.poppendieck.com/

[23] Pratt, J.W., H. Raiffa, R. Schlaifer, Introduction to Statistical
Decision Theory, MIT Press, Cambridge, MA, 1995.

[24] Rawsthorne, D., Calculating Earned Business Value For An Agile
Project, Agile Journal, June 2006,
http://www.agilejournal.com/articles/articles/calculating-earned-
business-value-for-an-agile-project.html

[25] Rosenhead, J., Robustness Analysis: Keeping Your Options Open, In
J. Rosenhead et al (eds.) Rational Analysis for a Problematic World
Revisited: problem structuring methods for complexity, uncertainty
and conflict, Wiley, Chichester, 2001, pp. 181-207

[26] Rusk, J., Cutting Scope in not the (Whole) Answer, 2004,
http://www.agilekiwi.com/cutting_scope.htm

[27] Williams, L., W. Krebs, L. Layman, A. Anton, P. Abrahamsson,
Toward a Framework for Evaluating Extreme Programming, Int’l
Conf. on Empirical Assessment in Software Eng. (EASE) 2004.

[28] Williams, M., Jay Packlick, Rajeev Bellubbi, Scott Coburn, How We
Made Onsite Customer Work - An Extreme Success Story, AGILE
2007, pp. 334-338

