Energy-transfer upconversion in Al₂O₃:Er³⁺ thin layers

K. Wörhoff¹, J.D.B. Bradley¹, L. Agazzi¹, D. Geskus¹, F. Ay¹, A. Kahn², H. Scheife², K. Petermann², G. Huber², and <u>M. Pollnau¹,*</u>

¹ Integrated Optical MicroSystems Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

> ² Institute of Laser-Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany

* Correspondant author: e-mail address: m.pollnau@ewi.utwente.nl

Erbium-doped aluminum oxide (Al₂O₃:Er) is a promising material for integrated amplifier or tunable laser applications due to its wide gain spectrum around 1550 nm. We deposited Al₂O₃ layers on thermally oxidized Si-wafers by reactive co-sputtering at 550°C [1]. Propagation losses were 0.11 dB/cm at $\lambda = 1.5 \mu$ m. Channel waveguides were fabricated by reactive ion etching with propagation losses down to 0.21 dB/cm [2]. Under pumping at 977 nm, the optical small-signal gain at 1533 nm is 0.84 dB/cm, resulting in 5.4 dB net gain over the waveguide length of 6.4 cm [1]. Net gain is obtained over a wavelength range of 41 nm (Fig. 1).

The Er concentration was measured using Rutherford Back-Scattering (RBS). Lifetimes of the ${}^{4}I_{13/2}$ level of up to 7 ms were measured for Er concentrations around 2×10^{20} cm⁻³. A faster decay with an increasingly non-exponential initial component is measured for higher Er concentrations (Fig. 2). While the initial quenching is probably due to migration-accelerated energy-transfer upconversion between neighboring Er³⁺ ions in the ${}^{4}I_{13/2}$ level, the decreasing exponential tail is due to either pair-induced energy-transfer upconversion or quenching by impurity ions. Detailed investigations of the quenching mechanisms are currently under way.

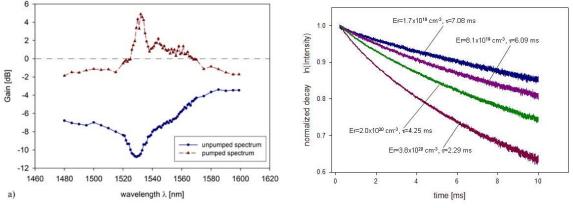


Fig. 1. Net gain in a sample with Er concentration 0.09at% $(0.8 \times 10^{20} \text{ cm}^{-3})$ as a function of wavelength

Fig. 2. Luminescence decay curves at 1.5 μm for different Er concentrations

References

- [1] K. Wörhoff, J.D.B. Bradley, F. Ay, D. Geskus, T.P. Blauwendraat, M. Pollnau, "*Reliable low-cost fabrication of low-loss Al₂O₃: Er³⁺ waveguides with 5.4-dB optical gain*", IEEE J. Quantum Electron., submitted (2008).
- [2] J.D.B. Bradley, F. Ay, K. Wörhoff, M. Pollnau, "Fabrication of low-loss channel waveguides in Al₂O₃ and Y₂O₃ layers by inductively coupled plasma reactive ion etching", Appl. Phys. B **89**, 311-318 (2007).

⁻⁻⁻⁻⁻⁻

^{7.} Solid state amplifier and laser materials