
A Graph-Transformation-Based Simulation Approach for
Analysing Aspect Interference on Shared Join Points

Mehmet Aksit
Software Engineering Group

University of Twente
P.O. Box 217, 7500 AE

Enschede, The Netherlands
aksit@ewi.utwente.nl

Arend Rensink
Formal Methods and Tools

Group
University of Twente

P.O. Box 217, 7500 AE
Enschede, The Netherlands
rensink@cs.utwente.nl

Tom Staijen
Software Engineering Group

University of Twente
P.O. Box 217, 7500 AE

Enschede, The Netherlands
staijen@cs.utwente.nl

ABSTRACT
Aspects that in isolation behave correctly, may interact when
being combined. When interaction changes an aspect’s be-
haviour or disables an aspect, we call this interference. One
particular type of interference occurs when aspects are ap-
plied to shared join points, since then the ordering of the
aspects can also influence the behaviour of the composition.
We present an approach to detect aspect interference at
shared join points. Aspect compositions are modelled by us-
ing a graph production system for modelling aspect-language
semantics. A graph-based model of a join point is generated
from the source-code of the system. This graph is trans-
formed into a runtime-state representation. Combined with
the production system (and the correct tooling) the execu-
tion of the aspects is simulated. This simulation results in a
labelled transition system that can be used to analyse and
verify different properties of the system at the join point.
Simulation of the entire system can be computationally ex-
pensive. In our approach, we decide to abstract base sys-
tem execution into non-deterministic valuation and carefully
choosing advice semantics, such that simulation of the entire
system can be avoided.

Categories and Subject Descriptors
D2.4 [Software Engineering]: Software/Program Verifica-
tion—formal methods, model checking, validation.

General Terms
Verification.

1. INTRODUCTION
Aspect-oriented programming languages allow the modu-

lar specification of crosscutting concerns. Behaviour speci-
fied separately in aspects is added into a base system1 – a

1There are also aspect-oriented languages which do not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’09, March 2–6, 2009, Charlottesville, Virginia, USA.
Copyright 2009 ACM 978-1-60558-442-3/09/03 ...$5.00.

system without aspects – during compile-time or run-time.
This process is called weaving. When multiple aspects are
applied to a system, unexpected results can emerge: two or
more aspects behaving correctly when applied in isolation,
may interact in an undesired matter when applied together.
This phenomenon is called aspect interference.

Aspects are typically constructed by pointcuts and advice.
A pointcut selects a set of points in the execution of a pro-
gram, so-called join points. Advice consists of the units of
execution that are inserted at these join points. Interference
between aspects occurs when one aspect disables or changes
the behaviour or applicability (i.e. the composition with the
base system) of another aspect. There are different causes
for aspect inference:

• At weave-time, the set of join points (pointcut matches)
of one aspect can be changed by another aspect;

• At weave-time, aspects that change the static struc-
ture of a program (introductions) can cause ambiguous
weaving - resulting in different programs - depending
on the weaving order [10].

• At run-time, one aspect can modify fields or variables,
affecting the behaviour of another aspect;

• At run-time, one aspect can change the control-flow of
the system, causing a join point of another aspect to
never be reached.

Join points that are selected by more than one pointcut
are called shared join points. When no fixed order of advice
execution is determined by the program directives, but the
order of advice execution affects the result, a shared join
point can lead to unpredictable and undesired behaviour of
the woven system, or even an ambiguous system. Other
studies such as [18] have already indicated that special at-
tention must be paid to shared join points.

In this paper we propose a detection mechanism for aspect
interference at shared join points. The run-time semantics
of an aspect-oriented programming language will be speci-
fied as a graph-transformation production rule system. The
formal specification allows simulation of the execution of ad-
vice, resulting in an execution state space. We will show that
this can be used to detect aspect interference.

make distinction between aspect and base system; these lan-
guages are not addressed in this paper.

Simulation of a complete system is computationally ex-
pensive; it is desirable to only analyse the aspects. In our
approach, only the execution of the composed aspects is sim-
ulated, not the base system. The source-code of the base
system is only used for extraction of aspect compositions
- those combinations of aspects that occur on shared join
points - and to construct a simplified representation of the
base state that allows for advice execution.

We find the following characteristics of an interference
analysis approach to be desirable:

• It should be possible to detect aspect interference on
shared join points.

• The approach should be generic with respect to AOP
languages: it should be applicable to different aspect-
oriented languages.

• The approach should be modular: although analysis
of aspects can be limited to the occurrence of shared
join points in a program, the source code of the base
system should not be required for the actual analysis.

• The approach should be practical : it should let a de-
veloper analyse a program without much effort.

The approach is explained using Composition Filters (CF)
[2] as example aspect-oriented language. We will argue that
CF is typically but not solely suitable for our approach.

The rest of the paper is organised as follows. In Section
2 the problem of aspect interference at shared join points is
discussed in more detail and an example is introduced. In
Section 3 we will explain our approach in detail. We evaluate
the approach in Section 4 and in Section 5 we elaborate on
some possible improvements. We finalise with related work
in Section 6 and our conclusions in Section 7.

2. PROBLEM DEFINITION
In this section we will elaborate on the problem of inter-

ference among aspects at shared join points.

2.1 Aspect Interference at Shared Join Points
Interference between aspects at shared join points will

only occur when aspects depend on the same system state
during the execution of the advice. Three different kinds of
interaction between aspects can cause interference to occur
at shared join points.

1. The first problem is caused by a common feature of
aspect-oriented languages; they allow pointcuts to con-
sist of predicates over both the static structure of the
program and the run-time state. These conditions al-
low the aspect to be applied only at a certain run-time
state. Where the static predicates are typically re-
solved during weaving - resulting in a set of so-called
shadow join points - the dynamic predicates (also re-
ferred to as pointcut residues) are typically woven in
with the advice like an if -statement. The value this
pointcut residue depends on can be changed by a pre-
ceding aspect. This weaving-interference, already de-
scribed in the introduction, is only recognised during
the execution of the system.

2. An aspect can change or abort the control-flow of the
system, for example by aborting the join point action

and all succeeding aspects to be executed at that join
point. A typical AspectJ example of this behaviour is
an around advice without a proceed() statement.

3. Aspect interference occurs if one aspect writes to vari-
ables or fields, such that the behaviour of a succeding
advice is affected. As this is a general problem, it can
also occur on shared join points.

We will illustrate the problem by examples of aspect in-
terference. Consider a system where String objects are sent
between objects and assume we add the following four as-
pects to this system:

Logging.
The logging aspect logs method-calls to a file.

Authorisation.
The authorisation aspect will disallow unprivileged users

from using certain methods in the system. These methods
will be blocked by aborting the method dispatch process.

Profanity Filtering.
The profanity filter aspect removes inappropriate words

that are sent.

Encryption.
The encryption aspect encrypts strings for secure trans-

portation in the system.

The combination of Logging and Authorization illustrates
an example of interference type 2 presented above: inter-
ference caused by a control-flow modification. When the
logging advice is executed before the authorisation advice, a
method can be logged without being executed. In reversed
order, the method may be aborted before the method-call is
logged.

The Profanity Filter and Encryption aspects combined
present an example of interference type 3: both aspects
change the same field. Encrypting the string after filter-
ing inappropriate words is the obviously desired behaviour.
In reverse order, the profanity filter will be applied to an
encrypted string and will not be able find any profane lan-
guage.

Logging and Encryption is also an example of type 3,
where one advice writes to a field and another advice reads
this field. When Logging is executed first, the original string
is logged; in reverse order the encrypted string is logged.

We will now explain the Composition Filters model, and
then introduce the implementation of the introduced exam-
ples in Composition Filters. We will explain that in Com-
position Filters, interference type 1 is not possible.

2.2 The Composition Filters Model
The Composition Filters model is an extension of the con-

ventional object-based model, where objects are enhanced
with filters for the manipulation of incoming and outgoing
messages. Figure 1 illustrates this mechanism; an object is
enhanced into a CF object by adding filters. All incoming
and outgoing messages have to pass the corresponding set
of filters. Typically, in object-oriented languages, messages
are method-calls.

Filters are grouped into components called filter modules.

Figure 1: Simplified representation of concern in-
stance with filters

These units of reuse provide execution context for the fil-
ters: persistent local and global variables called internals
and externals, respectively. Filter modules can be declared
separately and superimposed on a selection of classes, allow-
ing the declaration of aspects. We consider this to be the
static pointcut matching.

In essence, a filter declaration consists of a filter-type and
a matching pattern. The filter-type defines the behaviour
of the filter, by an accept action and a reject action. The
matching pattern consists of a condition expression and a
matching part. The condition expression refers to a con-
dition (boolean) method in the enhanced object or in the
filter’s context, given by the filter module. The values of
conditions can be changed by aspects, but changed values
are not used during the evaluation of the filter set. There-
fore, interference type 1 of the previous subsection, can not
occur. The matching part accepts messages typically by
their selector, which is the name of the called method.

Composition Filters concepts can be mapped to those of
regular AOP-languages. Superimposition specifications are
pointcut designators. Selecting classes in this superimposi-
tion specification corresponds to static pointcut matching.
Before, after and around is replaced by an implicit method
interface and/or abstract interfaces of objects (i.e. when-
ever a message enters of leaves an object). Filter module
specifications correspond to advice declarations. Conditions
in filter declarations are like if -pointcuts, testing a dynamic
property. Notice that conditions – in this mapping – are
part of the advice.

Composition Filters is among the AOP languages where
aspects are added to the objects modularly (also called black-
box AOP approach). Languages that introduce aspects as
proxies/interceptors can also be put into this category. Such
approaches may have the following advantages:

1. The AOP extension can be designed in a base-language-
independent way;

2. Advice respects the encapsulation of modules; aspects
only affect incoming and outgoing calls;

3. Interface-based composition, due to encapsulation and
well-defined method interfaces.

Composition Filters is an attractive language for our ap-
proach: not only can aspects be analysed in a base-language-
independent way, the advice-language itself consists of a
fixed set of filter-types; only the semantics of this fixed set
of filter-types has to be specified.

2.3 Example Code
We now give an implementation of the aspects described

earlier in this section in the Composition Filters language.
Listing 1 shows the complete specification of the Logging

aspect. The aspect consists of a filter module named Log-

Module, which contains one input-filter. This filter is evalu-
ated when a message is received by an object enhanced with
this filter module. The input-filter declaration contains the
name of the log filter, the filter type Log, and a matching
pattern, which matches the selector send. A substitution
part (*.*) will pass the matched target and selector to the
action performed by the filter. The superimposition selects
class Server, using a Prolog query on the static structure
of the base program, and superimposes the LogModule filter
module on this class. Thus, whenever a method named send

is called on an instance of class Server, the message will be
logged.

1 concern Logging {
2
3 filtermodule LogModule {
4 inputfilters:
5 log: Log = { [*. send] *.* }
6 }
7
8 superimposition {
9 filtermodules

10 classes = { x | ClassByName{ x, ’Server ’ } };
11 superimposition
12 classes <- LogModule;
13 }
14 }

Listing 1: Composition Filters source code of the
Tracing aspect

Listing 2 shows the filter module specification of the other
three aspects: Authorisation, Profanity Filtering and En-
cryption. The superimposition specifications have been left
out; except for the name of the filter modules they are iden-
tical to the specification of the Logging aspect. The Au-
thorization aspect is implemented by the AuthModule filter
module. It uses the Abort filter-type, which will abort eval-
uation of any other filters and return without executing the
requested method. The filter specification matches any in-
coming message with selector send, but only when condition
isAllowed is false. The value of the condition is requested
from an external of type User. The Profanity Filtering and
EncryptModule are identical to the Logging aspect, except
for the filter-type that is used. The FilterProfanity type will
change the string argument of the message to not contain
any profane language; the EncryptString type will encrypt
the string argument of the message.

At run-time, the used filter types Log, Abort, FilterProfanity
and EncryptString are associated with accept-actions Log-
Action, AbortAction, FilterProfanityAction and EncryptAction,
respectively, which are performed when the filter accepts a
message. All used filter types have the Continue-Action as a
reject-action. This action is executed when the filter rejects

a message, and will continue the message to the next filter.
If the filter is last in line, the message will be dispatched.

1 filtermodule AuthModule {
2 externals
3 user: User;
4 condition
5 isAllowed = user.isAllowed ();
6 inputfilters:
7 auth: Abort = { !isAllowed => [*. send] *.* }
8 }
9

10 filtermodule ProfanityModule {
11 inputfilters
12 profanity: FilterProfanity = { [*. send] *.* }
13 }
14
15 filtermodule EncryptModule {
16 inputfilters
17 encrypt: EncryptString = { [*. send] *.* }
18
19 }

Listing 2: Composition Filters source code of the
Authorisation aspect

For pre-defined filter types, the user will not see the imple-
mentation of these actions. Rather, a well-defined semantics
is given, although in natural language. User-defined filter
types are implemented by the user, but are intended to have
a reusable nature.

3. APPROACH
We propose to compare different advice orderings to de-

tect aspect interference. We will analyse these orderings
by means of simulation of shared join points using graph
transformations. Interference is detected by comparing the
simulation results of the different orderings.

3.1 Process of the Approach
The approach is visualised in Figure 2. From a program

specified in a specific AOP language, a graph is generated
for each shared join point.

The semantics of the aspect-oriented language is specified
using graph production rules. Essentially, this means that
each rule specifies the semantics of a single language ele-
ment, a small-step semantics. A join point graph essentially
represents a snapshot of the initial state of the system, but
only the part we are interested in.

As mentioned earlier, we do not wish to simulate the en-
tire program. Firstly, because creating a state space of the
entire program is computationally expensive. Secondly, sim-
ulation of the entire program would require us to model the
semantics of the base language with graph production rules.

A join point graph and the run-time semantics production
rule system are given to a simulator tool which will generate
a state space (represented as a labelled transition system, or
LTS) of the execution of the different advices at the specified
join point in all possible orders. In this LTS, each state
is represented by a graph; the transitions represent rule-
applications. Again, the graphs only describe the essential
part of the state.

The generated LTS is then used for analysis of the join
point. We detect interference by comparing the result of
different orders: the advices have to be commutative.

We will explain the concept of graph-transformation first.
Then we will explain the structure of the generated graphs,
followed by a description of the graph production rules used

Figure 2: Global Overview of the Approach

to simulate the execution of the advice. Then, we will de-
scribe the simulation of the shared join points and the anal-
ysis method for interference detection.

3.2 Graphs and Graph Production Rules
Graphs are mathematical models with an intuitive and

attractive visual representation. Graphs essentially consist
of boxes — called nodes — connected by labelled arrows
— called edges — possibly with labels on the nodes. In
the context of this paper, the states of an LTS contain the
static structure of that part of the program that is involved
in the join point simulation, additional control flow infor-
mation, and a part that represents run-time information. A
graph production rule, in general, is a directive for changing
graphs. It specifies a pattern of transformations between
two graphs. A set of production rules is called a graph pro-
duction system. Given a start-graph and a set of production
rules, a state space can be generated by iteratively apply-
ing all rules to all graphs, wherever this is possible. Hence,
the states in this state space are graphs; the transitions are
rule-applications.

For the purpose of the rules used in this paper, it ac-
tually does not make an essential difference what precise
graph transformation formalism is used, since the rules can
be formulated in either algebraic or algorithmic formalisms
[23]. In fact, we have used GROOVE [21] as a tool to carry
out the transformations and generate the state spaces; this
means that the actual rules have been defined in the Single-
Pushout approach [7]. Since the point of this paper is to
illustrate an application of graph transformations, we omit
the details of the formalism.

Figure 3 shows a rule specification in the GROOVE no-
tation, containing nodes and edges, for simply explaining
the different lines styles used in GROOVE. The labels in
the nodes are in fact self-edges connected to these nodes.
The different line styles all have different meanings: normal

Figure 3: Example rule with different line styles.

nodes and edges (a) are so called reader elements, that will
be used for matching; dashed elements (b) are eraser ele-
ments, which will be removed and thus also are required for
matching the rule; thick lines (c) represent creator elements,
which will be added to the graph when the rule is applied2.
Thick dashed lines (d) represent embargoes, or so-called neg-
ative application conditions (NAC), which — when matched
— prevent the rule from being applicable.

3.3 Graphs Representing Shared Join Points
Graphs represent run-time states of shared join points. A

join point in CF is a method call to a class that has one or
more filter modules — two or more for shared join points.
The contents of the graph — representing a single shared
join point — can be divided into three parts.

First, the graphs contain the essential part of the static
structure of the program to be able to simulate the advices.
This is in fact the static structure of the filter modules su-
perimposed on the class of the target of the method call.
This is essentially a graph-based representation of the ab-
stract syntax tree (AST) of the filter modules, a single node
for the class, and a filterset node connecting the class and
the filter modules.

Second, control flow information is added to the graph.
Specification of the language semantics involves giving both
a control flow semantics and a run-time semantics to the
Composition Filters language. The control flow semantics
of Composition Filters is specified in a dedicated language
for this purpose, developed in [25]. This includes an auto-
matic translation to a graph production system. Applying
this transition system to the graph will add control flow in-
formation to the graph-representation of the filter modules.
This means that nodes are enriched with a flow edge to the
next control flow element, or with a nodes and edges rep-
resenting the “true” and “false” flow for conditionals. These
edges can be used in the run-time semantics to be able to
move the program counter to the next flow element.

Last, a run-time state representation of a shared join point
is added to the graph. In the composition filters model,
this requires a message with a sender, target, selector and
arguments. This message — which is in fact a method call to
the class with the filter modules of which the static structure
is in the graph — is represented by a graph representation
of a number of stack frames such as described by the type-
graph in Figure 4.

Frames represent the execution context of a specific part
of the program. Frames typically have an outgoing pc edge
— the program counter — to a FlowElement (an element of
the AST). The parent edge connects to the parent frame,
the execution context of the method-call. A outgoing pro-
gram counter indicates the frame is active. Typically, only

2For the more knowledgeable in the field of graph-
transformations: the normal and dashed elements represent
the left-hand-side (LHS); the normal and thick elements rep-
resent the right-hand-side

one pc edge exists in the graph when dealing with a single-
threaded program. When a frame is finished and deleted,
execution continues in the parent frame, by restoring the
program counter.

In our model we distinguish between two different kinds
of frames: a MethodFrame is used for executing a method
body; a FilterFrame is used for executing a filter set3.

A method frame has a target edge to an Object of a
certain type; this is the target of the message. When the
method is dispatched (after executing the filter-modules),
this edge is replaces by a self edge.

The method frame is connected to a Signature with a
name of type string:, and any number of Arguments. The
frame is connected to ArgValue nodes via arg edges. These
ArgValue nodes are connected to Object nodes that repre-
sent the arguments of the method call.

A method frame can be in three different states before it
starts executing a method body (i.e. before it has a pc edge):
filtering, dispatch, or abort. Filtering occurs before the
method is dispatched. When the filter process is finished,
the state of the frame is updated to dispatch, causing the
dispatch process to start. Filters that abort the message
flow will change the state to abort. The actual run-time
implementation of such an abort depends on the platform
(e.g. an Exception), but since we do not simulate dispatch-
ing and returning, we are merely interesting in the fact that
the frame was aborted, not how. Therefore, the abort edge
will be sufficient. When no filters are present, the frame
immediately reaches the dispatch state.

A filter frame is connected to a method frame in the filter-
ing state via a filters edge. This method frame represents
the message in the CF model. The filter frame is connected
via pending edges to the filter modules of the that are in the
filter set of the message target’s class. When a filter module
is selected for execution the pending edge is removed. When
no more pending edges exist, the filtering process is finished.

Figure 4: Type-graph of a Shared Join Point

Figure 5 shows the part of a generated graph representing
the run-time state of a join point. It reflects a method call,
before it is dispatched, to an object of a class on which two

3The labels MethodFrame and FilterFrame do not appear in
the actual graphs; they are added just to distinguish them
in this explanation

Figure 5: Example run-time part of a join point
graph

filter modules are superimposed. The graph contains three
frames, that have only the essential parts of the type-graph
needed for the simulation, i.e. to reflect the message:

• The caller frame (annotated with A in the figure),
which is associated with an Object via a self edge.
This is the frame the method-call originated from. The
self object of the frame corresponds to the sender of
the message.

• The target frame (B), not being dispatched yet, rep-
resents the frame that will execute the called method.
The frame, which is in a filtering state - is connected to
the caller frame via a parent edge. The target object
corresponds to the target of the message. The name of
the signature corresponds to the selector of the mes-
sage. The arguments of the frame correspond to the
arguments of the message.

• The filter frame (C) represents the frame responsible
for the execution of the filters. Thus, when filtering
is done, the initial method-call operation can be con-
tinued. The filter frame has a pending edge to each
of the FilterModule nodes that are in the filter set of
the target’s class. It has a filters edge to the target
frame; this is used for linking to the sender, target,
selector, and arguments. The parent edge represents
the normal frame hierarchy.

3.4 Graph Transformation based Language Se-
mantics

Run-time semantics of imperative languages can be mod-
elled by a rule-based specification language such as graph
transformations. In particular with GROOVE, work has
been done on specifying the run-time semantics of the .NET
IL language [26], a subset of Java [1], and TAAL [13] (a small
but realistic ”toy”object-oriented language without the more
advanced features such as exceptions and threads). In this
subsection we will show the specification of the run-time se-
mantics for Composition Filters as a graph-transformation
production system.

The run-time semantics has been defined by a single rule
for each type of syntax element of the language. These rules
are specified by hand but, once fixed, allow the method to
be applied to any CF specification.

In fact, these rules can be divided into two categories. One
set of rules is used to specify the semantics of the filtering
language. When simulated, these rules evaluate whether a
filter should execute either its accept or reject action.

The other category consists of a rule for each type of filter
action, and describes the actual behaviour of the filter ac-
tions: the effect of the action on the state of the system. In
this paper, we describe the rules that represent the actions
performed by the filter types used in the running example.

Figure 6: Rule specifying the Log action

The rule specifying the Log action is displayed in Figure
6. As a quick reminder: the dashed and normal line styles
represent the part that is used for matching the rule. The
rule matches a Frame node (which in fact represents a filter
frame) with a pc edge to a FilterAction node, where the
name of the action is "Log". The Frame has a filters edge
to the method frame representing the message. This second
frame has a signature with a name edge to round shaped
node: an attribute node. Attribute nodes have an identity
related to their value, e.g. two equal string values always use
the same string attribute node. We assume that the filter
type “Log” should be used for messages with one argument
only. The rule matches this argument via the arg edge to
the ArgValue node and the attached value.

The specification mechanism allows for a certain level of
abstraction. For example, a rule can specify where the mes-
sage is logged (e.g. to console or a file), what exactly is
logged, and in what order messages are logged. We have
chosen to specify only what is logged. When applying the
rule, a logged edge to the selector and the argument is cre-
ated. Also, the pc is removed and a new pc edge is created
to the next flow element, the target of the flow edge.

This rule illustrates that we can choose a level of abstrac-
tion in specifying the behaviour of the filter actions. We
merely need an abstract representation of the effect of ad-
vice application on the state, such that different states can
be identified. In the case of the logging filter, we only care
about what is logged, and therefore only that information
determines the resulting state.

Figure 7 shows the production rule of the Abort action.
The dashed Frame with a pc edge to a FilterAction with
name "Abort" indicates that it is applicable when the exe-
cution has reached the abort action. The dashed filter frame
is removed, ending the filter evaluation; the target frame is

tagged with an abort edge to prevent it from being dis-
patched.

Figure 7: Rule specifying the Abort action

Figures 8 and 9 show a specification of the ProfanityAc-
tion and EncryptAction, respectively. Both ”increase” the
program counter along the flow edge. A newly created Ob-

ject node replaces the original argument of the message.
Connecting the new argument with the old argument with
an advice-specific edge. This allows us to distinguish with
which argument the actions are performed.

Figure 8: Rule specifying the FilterProfanity action

Figure 9: Rule specifying the Encrypt action

3.5 Simulation & Analysis
For simulation of the advice at the join point, there are

two issues to be dealt with.

1. Part of the filtering process deals with accepting or re-
jecting a message based on the value of a condition.
Since we do not execute the entire system, we do not

know (and can not evaluate) the actual values of condi-
tions at the join point. We deal with conditions by val-
uating them non-deterministically; the transition sys-
tem branches into a path where the condition is true
and a path where the condition is false.

2. To simulate all possible orders of the advices, two rules
are used to non-deterministically choose the next ad-
vice to be simulated (one rule for the first filter mod-
ule, and one rule for any succeeding filter module). As
explained, the filter frame was connected to the filter
modules with pending edges. Both rules move the pc

edge to any filter module connected by a pending edge
and remove this pending edge. Thus, a branch is cre-
ated for every possible choice of a filter module. Once
execution of the filter module is finished, the same is
done for the remaining filter modules, until no more
pending edges remain. The worst-case number of dif-
ferent orders (and paths) is a!, where a represents the
number of filter modules at the shared join point.

Figure 10: General Shape of the LTS, with two con-
ditions and two advices

A generalised shape of the generated LTS for the specified
rule system is shown in figure 10. In AOP terminology, the
initial state represents a shadow join point, since it reflects a
statically matched join point. Branching occurs when a rule
has multiple matchings in one graph or when different rules
match in the same graph. The branching above the dotted
horizontal line represents assigning values to the conditions
that do not have a value. The states on the dotted line
represent all actual join points for the shadow join point.
The number of paths to these states is 2c, where c represents
the number of conditions.

Below the dotted line, branching occurs when the first
filter module is selected, after which all filter modules are
executed. The figure illustrates that for different values of
condition, different shapes in the LTS can occur.

When all advice orders on a shared join point have been
simulated, we can analyse the composition of the advices by
looking at the shape of the LTS. Our goal is to use this to
conclude whether or not the advices interfere.

When advice actions are commutative — the order of ex-
ecution does not affect the resulting state — the execution
traces of the different orders are confluent, because the same
state is automatically represented by the same “box” in the
LTS. The equivalence of states is based on an isomorphism

check that is based on labels, not on node identities. Con-
fluence is visualised in the left-most and right-most diamond
shape in Figure 10.

Although the order of execution of a number of advices
does not affect the result, we can not immediately conclude
that this is also the desired result. Imagine a logging advice
that logs an immutable copy of the (original) argument of
a method, and another advice that modifies the value of a
mutable variable containing the argument. Both orders of
advice execution would log the original argument and make
the same change to the argument. In other words, the LTS
would be confluent. However, if the behaviour of the logging
advice is documented as “logging the value of the argument
passed to the method body”, the combined behaviour is not
correct. The expectation is only satisfied when the argument
is not changed.

Although we cannot be certain that a result from conflu-
ent orderings is the “expected” result, at least we are certain
that the all orders of the advices yield the same result. In
problem in the scenario we just illustrated, is caused by an
assumption that holds when the aspect is applied in isola-
tion, but may not hold when composed with other aspects.

When advice units are not commutative, the order of ex-
ecution affects the resulting state and the execution of dif-
ferent advice orders will result in different final states. This
is illustrated in the two middle cases in Figure10. One of
these states might be the desired result, or both might be
undesirable. In any case, we can conclude that the advices
interfere: the changes made to the state by one advice af-
fects the applicability of the other advice or the state change
made by the other advice.

This definition of interference helps us understand when
confluence can also occur even though the advices interfere.
The state change made by the first advice and the effect
of the first advice on the state change made by the other
advice might “accidentally” add up to an identical resulting
state. However, by intuition we believe this to occur only
very occasionally. In future work we like to investigate this
further.

Figure 11 shows the generated state space for a shared join
point with the Logging and Encryption aspects. The two
paths are not confluent, since the Log action tags a different
string; the advices interfere. Figure 12 shows the generated
state space for a shared join point with the Authorisation
and ProfanityFilter aspects. In the first branching, different
values are assigned to the condition expression of the autho-
risation advice, resulting in two actual join points. Then, on
the left side (where the condition is true), the branches do
not merge because the authorisation advice aborts the flow
either before or after the profanity filter has executed, re-
sulting in different final states. On the right side (where the
condition is false), the condition of the authoriation advice
fails, such that it does not abort, in which case the advice
do not interfere.

Figure 13 shows the generated state space for all our four
aspects, which is a bit harder to analyse visually. The first
branching again represents the evaluation of the condition
expression in the Authorisation aspect. We can see that
more than one final state can be reached via the 24 (a!,
where a = 4) different execution orders for each of the two
actual join points. The figure can be used to analyse the
possible executions of the join point.

Figure 11: Generated transition system for Logging
and Encryption

4. EVALUATION OF THE APPROACH
In this section various aspects of the approach are evalu-

ated.

4.1 Detection of Interference
The approach allows to abstractly specify the behaviour

of advice actions, such that only relevant behaviour is in-
corporated. Of course this also means that the specification
can be over-abstracted causing certain problems to be un-
detectable.

Although we cannot guarantee that a composition of as-
pects is free of interference, we can warn the user (with
certainty) for interference in case of a non-confluent result.
When the result is confluent the advices are either free of
interference or coincidentally causing the same wrong re-
sult with all orders of execution (which we consider very
rare). We believe that when advices are commutative for
every combination of condition values, the shared join point
is highly likely free of interference.

The visual nature of the result — the LTS — can help
in understanding the composition of advice, even as simply
as seeing different shapes under different condition values.
This can help in understanding if a result is desirable or help
debugging a problem.

Figure 12: Generated transition system for Autho-
risation and ProfanityFilter

The approach allows to distinguish results for different
run-time states, by tailoring the condition assignments. Some
false positives (detection of interference that will never ac-
tually happen) can occur when certain combinations of con-
dition values (i.e. run-time states) are never found when the
program is executed. Again, the visual nature of the LTS
can help in analysing the different scenarios.

4.2 Modularity
Modularity in the context of verification of aspect-oriented

software development typically means that it is possible to
analyse and verify aspects and aspect compositions indepen-
dently of a base system. Our approach is modular in such
a way that the source-code of the base system is merely
used to extract shared join points. We have shown that
our approach can detect aspect interference by simulation
of advices alone. When the base system’s source code is
not available, it is possible to simulate every combination of
two advices. This can, however, lead to false negatives and
false positives for actual base programs, when the advices
are never composed at shared join points.

4.3 Practical in Use
Since the base system is not simulated, our approach re-

Figure 13: Generated transition system of the ex-
ample program with four aspects

quires only the advice language to be specified formally us-
ing graph-transformation rules. For the Composition Filters
language this is a reasonable task, although we have not in-
cluded Meta filters. Such filters call a method specified in
the base-language. To incorporate analysis of meta-filters,
we would not only have to specify base language semantics,
but also have to incorporate a larger subset of the base-
system’s run-time state. Determining this subset might be
a difficult task.

CF comes with a base set of filter-types. These filter-types
are argued to be useful for a large number of advice speci-
fications, and therefore elements of reuse. The specification
of the language performed for this works may therefore al-
ready allow analysis of a large number of programs specified
using CF.

However, custom filter types can be added to the Compo-
sition Filters language. In this case, either these custom
types can be neglected during analysis, or the developer
could specify the behaviour as a graph production rule to
be able to include the custom filter type in the analysis.

In fact, the example presented in this paper is based on
the use of custom filter types (Log, FilterProfanity, and En-
cryptString). However, this was done just to create a simple
and small yet interesting example.

4.4 Scalability
The complexity of our chosen simulation strategy is a

function of the number of different conditions used (c) in
the filter modules, and the number of filter modules (a) on
the join point. The complexity of the simulation is of order
2c × a! per analysed join point, which expresses the number
of paths. The number of conditions will most likely remain
small compared to the number of advice, since conditions
in pointcuts are commonly known to be a run-time perfor-
mance bottle-neck.

Simulation of a single filter takes approximately ten rule
applications. In a (bad-case) scenario where every filter
module contains one filter and one condition expression, the
size of the state space approaches 10× 2a× a!. GROOVE is
able to generate state spaces with size up to an order of 106

in a timescale of seconds. This allows us to simulate up to

around six advices in the assumed scenario (one condition
per filter module). Although the occurrence of shared join
points is not rare, finding shared join points of six or more
advices will not be a common case.

4.5 Tool support
The graph generator has been implemented as a Com-

pose* compiler module, which is a compile-time and run-
time implementation of the Composition Filters language.
Compose* is available for both the Java and .NET platform.
Automatic graph generating involves generating graphs for
all shadow join points, adding control flow information (by
simulating the graph-transforation rules of the control flow
semantics) and adding stack frames representing messages
based on the selectors that are used in the filter specifica-
tions.

After graphs have been generated, run-time simulation
is started. The resulting LTS can either be written to a
file or opened in a GROOVE viewer. Analysis of the state
space to give understandable feedback to the user has not yet
been automated and currently can only be done by visually
analysing the state space. Given the generalised structure
of the state spaces, however, implementing this is straight-
forward.

The tool has been integrated into the Common Aspect
Proof Environment (CAPE) [6], a framework for aspect ver-
ification and analysis tools and modules over various aspect
languages.

5. DISCUSSION
In this section we discuss some possible improvements of

the approach.

5.1 Applicability to other Aspect Languages
Composition Filters has proved itself to be a suitable lan-

guage for our approach, due to the nature of the advice
language. Two issues have to be dealt with, when trying to
apply the approach to other languages.

First, many other aspect-oriented languages have an ad-
vice language that is a variant of the base language. Speci-
fying such an advice language is possible, but a much larger
task then specifying the small CF language. The entire
base-language needs to be specified using graph transforma-
tion rules. However, applying the approach to a simplified
base-language with proceed may already be interesting. As
a matter of fact, a case study has been performed, where
the approach was successfully applied to the Common As-
pect Semantic Base (CASB) [5], a formal model of Feather-
weight Java with assignments and Featherweight AspectJ.
The work resulted in a graph production system for simu-
lation of entire programs written in the language, not just
join points.

Second, languages like AspectJ employ more comprehen-
sive join point models that allow for interception of assign-
ments, constructor calls, static initialization, throwing ex-
ceptions, etc. In our approach, the interception mechanism
is modelled as a change of the method dispatch mechanism,
which is based on method frames. This is feasible because, in
the Composition Filters model, the only kind of join points
are messages (or method calls) between objects. For more
fine-grained join point models, a different graph representa-
tion is needed, as not only a run-time process is changed,
but in essence any instruction can be intercepted. Auto-

matic join point graph generation becomes a lot more com-
plicated. However, proxy/interceptor based languages such
as Spring AOP [12] are becoming more and more popular.
These languages typically only intercept messages between
objects. Therefore, it is likely that join points can be repre-
sented by graphs as presented in this paper — using frames
for those messages — since the join point models of these
languages are similar to that of CF.

Currently, we are implementing a graph transformation-
based semantics of AspectJ. The work includes specification
of base language semantics. For applying the analysis pre-
sented in this paper, we foresee that it does not require a
full program simulation; we can integrate existing work for
the detection of potential interference problems in AspectJ,
and generate join point graphs based on the signature of the
involved pointcuts.

5.2 Using Classifications for Optimisation
Classification of aspects helps in understanding the be-

haviour of aspects. In [24], a classification of aspects was
proposed as spectative, regulative and invasive types. In
[15] these categories of aspects are extended and specified in
a more precise way. Also, similar aspect classifications are
in [22] and [3]. The classification presented in [24] can be
summarized as follows:

• Spectative aspects produce a side-effect w.r.t. the base
system. They do not change the base system.

• Regulatory aspects change or abort the control flow of
the system.

• Invasive aspects change variables in the system.

These classifications can be easily mapped to the causes
for interference at shared join points that were introduced
in Section 2. Interference between aspects can occur with
different combinations of aspect types; interaction of a reg-
ulatory or invasive advice and any other type can result in
interference. Using this knowledge, we could optimise our
approach by skipping join points that are shared by only
spectative aspects.

5.3 Simulation Strategies
Currently, our approach employs a simulation strategy

where unknown fields – needed by an advice – are evalu-
ated before simulating the advice. The advantage of this
is that it allows to visually detect interference by looking
at confluence of traces that have branched after these fields
are evaluated (i.e. shadow join points versus actual join
points). The disadvantage is that the advice that uses a
condition might not be reached due to a preceding advice
aborting the message, such that unnecessary states are cre-
ated. Traces which involve variables whose values are not
going to be read or evaluated (because message abortion oc-
curs before the respective aspect are reached) are essentially
equivalent — independent of the values of those variables.
An optimization w.r.t. the size of the state-space (and thus
the simulation time) would be to lazily assign values to these
variables (i.e. when the program counter has reached the ac-
tual use of a variable). This however, makes the visual de-
tection of interference hardly feasible and requires detection
of interference to be automated to provide understandable
analysis results.

In future work, we would like to prove that commutativ-
ity is also compositional: commutative aspects a1 + a2, a2 +
a3, a1 + a3 would ensure that any order of a1, a2, a3 would
also be commutative, and thus most likely free of interfer-
ence. Instead of simulating all possible advice orders on the
shared join points that occur in a given program, this al-
lows to verify just every couple of aspects and will greatly
reduce the complexity, especially since this verification can
be done once and for all for a given set of aspects (and any
base system). One could verify a set of aspects to be free of
interference by merely analysing every combination of two
aspects.

6. RELATED WORK
A lot of work has been done in the area that investigates

the problems that can occur when aspects are composed.
We try to discuss the ones closely related to our approach.

Pawlak et al. [19] present a language called CompAr,
which allows the programmer to abstractly define an exe-
cution domain, the advice semantics and the execution con-
straints of around advices in order to check if the execution
constraints are fulfilled when the aspects share a join point.
The difference with our approach is that the aspects need
to be specified in another language in order to be analysed
whereas our approach uses the aspect specification directly
(once the aspect language has been specified once).

Lagaisse et al. [17] stress the need to express which mod-
ules may use and affect each other in the module compo-
sition process. Artefacts can be equipped with contracts
that specify the provided functionality and dependencies on
other components. For aspects, however, the accepted no-
tion of a contract is no longer sufficient. They propose that
aspects require to obey the contractual obligations of the
components, such as not allowing breaking scope qualifiers
(public/private/protected). They call breaking a contract
uncontrolled semantic interference. So-called aspect inte-
gration contracts are introduced, which specify the permit-
ted interference between an aspect and a base component.
Essentially, the work focuses on aspects interfering with the
composition of the base system, where our approach focusses
on interference among aspects.

Rinard et al. [22] propose a classification for aspects in-
teracting with methods. The work also mentions that the
same classification can be used between aspects. This clas-
sification proposes aspects to have interfering scopes when
both aspects write to the same field. The classification sys-
tem is supported by analysis tools that identify classes of
interactions and hence help developers to detect potentially
undesired interactions. It is left to the user to decide what
is problematic and what is not.

Störzer at al [27] also identify the problem of non-commu-
tative advices at shared join points, the so-called advice
precedence problem. A mechanism is proposed to detect
relevant undefined advice precedence, by detecting common
fields used in read and write operations for advice that share
join points.
In our approach, we also recognise the problem of interfer-
ence based on read and write operations on fields. However,
this does not imply that the advice are interfering. It is
possible that two advices make an orthogonal change to the
same field. Simulation will indicate whether the operations
are orthogonal and commutative or not.

Goldman et al. [8] present a modular approach to verify

correctness of an aspect relative to a formal specification.
The approach is based on model checking using linear tem-
poral logic. We only look at the actual state change of as-
pects to detect interference, and cannot reason about the
intended behaviour.

Kniesel [16] presents a analysis method for weaving inter-
action and interference. It is based on a logical model of as-
pects, which specifies conditions and operations on program
elements. There is some overlap between their approach
and ours, but their approach can not detect run-time data
interference between aspects.

The work reported in this paper is based on a graph
transformation-based operational semantics of Composition
Filters, an aspect-oriented language. The basic idea of using
graph transformations for operational semantics is far from
new: it ranges from a term graph-based semantics for func-
tional languages (see Plump [20]) to graph-based semantics
for actor languages (see Janssens [11]) and visual languages
(e.g., [9]). For object-oriented languages the first approach
of this kind is by Corradini et al. [4]; the approach of this
paper is inspired by [14].

7. CONCLUSIONS
In this paper we present a novel approach to detect as-

pect interference at shared join points. We employ a graph-
transformation-based formalism to specify the semantics of
aspect-oriented languages in a precise manner. This involves
giving a control-flow semantics and a run-time semantics of
the aspect language, and a run-time semantics for advices.
By modelling the specification of aspects and a join point
as a graph, we can simulate the execution of the aspects,
resulting in a state space of the execution of the join point.

Simulating different advice orders allows us to detect as-
pect interference by analysing whether or not aspects are
commutative – whether the order of advice execution at a
shared join point affects the result – by analysing confluence
of execution paths for different orders in the state space.

The analysis of aspects is done independently of the base
system, making the approach more scalable. Besides the
specification of the language-semantics, no additional speci-
fication is required, making the approach very practical. The
approach has been implemented for the Composition Filters
language but the approach in general is applicable also to
other aspect-oriented languages.

8. REFERENCES
[1] Mark Arends. A simulation of the java virtual machine

using graph grammars. In Master thesis. 2003.

[2] Lodewijk Bergmans and Mehmet Akşit. Principles and
design rationale of composition filters. In Robert E.
Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet
Akşit, editors, Aspect-Oriented Software Development,
pages 63–95. Addison-Wesley, Boston, 2005.

[3] Curtis Clifton and Gary T. Leavens. Observers and
assistants: A proposal for modular aspect-oriented
reasoning. In Ron Cytron and Gary T. Leavens,
editors, FOAL 2002: Foundations of Aspect-Oriented
Languages (AOSD-2002), pages 33–44, March 2002.

[4] Andrea Corradini, Fernando L. Dotti, Luciana Foss,
and Leila Ribeiro. Translating java into graph
transformation systems. In Hartmut Ehrig, Gregor

Engels, Fransesco Parisi-Presicce, and Grzegorz
Rozenberg, editors, Second International Conference
on Graph Transformation (ICGT), volume 3256 of
Lecture Notes in Computer Science, pages 383–389.
Springer-Verlag, 2004.

[5] Rémi Douence, Simplice Djoko Djoko, Pascal Fradet,
and Didier Le Botlan. Towards a common aspect
semantic base (casb). In Deliverable 54,
AOSD-Europe, EU Network of Excellence in AOSD,
August 2006.

[6] Eyal Dror and Shmuel Katz. The revised architecture
of the cape. In Deliverable 42, AOSD-Europe, EU
Network of Excellence in AOSD, August 2006.

[7] Hartmut Ehrig, R. Heckel, Martin Korff, M. Löwe,
L. Ribeiro, A. Wagner, and Andrea Corradini.
Algebraic approaches to graph transformation, part II:
Single pushout approach and comparison with double
pushout approach. In Rozenberg [23].

[8] Max Goldman and Shmuel Katz. Maven: Modular
aspect verification. In Orna Grumberg and Michael
Huth, editors, TACAS, volume 4424 of Lecture Notes
in Computer Science, pages 308–322. Springer, 2007.

[9] Jan Hendrik Hausmann. Dynamic Meta Modelling: A
Semantics Description Technique for Visual Modeling
Languages. PhD thesis, University of Paderborn, 2006.

[10] Wilke Havinga, Istvan Nagy, Lodewijk Bergmans, and
Mehmet Aksit. A graph-based approach to modeling
and detecting composition conflicts related to
introductions. In AOSD ’07: Proceedings of the 6th
international conference on Aspect-oriented software
development, Vancouver, Canada, pages 85–95, New
York, NY, USA, 2007. ACM Press.

[11] D. Janssens. Actor grammars and local actions. In
Grzegorz Rozenberg, Hartmut Ehrig, et al., editors,
Handbook of Graph Grammars and Computing by
Graph Transformation, volume III: Parallelism,
Concurrency and Distribution, chapter 2, pages
57–106. World Scientific, Signapore, 1999.

[12] Rod Johnson, Juergen Hoeller, Alef Arendsen, Colin
Sampaleanu, Rob Harrop, Thomas Risberg, Darren
Davison, Dmitriy Kopylenko, Mark Pollack, Thierry
Templier, Erwin Vervaet Portia Tung, Ben Hale,
Adrian Colyer, John Lewis, Costin Leau, and Rick
Evans. Aspect oriented programming with spring. In
The Spring Framework - Reference Documentation.

[13] H. Kastenberg, A. G. Kleppe, and A. Rensink.
Defining object-oriented execution semantics using
graph transformations. In R. Gorrieri and
H. Wehrheim, editors, Proceedings of the 8th IFIP
International Conference on Formal Methods for
Open-Object Based Distributed Systems, Bologna,
Italy, volume 4037 of Lecture Notes in Computer
Science, pages 186–201, London, June 2006. Springer
Verlag.

[14] Harmen Kastenberg, Anneke Kleppe, and Arend
Rensink. Defining object-oriented execution semantics
using graph transformations. In R. Gorrieri and
H. Wehrheim, editors, Formal Methods for Open
Object-Based Distributed Systems (FMOODS), volume
4037 of Lecture Notes in Computer Science, pages
186–201. Springer-Verlag, 2006.

[15] Shmuel Katz. Aspect categories and classes of

temporal properties. In Awais Rashid and Mehmet
Aksit, editors, T. Aspect-Oriented Software
Development I, volume 3880 of Lecture Notes in
Computer Science, pages 106–134. Springer, 2006.

[16] Günter Kniesel. Detection and resolution of weaving
interactions. Transactions on Aspect-Oriented
Programming, LNCS(submitted), 2007. Special issue
on Aspect Dependencies and Interactions, edited by
Ruzanna Chitchyan, Johan Fabry, Shmuel Katz,
Arend Rensink.

[17] Bert Lagaisse, Wouter Joosen, and Bart De Win.
Managing semantic interference with aspect
integration contracts. In Lodewijk Bergmans, Kris
Gybels, Peri Tarr, and Erik Ernst, editors, SPLAT:
Software engineering Properties of Languages for
Aspect, March 2004.

[18] Istvan Nagy, Lodewijk Bergmans, and Mehmet Aksit.
Composing aspects at shared join points. In
Andreas Polze Robert Hirschfeld, Ryszard Kowalczyk
and Mathias Weske, editors, Proceedings of
International Conference NetObjectDays (NODe),
volume P-69 of Lecture Notes in Informatics, Erfurt,
Germany, Sep 2005. Gesellschaft für Informatik (GI).

[19] Renaud Pawlak, Laurence Duchien, and Lionel
Seinturier. CompAr: Ensuring safe around advice
composition. In M. Steffen and G. Zavattaro, editors,
Formal Methods for Open Object-Based Distributed
Systems (FMOODS), volume 3535 of Lecture Notes in
Computer Science, pages 163–178, 2005.

[20] D. Plump. Term graph rewriting. In Hartmut Ehrig,
Gregor Engels, Hans-Jörg Kreowski, and Grzegorz
Rozenberg, editors, Handbook of Graph Grammars
and Computing by Graph Transformation, volume II:
Applications, Languages and Tools. World Scientific,
Singapore, 1999.

[21] Arend Rensink. The GROOVE simulator: A tool for
state space generation. In J. Pfalz, M. Nagl, and
B. Böhlen, editors, Applications of Graph
Transformations with Industrial Relevance (AGTIVE),
volume 3062 of Lecture Notes in Computer Science,
pages 479–485. Springer-Verlag, 2004.

[22] Martin Rinard, Alexandru Salcianu, and Suhabe
Bugrara. A classification system and analysis for
interactions in aspect-oriented programs. In
Foundations of Software Engineering (FOSE). ACM,
October 2004.

[23] Grzegorz Rozenberg, editor. Handbook of Graph
Grammars and Computing by Graph Transformation,
volume I: Foundations. World Scientific, Singapore,
1997.

[24] Marcelo Sihman and Shmuel Katz. Superimpositions
and aspect-oriented programming. The Computer
Journal, 46(5):529–541, September 2003.

[25] Ruben Smelik, Arend Rensink, and Harmen
Kastenberg. Specification and construction of control
flow semantics. In IEEE Symposium on Visual
Languages and Human-Centric Computing, 2006.

[26] Niek Sombekke. Graph-based semantics of the .net
intermediate language. In Master thesis. May 2003.

[27] Maximilian Storzer and Florian Forster. Detecting
precedence-related advice interference. In ASE, pages
317–322. IEEE Computer Society, 2006.

