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Bisimulation, Logic and
Mobility for Markovian
Systems∗

Manuela Bujorianu and Marius Bujorianu † ‡

1 Introduction

Nowadays, anyone can easily observe an explosive development in distributed em-
bedded systems like sensor networks, gene regulatory networks and other system
biology areas. A general tendency in this development is the integration of differ-
ent features, like mobility, randomness, continuity and discrete/continuous mixed
behaviors. In this paper, we present two formal mechanisms for developing a for-
mal framework, in which these various features can be investigated altogether. One
mechanism represents a unifying axiomatization of deterministic and stochastic au-
tomata, in the spirit of the recently introduced paradigm called Hilbertian formal
methods [6]. The second one proposes a generic technique based on the categorical
domain theory for adding new features to an existing model. This mechanism consti-
tutes a formal approach to a recent development paradigm called multi-dimensional
codesign [5]. In the limited space of this paper, we restrict our presentation to a
class of systems that mix continuous evolutions with logical mobility.

Continuous behaviors have been investigated formally mostly in the area of
hybrid systems. Usually, these behaviors are associated with man made technical
systems and their mathematical description consists of rather simple differential
equations. In the case of embedded systems, the continuous evolutions of the envi-
ronment often involve complex mathematical descriptions. For example, in a meteo
system, a continuous evolution is described by a system containing up to one hun-
dred partial differential equations. In the case of a cardiac implant, the continuous
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evolutions are subject to randomized changes. The main difficulty in developing
formal methods for such systems is given by their very different mathematical foun-
dations. When probabilities are considered, fundamental system properties are
lost, like the uniqueness of solution given an initial state. The idea of considering
two different approaches, one for the deterministic case and one for the stochastic,
is not feasible in practice. The selection of the environment characteristics that
should be considered by the embedded controller is subject to frequent changes.
The interaction between different characteristics is often not entirely mathemati-
cally understood and the initial deterministic model turns into a stochastic one.
In the case of two different formal approaches, the addition of new functionalities
would involve a complete redesign and a replacement of the old controllers. That
can be very costly, especially if, for example, the sensor network has been placed
in a geographical position difficult to access (think at a military application) or if a
gene network must be re-created (to obtain accurate biological cultures in genetics
is still a very complex process).

The first main contribution of this paper is a unifying semantic framework, in
which both deterministic and stochastic environment behaviors can be modelled.

The second contribution of this paper considers the possibility to introduce
logical mobility in the framework described above. We consider the categorical for-
malization of the π-calculus introduced and developed by Glynn Winskel and his
co-authors [7]. This formalization relies on heavy categorical algebra and there-
fore we discuss only how Winskel’s calculus can be used. In principle, Winskel’s
approach is constructed generically using an abstract model of computation spec-
ified as a category. The subtle point of this construction is that, in this category,
a computational equivalence, described in terms of open maps must exist. When
this category consists of labelled transition systems, as used in process algebra, the
computational equivalence becomes the familiar concept of bisimulation. The mo-
bile processes are then described as presheaves on this category. The computational
equivalence between the mobile processes is then borrowed from this category via
Yoneda embedding. We extend the behaviors of continuous systems with mobile
processes by constructing suitable categories to replace this category. Obviously,
there are many categories of continuous processes in the literature (especially in
control theory), but these can not be used because the computational equivalence
by open maps can not be defined. The main contribution of this paper is to con-
struct a category of models of computation that unifies deterministic and stochastic
evolutions and for which the open maps can be defined and generate an equivalence
relation.

From a mathematical viewpoint, the paper follows two main streams. The first
part uses intensively the general theory of Markov processes to introduce a unifying
model of concurrent embedded systems and its concept of bisimulation. We show
that this general concept of bisimulation subsumes the bisimulation of deterministic
continuous and hybrid dynamical systems introduced and investigated by Tabuada
e.a. [11] using open maps. In the second part, an approach based on category theory
enriches the previous model with first order mobility, such that the bisimulation
relation for mobile processes is compatible with the stochastic bisimulation.
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2 A general axiomatisation of continuous processes

2.1 Markov Processes

The stochastic processes we consider here are randomized systems with a contin-
uous state space, where the “noise” can be measured using transition probability
measures. Markov processes form a subclass of stochastic systems for which, at any
stage, future evolutions are conditioned only by the present state.

The state space is denoted by X. The state space should be a measurable
space. Suppose that X is a Polish or analytic space. We consider X equipped with
its Borel σ-algebra B. Let X∆ = X ∪ {∆}. Let B(X∆) be the Borel σ-algebra of
X∆. The set of all bounded measurable numerical functions on X is denoted by
B(X).

A probability space (Ω,F , P ) is fixed and all X−valued random variables are
defined on this probability space. The trajectories in the state space are modelled
by a family of random variables (xt) where t denotes the time. The reasoning
about state change is carried out by a family of probabilities Px one for each state
x ∈ X. The construction is similar to the coalgebraic reasoning in the semantics
of specification languages: the system behavior is described by given for each state
the possible evolutions. For Markov processes, for each state x, the probability
Px(xt ∈ A) to reach a given set of state A ⊂ X (provided that A is measurable)
starting from x describes the system evolution.
The stochastic analysis identifies concepts (like infinitesimal generator, semigroup
of operators, resolvent of operators) that characterize in an abstract sense the evo-
lutions of a Markov process.

2.2 Deterministic dynamical systems

In this subsection we present the class of semi-dynamical systems, which can be
thought of as “Markov processes” that “degenerated” into determinism, or what
“Markov processes” would be if its transition probabilities would be given by some
Dirac distributions1.

Markov processes are generalizations of semidynamical in continuous time.
They might be thought of as restrictions of dynamical systems to the positive time
interval.

A semi-dynamical system [2] is a function φ: R+ ×X∆ → X∆ such that
1. φ is a measurable map; 2. φ(0, x) = x; 3. φ(t1 + t2, x) = φ(t1, φ(t2, x)),
4. φ(t, x) = ∆⇒ φ(s, x) = ∆,∀s ≥ t; 5. φ(t, x) = φ(t, y),∀t > 0⇒ x = y.

The life time of the system φ is the map ζ : X∆ → [0,∞] defined by ζ(x) =
inf{t ≥ 0|φ(t, x) = ∆}. We can suppose without loosing the generality that for
all x ∈ X the life time ζ(x) > 0. For each x ∈ X the trajectory starting from x
is Γx = {φ(t, x)|t ∈ [0, ζ(x))}. The semi-dynamical system φ is called transient if
there exists (An) ⊂ B such that X = ∪

n∈N
An and m{t ∈ [0,∞)|φ(t, x) ∈ An} < ∞,

∀x ∈ X, where m is the Lebesgue measure.
1Recall that the Dirac measure δx(A), for x ∈ X and A ∈ B(X) is equal to 1 iff x ∈ A, and 0

otherwise.
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2.3 A unifying framework

We can abstract away a set of common properties of Markov processes and semi-
dynamical systems. These properties are defined less operational but rather alge-
braic. This unifying method derives from the so-called weak solutions of differential
equations. For equations where solutions can not be computed, the existence and
important analytic properties of the solutions can be established. The key point is
to consider a larger space of elements that contains the solutions. A typical example
of such a space constitutes B(X). The differential operator becomes then a linear
operator on a subset of this large space. Again this operator is too complex and
it is replaced by a time-indexed family of “approximating” simpler operators. This
approximating family is the so-called semigroup of operators.

A family {Pt : B(X) → B(X), t ≥ 0} of linear operators on B(X) is called
semigroup of operators if the following conditions are satisfied: (i) semigroup prop-
erty: PtPs = Pt+s, t, s ≥ 0; (ii) contraction property: ||Ptf || ≤ ||f ||, f ∈ B(X).
In addition, if limt→0 Ptf = f , then (Pt) is called strongly continuous semigroup.
This concept has enough components to allow us to define powerful analytic tools
such as the operator resolvent and the infinitesimal generator.
To each operator semigroup P = (Pt) on the Banach space B(X), the following
mathematical objects can be associated:
1) The resolvent of operators V = (Vα)α≥0 associated to P is the Laplace transform
of P, given by formula Vαf(x) =

∫∞
0
e−αtPtf(x)dt.

2) The kernel operator, denoted by V, is the initial operator V0 of V (for α = 0).
3) The infinitesimal generator of P is the possibly unbounded linear operator A
defined by:

Af =lim
t↘0

Ptf − f
t

(1)

The domain D(A) is the subspace of B(X) for which this limit exists.
The following definition is inspired by a condition from the Hille-Yosida theo-

rem (Th. 2.6, Chapter 1 in [10]). A linear operator A has the Hille-Yosida property
if for all λ > 0, the operator λI−A has an everywhere defined inverse R(λ,A) such
that ‖λR(λ,A)‖ ≤ 1. To say λ I −A has an everywhere defined inverse means that
the operator λ I −A is injective on the domain of A and that its range is all of X.

We have now all ingredients to introduce an unifying concept for deterministic
and stochastic continuous processes.

An abstract continuous system (ACS) consists of: (a) a state space X (Pol-
ish/analytic); (b) a bounded linear operator A on B(X) that is densely defined and
has the Hille-Yosida property; (c) an operator semigroup P = (Pt) on B(X) such
that A is the infinitesimal generator associated to P.

The Hille-Yosida theorem gives necessary and sufficient conditions for a linear
operator to be the generator of a strongly continuous, positive contraction semi-
group. It results from the Hille-Yosida theorem that the last component of an ACS
is superfluous because it can be derived from the second component. We decided
to keep it in the definition motivated by practical reasons. The Hille-Yosida theo-
rem is non-constructive and in the most practical situations the expression of the
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semigroup is known.
On the state space X of an ACS we can define a preorder relation ≺ as

x ≺ y ⇐⇒ V f(y) ≤ V f(x),∀f ∈ B(X), f ≥ 0. (2)

Now, let see how the framework looks like for a Markov process M . Let
P = (Pt)t>0 denote the family of linear operators associated to M

Ptf(x) =
∫
f(y)pt(x, dy) = Exf(xt),∀x ∈ X (3)

where Ex is the expectation w.r.t. Px. We make the standard assumption that
f(∆) = 0. The Chapman-Kolmogorov property ensures that this family of operators
has indeed the semigroup property. This is a strongly continuous semigroup of
operators.

To the semigroup P given by (3), one can associate its operator resolvent
V and its infinitesimal generator A. Conversely, given an operator semigroup P,
one can check if it might be associated to a Markov process (for necessary and
sufficient conditions to ensure that the semigroup can be interpreted as a semigroup
of conditional expectations see Th. 2.2, Chapter 4, [10]).
Assumption 1 Suppose that M is a transient Markov process, i.e. there exists a
strict positive Borel measurable function q such that V q is a bounded function.
The transience of M means that for any Borel set E in X and for almost all
trajectories there exists a finite stopping time t∗ such that xt /∈ E for all t > t∗ (for
more explanations about the transience property see [8]).

Using (2), we can define a preorder relation ≺M associated to M . Intuitively,
≺M is the order on the trajectories of M . In particular, if M degenerates in a
semi-dynamical system, ≺M is exactly the order relation on the trajectories.

Now we instantiate the framework with semi-dynamical systems. With every
semi-dynamical system φ one can associate the semigroup of operators P = (Pt)t>0

defined by
Ptf(x) = f(φ(t, x)) (4)

for all functions f ∈ B(X∆). The standard assumption f(∆) = 0 is in force.
If in the semigroup formula (4), we take f = IA with A ∈ B (the indicator

function of a measurable set A) then PtIA(x) = IA(φ(t, x)), i.e. it takes the value
one iff φ(t, x) ∈ A, otherwise it is equal to zero (see [2] and the references therein,
for more properties of the semigroup associated to a semi-dynamical system).

The semigroup formula (4) can be derived as a particular case of (3), taking
the transition probabilities pt(x, ·) = δφ(t,x)(·), t ≥ 0 where δφ(t,x) is the Dirac
distribution corresponding to φ(t, x). To the semigroup (4), one can associate its
resolvent V and its generator A. If A ∈ B then V IA(x) is exact the Lebesgue
measure of those moments of time t ≥ 0 for which the trajectory Γx has a non-
empty intersection with A. We denote x ≺φ y if there exists t ∈ [0,∞) such that
y = φ(t, x). If the system under consideration is transient then ≺φ is an order
relation [2]. This order relation can be characterized using the initial resolvent
kernel (Prop. 13 [2]) via (2).
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3 Bisimulation in the Presence of Probability and
Continuity

In this section we define a bisimulation concept for abstract continuous systems,
organized in a category. We further instantiate this category for continuous time,
continuous space Markov processes. Frst, we present the general view of the method-
ology for defining bisimulation for Markov processes. In the remainder of the section,
this methodology will be generalized using operator parameterizations of stochastic
processes, in order to make it applicable to a general category of Markov processes.
The resulting concept of bisimulation will be compared with a concept of bisimula-
tion via open maps (as introduced by Winskel et.a. [12]) for continuous dynamical
system by P. Tabuada, G. Pappas et.a. - see [11]) and of bisimulation for different
classes of Markov chains.

3.1 Algebraic concepts of bisimulation

For ACS, the open maps definition of bisimulation can not be adapted straightfor-
ward. The main problem is how to define the simulation morphisms and the open
maps.

In a category, a semi-pullback means that, for any pair of morphisms ϕ1 :
M1 →M and ϕ2 : M2 →M (M1,M2,M are objects in that category) there exists
an object M0 and morphisms πi : M0 →M i (i = 1, 2) such that ϕ1 ◦ π1 = ϕ2 ◦ π2.

We develop a concept of unifying bisimulation for ACS defined on Polish/analytic
spaces, which can be instantiated with the bisimulation defined for different par-
ticular classes of Markov processes studied in the literature. A zigzag morphism
between two ACS should ‘commute’ with the infinitesimal operators of the processes
considered. Then the bisimulation relation is naturally given via zigzag morphism
spans between ACS. Moreover, the category of ACS defined on Polish/analytic
spaces with these zigzag morphisms as arrows has semi-pullback. Therefore, the
bisimulation relation is an equivalence relation.

We also derive from the above bisimulation for ACS, a notion of bisimulation
for (deterministic) semi-dynamical systems. For dynamical systems, we prove that
our concept of zigzag morphism and the open map concept, defined in [11], are
equivalent.

3.2 A category of abstract continuous systems

We define the category ACS of abstract continuous systems, which has objects
a countable set of ACS, defined on Polish/analytic spaces, denoted S1, S2, ... and
arrows - zigzag morphisms, which will be defined in the following.

The aim of this subsection is to give an appropriate definition of these zigzag
morphisms (and of simulation morphisms) between such processes, which will allow
us to define a general concept of unifying bisimulation in this category.

Let S1 and S2 be two objects of ACS. The state space of S1 (resp. S2) is X(1)

(resp. X(2)). For any mapping ψ : X(2) → X(1), we denote by ψ∗ the action of ψ on
the their monoids of bounded measurable functions, i.e. ψ∗ : B(X(1)) → B(X(2))
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given by
ψ∗f = f ◦ ψ, ∀f ∈ B(X(1)) (5)

Let A1 and A2 the infinitesimal generators of S1 and S2, with the domains D(A1)
and D(A2), respectively. The following assumption is essential for defining the
arrows in the category ACS.
Assumption 2 If f ∈ D(A1) then ψ∗f ∈ D(A2), i.e. the twisted function ψ∗ can
action between the domains of the generators A1 and A2

A simulation morphism between the processes S2 and S1 (the process S1 sim-
ulates the process S2) is a measurable, monotone increasing, continuous application
ψ : X(2) → X(1) such that it satisfies the Assumption 2 and A2 ◦ ψ∗ ≤ ψ∗ ◦ A1,
where A1 (resp. A2) is the infinitesimal generator associated to S1 (resp. S2) and
ψ∗ is given by (5).

A surjective simulation morphism ψ between the processes S2 and S1 is called
zigzag morphism if

A2 ◦ ψ∗ = ψ∗ ◦ A1 (6)

Using the relationships between generator, operator semigroup and kernel op-
erator (see, for example, [10]), we can prove the following result.

Proposition 1. A surjective simulation morphism ψ between the processes S2 and
S1 is a zigzag morphism iff for almost all t ≥ 0 (i.e. except with a zero Lebesgue
measure set of times) the following equality holds

P 2
t ◦ ψ

∗ = ψ∗ ◦ P 1
t (7)

where (P 1
t ) (resp. (P 2

t )) is the semigroup of operators associated to S1 (resp. S2).

Corollary 2. A surjective simulation morphism ψ between S2 and S1 is a zigzag
morphism iff for almost all t ≥ 0 (i.e. except with a zero Lebesgue measure set of
times) and for all E ∈ B(X(1)) and x2 ∈ X(2), the following equality holds

p2
t (x

2, ψ−1(A)) = p1
t (ψ(x2), A) (8)

where (p1
t ) (resp. (p2

t )) is the transition probability functions associated to S1 (resp.
S2).

This corollary illustrates that the simulating process can make all the transitions of
the simulated process with the same transition probabilities as in the process being
simulated.
The monotony of a zigzag morphism ψ can be derived from the condition satisfied
by a zigzag morphism. Roughly speaking, this means that whilst the process S2

evolves from u to ψ−1(A) (A ∈ B(X(1))) on a trajectory with a given probability,
the process S1 evolves from ψ(u) to A with the same probability.

3.3 Bisimulation

We consider the category ACS defined in the previous section. We define the
bisimulation between two processes in this category as the existence of a span of
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zigzag morphisms between them.
Let S1 and S2 be two objects in ACS. S1 is bisimilar to S2 (written S1 ∼ S2)

if there exists a span of zigzag morphisms between them, i.e. there exists S12 (object

in ACS) and two zigzag morphisms ψ1 and ψ2 as follows: X(1) ψ
1

← X12 ψ2

→ X(2).

Theorem 3. The category ACS has semi-pullbacks.

An immediate corollary of the existence of semi-pullbacks in the category ACS is
the following.

Proposition 4. The bisimulation in the category ACS is an equivalence relation.

3.4 Particular cases

In this subsection we investigate the cases when all objects of ACS have the same
type. In the case when all objects are Markov processes we obtain a generalization
GMP of the category defined in [4]. In the case of Markov models, we say that

a Markov process M1 simulates another Markov M2 if there exists a surjective
continuous morphism ψ : X2 → X1 between their state spaces such that each
transition probability on X2 ‘is matched’ by a transition probability on X1. The
meaning of this ‘matching’ is that for each measurable set A ⊂ X1 and for each
u ∈ X2 we have p2

t (u, ψ
−1(A)) ≤ p1

t (ψ(u), A), ∀t ≥ 0 (∗), where (p2
t ) and (p1

t ) are
the transition functions corresponding to M2, respectively to M1. Such a morphism
ψ is called simulation morphism. The open maps are replaced then by the zigzag
morphisms, which are simulation morphisms for which the above condition holds
with equality.

In the case when all objects are semi-dynamical systems, we obtain a new
category SD. In fact, SD is a full subcategory of ACS.

Proposition 5. A surjective simulation morphism ψ : X(2) → X(1) between two
semi-dynamical systems φ2 and φ1 is a zigzag morphism if and only if∫ ∞

0

P 2
t (ψ∗f)dt =

∫ ∞
0

ψ∗[(P 1
t f)]dt,∀f ∈ B(X(1)), f ≥ 0, (9)

where (P 1
t ) and (P 2

t ) are the semigroups of kernels associated to φ1 and φ2.

Proposition 6. The condition (9) is equivalent with

ψ(φ2(t, u)) = φ1(t, x) (m− a.e. w.r.t. t ≥ 0) (10)

for all u ∈ X(2) such that x = ψ(u).

Corollary 7. If ψ is a zigzag morphism between two semi-dynamical systems φ2

and φ1 then ψ(Γ2
u) = Γ1

ψu, except a set of times with Lebesgue measure zero.
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Proposition 8. For dynamical systems a zigzag morphism is exactly an open map

in the sense of [11].

Therefore, the bisimulation for dynamical systems given in terms of zigzag
morphisms is exactly the bisimulation given in terms of open maps [11]. In the
light of the Corollary 7, a zigzag morphism ψ between two semi-dynamical systems
φ2 and φ1 induces an equivalence relation (bisimulation) on the state of trajectories
of φ2 as follows:

Two trajectories Γ2
u and Γ2

v are equivalent if and only if their initial points are
bisimilar, i.e. ψu = ψv.

3.5 A probabilistic logic

We extend the continuous stochastic logic [9] from Markov chains to ACSs.
Syntax Let a ∈ AP , p ∈ Q and 1∈ {<,≤,≥, >}. State formulas φ are defined
by φ := ᵀ|a|¬φ|φ ∧ φ′|P1p(ψ)|Expr1p, where ψ is a path formula constructed by
ψ := Xφ|X[t,u]φ|φ ∪ φ′|φ ∪[t,u] φ′, for t, u ∈ Q.
The notion that a state x (or a path ω) satisfies a formula φ (or ψ) is denoted by
x � φ (or ω � ψ).
Semantics Given a Markov process M = (Ω,F ,Ft, xt, θt, Px) and a ∈ AP , the
definition of the satisfaction relation � over state-formulas is defined inductively as
follows.
x � ᵀ for all x ∈ X, x � a iff a ∈ L(x), x � ¬φ , iff x 2 φ
x � φ ∧ φ′ , iff x � φ and x � φ′ , x � Expr 1 r iff Expr(x) 1 r
x � P1p(ψ) , iff Px{ω ∈ Ω|ω � ψ} 1 p

For example, for any f ∈ Bb(X) the potential V f(x) can be used to con-
struct an expression Expr(x), which can be evaluated in x, and then the inequality
V f(x) 1 p can be satisfied or not.

A state formula φ can be extended to a path formula if that formula is satisfied
in each point of the path, i.e. ω � φ if and only if xt(ω) � φ, for all t for which ω is
defined. Then the semantics of the path-formulas can be defined as follows
ω � Xφ iff (∃t0 > 0 s.t. ω≥t0 � φ) , ω � X[t,u]φ iff (∃t0 ∈ [t, u] s.t.ωt0 � φ)

ω � φ ∪ φ′ iff (∃t0 > 0 s.t. ωt0 � φ
′ and ω[0,t0) � φ)

ω � φ ∪[t,u] φ′ iff (∃t0 ∈ [t, u] s.t. ωt0 � φ
′ and ω[t,t0) � φ).

Proposition 9. Two ACSs are bisimilar iff they satisfy the same logic formulae.

4 Mobile Markovian Systems
In a series of papers (see [7] and the references therein) G. Winskel and coworkers
defined a generic model of mobile processes, where each process is a presheaf. We use
the category theory notations from [1]. In particular, arrow composition, denoted
by ;, is the sequential composition.

In the following we define the concept of bisimulation for presheaves. A
preashef over a category P is a functor from P to Set, the category of sets and
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functions. The preasheaves over the same category, together with the natural trans-
formations between them, form a category, denoted P̂. This construction comes ac-
companied by the Yoneda lemma [1], which provides a functor yP : P→P̂, yP(A) =
P( , A) which fully and faithfully embeds P into P̂. Basically the Yoneda lemma
ensures a preashef representation for every category P : it can be regarded as a full
subcategory of P̂. The bisimulation of mobile processes is the standard bisimulation
from open maps, as introduced in [12].

Now we give the definition of functors preserving open maps. Given two
categories, P and Q, and a functor F between them, an arrow f : X → Y is called

F−open if, for every commuting square
F (A) α−→ X

F (g) ↓ ↓ f
F (B) −→

β
Y

there is an arrow

γ : F (B)→ X such that F (g); γ = α and γ; f = β. The isomorphisms are F−open
and the all F−open maps form a subcategory. In it is proved [7] that an arrow
between presheaves in P̂ is P-open iff it yP-open. Two presheaves in P̂ are called
P-bisimilar iff there is a span of surjective open maps between them.

An P−indexed category, denoted QP, is formed by all functors of the shape
P→ Q. A profunctor is a functor of the shape F : P→Q̂. Profunctors compose
and form a bicategory (i.e. there is an additional category on arrows), denoted PR.

As a mobile process evolves, the ambient set of channel names may change.
These channel names are modelled by the category I of finite sets (of names) and
injective maps between them. To take account of this variability, we have to consider
the semantic categories involved as indexed by I. The object of names N is the
functor N : I→ PR, that sends a set S ∈ I to the corresponding discrete category.
The category of abstract continuous systems with names is ACSI..
Now the integrated model is obtained by including the category ACS in the domain
equations that define the basic processes of π-calculus.

P = ACSI. ⊗Q , Q ∼= Q⊥ + Out + In
In = N⊗ (N� Q)⊥ , Out = (N⊗N⊗Q⊥) + (N⊗ (δQ)⊥)

where ⊗ and + denote the product, respectively the coproduct.
A method to solve the domain equations is presented in detail in [7]. We

briefly describe the meaning of the solutions. The mobile processes are products
of π-calculus processes and abstract continuous systems with names. The ACS can
communicate values and the names of other channels. Therefore, the communication
is first order and deterministic. These types could be combined, for example, with
the type subsystem corresponding to the name passing CCS.

Examples of systems that mix continuous behaviours (deterministic or ran-
domised) with software mobility abound. A trivial example is that of people trav-
elling by car or by plane and use a mobile phone. Less trivial, imagine a mobile
software that proceeds a secret security check in the pilot cabin.

In [4], the authors have introduced a concept of bisimulation for stochastic
hybrid systems (SHS). In [3], it is proved that the executions of an SHS form a
Markov process on a Borel space, whose trajectories are right continuous with left
limits. This paper proposes a different approach where the system properties are
derived from the infinitesimal generator of a continuous process. The mathematical
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model of an embedded system is in general constructed starting with the differential
equation characterizing the evolution of the environment. This differential equation
gives rise to the expression of the generator. When probabilities are introduced,
the resulted stochastic process is also called in the literature a random dynamical
system (RDS). In the context of this paper, an RDS is simply a Markov process,
alternatively defined using the associated generator. The expression of the generator
is known for large classes of processes [10] including diffusions, Poisson processes,
piecewise deterministic Markov processes and so on. In consequence, the concept
of bisimulation from this paper is more adequate for these classes of processes.

Summarizing this bisimulation is for controllers that are embedded in complex
physical environments and that exhibit mobile communication.

5 Final Remarks
Due to physical environment of embedded systems, it is natural to consider con-
tinuous feature representations in the system model. Randomization knows recent
intensive applications in modelling and verification of embedded systems. The com-
bination of these two paradigms gives rise to models with new and sophisticated
mathematical characteristics that can obscure the understanding of computational
concepts. In the current work, we have addressed this issue, by introducing a
unifying framework, of abstract continuous systems, for systems with (partially)
continuous behaviours, deterministic or stochastic.

Bisimulation is now well understood for discrete probabilistic automata or
deterministic hybrid systems , but it is far more complicated for the stochastic
embedded systems. In this paper we have developed a unifying notion of bisimu-
lation for different classes of embedded systems including semi-dynamical systems
[2] and strong Markov processes defined on Polish/analytic spaces with continuous
time, which are non-stationary. We define a category for each class of systems. For
the former category, the morphisms are the so-called zigzag morphisms, which are
surjective continuous measurable functions between their state spaces which ‘com-
mutes’ with the infinitesimal generators of the processes considered. Two Markov
processes are bisimilar if there exists a span of zigzag morphisms between them.

The category of abstract continuous systems is used in conjunction with a
categorical semantics of π-calculus [7] to define systems mixing physical and logical
mobility. The cornerstone of this construction is the concept of bisimulation, which
must be equivalent with the one derived from open map [12].

The mobile stochastic hybrid systems provide a very general semantic frame-
works in which embedded systems can be studied. Examples include sensor net-
works and air traffic control. Mobility allows system reconfiguration, which, com-
bined with probabilities, provide the basic ingredients for randomized learning. This
work puts the grounds for semantics of the most actual issues in ubiquitous com-
puting: the self-∗ systems (abbreviation for features like reconfigurable, adaptive,
learning, self-managed, etc. systems).

The omitted proofs can be found in a larger version of this paper [5].
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