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Abstract— The popularity of biometrics and its widespread
use introduces privacy risks. To mitigate these risks, solutions
such as the helper-data system, fuzzy vault, fuzzy extractors,
and cancelable biometrics were introduced, also known as the
field of template protection. In parallel to these developments,
fusion of multiple sources of biometric information have shown
to improve the verification performance of the biometric system.
In this work we analyze fusion of the protected template
from two 3D recognition algorithms (multi-algorithm fusion)
at feature-, score-, and decision-level. We show that fusion
can be applied at the known fusion-levels with the template
protection technique known as the Helper-Data System. We also
illustrate the required changes of the Helper-Data System and
its corresponding limitations. Furthermore, our experimental
results, based on 3D face range images of the FRGC v2 dataset,
show that indeed fusion improves the verification performance.

I. INTRODUCTION

There is a growing popularity of using biometrics in
applications ranging from simple home or business applica-
tions with a small and limited group of enrolled people (for
example access control to buildings or rooms) to large-scale
systems used by an entire nation or even the entire world
(for example identity cards with biometrics or the electronic
passport e-Passport). However, its widespread use increases
the privacy risks such as identity theft or activity monitoring
by cross-matching between biometric databases of different
applications. The field of template protection provides the
technology that mitigates these privacy risks by transforming
the biometric template with a one-way function in order to
guarantee the irreversibility property and by randomizing
the biometric template in order to guarantee that multiple
protected templates from the same biometric sample cannot
be linked with each other. In the literature, multiple solutions
have been presented to solve these problems. Some examples
are the Fuzzy Commitment Scheme [1], Helper-Data Systems
(HDS) [2], [3], [4], Fuzzy Vaults [5], [6], Fuzzy Extractors
[7], [8], and Cancelable Biometrics [9].

In parallel to these developments, fusion of multiple
sources of biometric information has shown to improve the
recognition performance of the biometric system. As stated
in [10], the basic principle of fusion is the reconciliation of
evidence presented by multiple sources of biometric infor-
mation in order to enhance the classification performance. As
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described in [10], multiple sources of biometric information
can be extracted from the same biometric modality by (see
Fig. 1 for the case of fingerprints): (i) capturing a sample
of multiple instances (left and right index fingerprint or iris)
with the same sensor, (ii) using different sensors to acquire a
different type of biometric samples from the same instance,
(iii) capturing multiple samples using the same sensor and
instance, and (iv) extracting multiple feature representations
of the same biometric sample using different algorithms.
These cases are referred to as the multi-instance, multi-
sensor, multi-sample, and multi-algorithm systems, respec-
tively. Further more, the fifth type is the multi-modal system,
which is the fusion of sources of biometric information from
multiple modalities, for example fingerprint, face, iris, voice,
palm or retina. To complete the summary from [10], the sixth
type is referred to as the hybrid system, which consists of a
combination of the aforementioned fusion types. Each multi-
biometric fusion type can be implemented at feature-level,
score-level, or decision-level of the biometric system.

In [11], multi-sample, multi-instance, and multi-modal
fusion has been applied using the Fuzzy Vault as the
template protection system. For multi-sample fusion a single
mosaiced template is obtained from multiple fingerprint
impressions from which the vault is constructed. For
multi-instance fusion the union of the minutiae sets of the
left and right index fingers is used to construct the vault.
For multi-modal fusion, a fingerprint and an iris sample are
combined by concatenating the unordered minutiae set with
the transformed iriscode extracted from the fingerprint and
iris samples, respectively. The concatenated unordered set
is used to construct the vault. The recognition performance
improved for all three cases as well as the claimed security.

Our Contribution: Our work consists of applying multi-
algorithm fusion with the Helper-Data System. We show
that fusion can be applied at feature-, score-, and decision-
level and illustrate the required changes of the Helper-Data
System and its corresponding limitations. We experimentally
determine the performance of different fusion methods at
each level. The experiments are based on 3D face range
images of the FRGC v2 dataset [12], where we use two
recognition algorithms from different vendors.

The outline of this paper is as follows. In Section II we
briefly discuss the HDS system, while in Section III we
discuss the application of multi-algorithm fusion at feature-,
score-, and decision-level using the HDS system. The ex-
perimental setup and results are provided in Section IV. We
finish with the conclusions in Section V.
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II. TEMPLATE PROTECTION SCHEME

Many template protection schemes presented in the litera-
ture are based on the capability of generating a robust binary
vector or key from biometric measurements of the same
subject. The HDS system we consider is depicted in Fig. 2.
For the sake of coherence we use the terminology auxiliary
data (AD) and pseudo identity (PI) proposed in [13], which is
in line with standardization activities in ISO. From the real-
valued representation of the biometric sample, f ∈ R

NF ,
a binary vector fB ∈ {0, 1}NB is extracted within the Bit
Extraction module. We use a single bit quantization scheme
based on thresholding and the reliable component selection
(RCS) algorithm. The NB most reliable components are
selected based on the estimated z-score for each component.
With use of the multiple enrollment samples, the z-score is
estimated as the ratio between the distance of the estimated
mean with respect to the quantization threshold and the
estimated standard deviation, see [2] for a more detailed
description of the z-score estimation and the quantization
scheme. The auxiliary data AD1 contains the index informa-
tion of the selected reliable components.

The binary vector f
e
B could be used as a key for any

encryption purposes, however it is not considered as being
practical because of the high probability that it is not exactly
the same in both the enrollment and verification phase (f e

B 6=
f
v
B), due to measurement noise and biometric variability that

lead to bit errors. The number of bit errors is also referred
to as the Hamming distance dH(f e

B, fv
B). Therefore, error-

correcting codes (ECC) are used to deal with the bit errors.
Combining the ECC with a cryptographic hash function
forms the scheme also known as the Fuzzy Commitment
scheme [1]. In the enrollment phase, a binary secret or
message vector K is randomly generated by the Random-
Number-Generator (RNG) module. A codeword C of an
error-correcting code is obtained by encoding K in the ECC-
Encoder module. As the ECC we use the linear block type
code “Bose, Ray-Chaudhuri, Hocquenghem” (BCH) [14],
which is specified by the codeword length (nc), message
length (kc), and the corresponding number of bits that can
be corrected (tc), in short [nc, kc, tc]. Some practical BCH
settings are provided in Table I, where the bit error rate
(BER) is the ratio tc/nc. The codeword is XOR-ed with f

e
B in

order to obtain the auxiliary data AD2. Hence, f e
B should have

the same dimension as C implying NB = nc. Furthermore,
the hash of K is taken in order to obtain the pseudo identity
PI. The larger the secret size the more difficult it is to guess
K from PI.
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Fig. 1. Multiple sources of biometric information using fingerprints as the
single modality.
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Fig. 2. The HDS template protection scheme.

In the verification phase, a new biometric sample is taken
and transformed into its binary representation within the Bit
Extraction module with help of auxiliary data AD1. The
new word C

∗ is computed by XOR-ing f
v
B with AD2. The

candidate secret K
∗ is obtained by decoding C

∗ in the
ECC-Decoder module. Subsequently, the candidate pseudo
identity PI∗ is computed by hashing K

∗. The decision in
the Bit Matcher module is based on whether PI and PI∗ are
bitwise identical.

The Bit-Matcher module yields identical PI and PI∗ when
the number of bit errors between the binary vectors f

e
B and

f
v
B is smaller or equal to the error-correcting capability tc

of the ECC. Thus, there is an accept when the Hamming
distance is smaller than tc, dH(f e

B, fv
B) = ||f e

B ⊕ f
v
B||1 ≤ tc.

Therefore, the fuzzy commitment scheme can be considered
as a Hamming distance classifier with threshold tc. Note,
that the maximum number of bits that the BCH can correct
t∗c is close to 25% of the codeword length. In the remainder
of the text, we indicate this limitation as the ECC-limitation.

As a distance score s we use the number of bits that had to
be corrected by the ECC decoder. The candidate secret K

∗

is encoded to its corresponding codeword Ĉ and is XOR-
ed with C

∗ in order to obtain the error pattern e. The error
pattern is equal to the bit differences between the enrollment

TABLE I
SOME EXAMPLES OF THE BCH CODE GIVEN BY THE CODEWORD (nc

AND MESSAGE (kc) LENGTH, THE CORRESPONDING NUMBER OF

CORRECTABLE BITS (tc), AND THE BIT ERROR RATE (BER) tc/nc .

nc kc tc BER = tc/nc

127 8 31 24.4%
15 27 21.3%

255 9 63 24.7%
21 55 21.6%

511 10 127 24.9%
31 109 21.3%

1023 11 255 24.9%
46 219 21.4%
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Fig. 3. A toy-example of a multi-algorithm fusion system.

and verification binary feature vectors (f e
B ⊕ f

v
B) as follows

e = Ĉ⊕C
∗

= Ĉ⊕ (fv
B ⊕ AD2)

= Ĉ⊕ (fv
B ⊕ (f e

B ⊕C))

= (Ĉ⊕C) ⊕ (f e
B ⊕ f

v
B)

= (f e
B ⊕ f

v
B) if Ĉ = C,

(1)

where Ĉ is equal to C when there is an accept, i.e. K and
K

∗ are equal. The distance score s is thus the sum of the
error pattern, hence equal to dH(f e

B, fv
B) and only a valid

score when there is an accept, i.e. dH(f e
B, fv

B) ≤ tc. If the
score is not valid we only know that dH(f e

B, fv
B) > tc.

III. APPLYING TEMPLATE PROTECTION AT DIFFERENT
FUSION LEVELS

In this work we are interested in the multi-algorithm fusion
system as depicted in Fig. 3, where a 3D image is taken of
the face of the subject from which the feature vectors f

v
1

and f
v
2 are extracted using two different feature extraction

algorithms. These features are compared with their enrolled
version {f e

1 , f e
2} within the Fusion Classifier module and a

decision d is made whether to accept or reject the identity
claim of the subject.

The comparison within the Fusion Classifier module
can occur at different levels, namely at feature-, score-,
or decision-level. In the following sections we discuss the
implementation of the template protection system at the
different fusion levels.

A. Feature-Level Fusion

Applying the template protection scheme at feature-level
fusion is straightforward, the two feature vectors f1 and f2 are
concatenated before entering the template protection scheme,
thus f = [f1; f2]. The fused feature vectors have more
components and most likely more components that have
discriminating and robust properties. Hence, it is expected
that more robust and discriminating bits can be extracted,
which allows the use of larger binary vectors fB and thus
larger codewords. It is known from the BCH code that larger
codewords are more efficient, they have a larger secret at the
same bit error rate (BER), see Table I.

B. Decision-Level Fusion

At decision-level fusion there is a template protection
system for each source of biometric information with an
individual decision for each system. The two decisions
can be fused into a single decision df using a AND-rule
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Fig. 4. Decision boundaries for the (a) AND and (b) OR decision fusion
rule. The operating point top is at the intersection of the decision boundary
given by tc1 and tc2.

or OR-rule. For the AND-rule, there is a final accept if
and only if both template protection systems lead to an
accept, thus dH(f e

B,1
, fv

B,1
) ≤ tc,1 and dH(f e

B,2
, fv

B,2
) ≤ tc,2.

The acceptance region is the intersection defined by the
individual decision boundaries crossing the operating point
top = {top,1, top,2} = {tc,1, tc,2} as shown in Fig. 4(a). For
the OR-rule, there is a final accept if at least a single template
protection system gives an accept. Hence, the acceptance
region is the union of both as portrayed in Fig. 4(b).

Under the assumption that the binary vectors fB are
randomly distributed in {0, 1}NB, it follows from the results
in [15] that the maximum amount of privacy information
that the HDS system can preserve is equal to the secret size
|K| = kc from the ECC. The average number of attempts
necessary for the adversary to randomly guess the secret K

from its hashed version PI is equal to 1
2
2kc . For the first

source the secret size is |K1| = kc,1 and |K2| = kc,2 for
the second source. For the OR-rule fusion, only one of the
hash values has to be guessed correctly for a successful
attack, hence the effective secret size in the fused setup
is equal to the smallest secret size |Kf | = min(kc,1, kc,2).
In case of the AND-rule fusion, both hash values have to
be guessed correctly independently, thus the effective se-
cret size is |Kf | = log2(2

kc,1 + 2kc,2) ≤ max(kc,1, kc,2)+1,
where the equality holds only when kc,1 = kc,2. This can
be improved by combining or concatenating both secrets
prior to hashing. In that case, the effective secret size is
|Kf | = |K1| + |K2| = kc,1 + kc,2.

C. Score-Level Fusion

A general implementation of the template protection sys-
tem at score-level fusion is depicted in Fig. 5. Each source
of biometric information has a separate template protection
system with a decision and score value as output. Note that
we are using the number of corrected bits within the ECC as
the distance score that is valid only when there is an accept,
see Section II. Both scores (s1 and s2) and decisions (d1 and
d2) are combined in the Score & Decision Fusion module
into a single decision df . With the available scores, more
flexible decision boundaries can be defined when compared
to the AND-rule and OR-rule decision-level fusion cases that
were presented in Fig. 4. Similar to the decision-level fusion
case, an AND- or OR-rule can be used based on the decision
di, which is now extended by incorporating the scores si
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Fig. 6. Examples of the decision boundaries for the score-level fusion case
with (a) the AND- and (b) OR-configuration.

to determine the final decision df . Hence, there are two
cases we refer to as the AND-configuration and the OR-
configuration case.

For the AND-configuration case the initial acceptance
region is similar to the AND-rule case as shown in Fig. 4(a).
However, with use of the scores si a more refined decision
boundary given by a function f(s1, s2) can be defined. We
mainly focus on the Sum-rule and Weighted-Sum-rule given
as

sf = w1s1 + w2s2, with w1 + w2 = 1, (2)

where the Sum-rule is a degenerate case of the Weighted-
Sum-rule by using weights equal to 1

2
. If there is an accept

for both sources (d1 = d2 = 1 = “Accept”), then there is
only a final accept (df = 1) if the scores s1 and s2 are in
the acceptance region defined by the function f(s1, s2), see
Fig. 6(a) for an example of the acceptance region using the
Weighted-Sum-rule.

For the OR-configuration case, the same boundaries can
be defined as for the AND-configuration case when there
is an accept for both sources. However, if there is a single
accept it is still possible to give a final accept if the single
score si is smaller than a stricter threshold t∗i . We use a
stricter threshold because the final decision is now only based
on a single source of biometric information. An example of
the acceptance region is depicted in Fig. 6(b). Note that we
define the stricter threshold t∗1 (t∗2) as the intersection of the
decision boundary function f(s1, s2) with the tc,2 (tc,1).

IV. EXPERIMENTS

In the previous section we presented the methods for
multi-algorithm fusion at feature-, score-, and decision-level.
In this section, we empirically validate the best performance
achieved at each level by means of a biometric database and
two feature extraction algorithms.

A. Experiment Setup
1) Biometric Databases: All the results in this work are

obtained using the FRGC v2 dataset [12] containing a total
of 4007 3D shape samples from 465 subjects.

However, one of the 3D shape recognizer we used could
not successfully extract a feature vector out of each sample,
hence reducing the dataset to 3507 samples from 454
subjects. As the template protection algorithm works best
at multiple enrollment samples, the subset of subjects with
at least 6 (5 as enrolment samples with at least one for the
verification) samples or more is selected. This resulted into
a subset of 261 subjects with in total 2970 samples.

2) Feature Extraction Algorithms: The first algorithm is
the shape-based 3D face recognizer from [16] and is referred
to as Algo1. It has two main steps: 1) the alignment of faces,
and 2) the extraction of surface features from 3D facial data.
In the alignment step, each face is registered to a generic
face model (GFM) and the central facial region is cropped.
The GFM is computed by averaging correctly aligned images
from a training set. After the alignment step, we can assume
that all faces are transformed in such a way that they best
fit the GFM, and have the same position in the common
coordinate system.

After alignment, the facial surface is divided into 174
local regions. For each region, the maximum and minimum
principal curvature direction are computed. Each of the two
directions is presented by the azimuthal and the polar angle
in the spherical coordinate system. Combining all the regions
leads to a feature vector dimension NF = 174×2×2 = 696.

The second algorithm, Algo2, is a histogram-based feature
extraction method. After the pre-registration of the face data,
a frontal view of the face model is obtained, where the tip of
the nose is at the origin in the Cartesian coordinate system.
The distribution of depth values of the normalized face model
describes the characteristics of an individual facial surface.
In order to obtain more detailed information about the local
geometry, the 3D model is divided into several sub areas
which are orthogonal to the symmetry plane of the face.
The features are extracted from the depth value distribution
in each sub-area. The feature vector dimension is NF = 476.
A full description of this algorithm is provided in [17].

For both feature extraction algorithms, the raw feature
vectors they produce are used as input of the template
protection system as described in Section II. Hence, no
signal processing is performed.

3) Testing Protocols: The performance testing protocol
consists of randomly selecting 50% (130) subjects as the
training set and the other subjects as the test set, this is
referred to as the training-test-set split. The template protec-
tion system parameters such as the quantization thresholds,
used within the Bit Extraction module, are estimated on
this training set. Hereafter, the test set is randomly split
into an equally sized fusion-training and evaluation set
containing around 65 subjects each. All the training needed
for fusion is thus performed on the fusion-training set and
the reported performance is obtained from the evaluation
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Fig. 7. Individual ROC curves for algorithm (a) Algo1and (b) Algo2 at
different settings of nc.

set. From the evaluation set, 5 samples of each subject
are randomly selected as the enrollment samples while the
remaining samples are considered as the verification samples.
This split is referred to as the enrollment-verification split.
The protected template is generated using all the enrollment
samples and compared with each verification sample.

The training-test-set split is performed five times, while for
each split the enrollment-verification split is performed five
times. From each enrollment-verification split we measure
the βtar (the false rejection rate (FRR, β) at the targeted
false acceptance rate (FAR, α) of αtar = 0.25%) and the
equal-error rate (EER), which is the error rate achieved at
the operating point where both FRR and FAR are equal. With
use of the 25 measurements we estimate the 95% confidence
interval (ci) defined as ci = 1.96σEER/

√

(25) for the EER
case while using σβtar

for the βtar case, respectively. Note,
that the splits are performed randomly, however the seed at
the start of the protocol is always the same, hence all the
splits are equal for the performance tests at feature-, score-,
and decision-level fusion. Hence, the splitting process does
not contribute to any performance differences.

B. Experiment Results

1) Individual Algorithm Performances: Before we start
fusing the different biometric sources, we first determine
their individual performance as given by the ROC curves
in Fig. 7 for different codeword lengths nc with the EER
and βtar details in Table II. The table provides the ci for
both EER and βtar and their operating point provided as the

TABLE II
THE EER AND βtar , AND THEIR ci AND OPERATING POINT FOR THE

INDIVIDUAL ALGORITHMS ALGO1 AND ALGO2 AT DIFFERENT SETTINGS

OF nc . THE LAST COLUMN IS THE SECRET SIZE |K| OF THE ECC AT THE

OPERATING POINT tc FOR ACHIEVING αtar .

nc EER RHD βtar RHD |K|
[%] [%] [%] [%] [bits]

Algo1
696 “3.75 ± 0.21” “38.8” “16.02 ± 1.61” “33.6” x
511 “3.69 ± 0.26” “35.0” “14.91 ± 1.63” “29.0” x
255 “3.99 ± 0.35” “27.5” 15.33 ± 1.84 20.0 21
127 4.84 ± 0.42 23.6 19.18 ± 1.82 15.0 29
Algo2
476 5.44 ± 0.35 22.1 37.69 ± 3.14 11.8 45
255 5.06 ± 0.30 10.2 30.25 ± 2.88 2.0 215
127 8.92 ± 0.33 3.9 89.57 ± 1.20 0 120
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relative Hamming distance (RHD). The right column of the
table provides the secret size |K| of the ECC corresponding
to the tc setting that leads to closest α but smaller than
the target αtar. This is the ECC setting with a BER just
larger than the operating point in RHD corresponding to βtar.
Entries in the table indicated with quotes cannot be reached
in practice because of the ECC-limitation, however we are
able to estimate them because of the Hamming distance
classifier assumption as discussed in Section II. Entries with
“x” can neither be reached nor estimated.

Note that we used five enrollment samples (Ne = 5)
from which the average is taken. Also note that the ROC
curves are limited because of the ECC-limitation. In order
to reach larger α and smaller β values it is required to
tolerate and thus correct more bit errors. However, the error
correcting capability of an ECC is limited. From the results
we can conclude that both algorithms perform optimally at
a codeword size of nc = 255. These settings are used in
the score- and decision-level fusion analysis. Compared to
the Algo2 algorithm, Algo1 has a better performance but a
smaller secret size (see Table II, right column).

2) Multi-Algorithm Fusion at Feature-Level: At feature-
level we concatenate both feature vectors together and
consider it as a single feature vector. The new dimension of
the feature vector is 1175. Because of the larger dimension
it is possible to use larger codeword lengths as in the
individual case in Section IV-B.1. The performances at
different codeword lengths are shown in Fig. 8 with the
EER and βtar details in Table III. The best performance
is achieved by using the largest codeword length of 1023
bits. It is just able to reach the targeted αtar that leads to a
βtar = 11.1%.

3) Multi-Algorithm Fusion at Decision-Level: At decision
and score-level fusion, the scatter plot of the genuine and

TABLE III
PERFORMANCE RESULTS OF MULTI-ALGORITHM FUSION AT

FEATURE-LEVEL.

nc EER RHD βtar RHD |K|
[%] [%] [%] [%] [bits]

1023 “2.45 ± 0.24” “29.6” 11.10 ± 1.70 24.5 11
511 2.89 ± 0.34 18.6 12.88 ± 1.71 11.7 103
255 3.89 ± 0.32 11.8 22.79 ± 2.64 5.1 155
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imposter scores of both algorithms, as shown in Fig. 9, may
indicate the possible gain when fusing at these levels. The
scatter plot also depicts the decision boundary indicated by
the operating point top.

We will investigate both the AND-rule and OR-rule
performance at different strategies of moving the operat-
ing point top = {top,1, top,2} on the scatter plot, whose
range is top,1 ∈ [0, t∗c ,1] and top,2 ∈ [0, t∗c ,2] for each axis
respectively, with t∗c being the maximum error-correcting
capability of the ECC. In the first case (c-1) we consider
top,2 = top,1 and vary top,1 from 0 to t∗c ,1 considering
that t∗c ,1 = t∗c ,2 because the optimal individual perfor-
mance is at the same codeword length as observed in
Section IV-B.1. In the second case (c-2), the operating
point crosses the EER operating point of the individual
performances {tEER,1, tEER,2} linearly, hence the oper-
ating point is defined as top = {top,1,

tEER,2

tEER,1
top,1} with

top,1 ∈ [0, min(t∗c ,1,
tEER,1

tEER,2
t∗c ,2)]. In the third and final case

(c-3) we use the optimal fusion method from [18], which esti-
mates the performance in terms of α and β at each possible
operating point in the scatter plot and takes the operating
points on the envelope which leads to the best performance.
This optimization process of finding the optimal operating
points is in fact a training process and is thus performed
on the fusion-training set. The final performance results are
obtained by calculating the performance of the test set on
the optimal operating points.

The performance results of the three cases are shown in
Fig. 10(a) for the AND-rule and Fig. 10(b) for the OR-
rule respectively with the performance details provided in
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Fig. 11. The operating points trajectory for the three cases (c-1, c-2, c-3)
for the AND-rule and OR-rule decision fusion methods.

Table IV. Because there are two template protection systems
we provide the RHD of the operating point and the secret
size for each system. From the results we can conclude that
the optimal decision fusion method (c-3) leads to the best
performance for both the AND-rule and OR-rule method.
The performance differences between the three cases of
moving the operating point is very small for the AND-rule
method, while significant for the OR-rule method. This dif-
ference becomes more evident when analyzing the trajectory
of the operating point as depicted in Fig. 11. The optimal
operating points obtained by the optimal AND-rule method
(c-3-AND) is between the operating points of cases c-1 and
c-2. However, for the optimal OR-rule method (c-3-OR) the
obtained operating points are significantly different than for
case c-1 and c-2. For the first few points the operating points
moves to the right, tangent to the x-axis (top,1 increases
while top,2 stays relatively constant) and sharply moves up
(top,2 increases) once top,1 reaches the limit of tc,1. Because
the optimal fusion method facilitates more flexibility of the
operating points, it significantly improves the performance
as is shown in Fig. 10(b).

Observe that the OR-rule is able to obtain a greater part
of the ROC curve than the AND-rule, as the OR-rule is
able to reach the EER operating point while the AND-
rule cannot, while both have the same ECC-limitation. The
decision boundaries in Fig 4, 6, and 9 clearly show that at
the same operating point the OR-rule has a larger Accept
area than the AND-rule and can thus achieve a larger α and
smaller β.

The effective secret size as discussed in Section III-C
depends on the configuration being used. For the AND-
configuration, the total secret size is the sum of the secret

TABLE IV
PERFORMANCE RESULTS OF MULTI-ALGORITHM FUSION AT

DECISION-LEVEL. THE OPERATING POINTS AND SECRET SIZE ARE

PROVIDED FOR BOTH TEMPLATE PROTECTION SYSTEMS.
nc EER RHD βtar RHD |K|

[%] [%] [%] [%] [bits]
AND-rule

c-1 x x 13.45 ± 1.87 [20.8, 20.8] [21, 21]
c-2 x x 12.71 ± 2.59 [23.9, 9.0] [9, 99]
c-3 x x 11.34 ± 2.72 [22.0, 13.7] [13, 47]

OR-rule
c-1 4.78 ± 0.29 [10.2, 10.2] 29.83 ± 3.31 [2.4, 2.4] [207, 207]
c-2 3.46 ± 0.34 [21.2, 7.8] 28.23 ± 3.50 [6.7, 2.4] [131, 207]
c-3 3.27 ± 0.38 [24.7, 5.9] 12.58 ± 6.27 [19.2, 0.8] [21, 239]



10
−4

10
−3

10
−2

10
−1

10
0

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 

 

PSfrag replacements

Sum-Clas
Sum-AND
Sum-OR

Target α

1-
β

10
−4

10
−3

10
−2

10
−1

10
0

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 

 

PSfrag replacements

WSum-Clas
WSum-AND
WSum-OR

Target α

1-
β

(a) Sum-rule (b) Weighted-Sum-rule

Fig. 12. ROC curves at score-level fusion using (a) the Sum-rule
and (b) the Weighted-Sum-rule. In both cases we compare the classical
performance (Clas) where there is no ECC-limitation with the AND- and
OR-configuration with ECC-limitation.

size of each template protection system individually. For
the OR-configuration case the effective secret size is the
minimum of both.

4) Multi-Algorithm Fusion at Score-Level: The scatter
plot indicates that using a Sum-rule or Weighted-Sum-
rule score fusion method should improve the overall per-
formance with respect to the individual performances. For
the Weighted-Sum-rule method given by (2), the weighting
coefficients are estimated from the disjunct fusion-training
set as discussed in Section IV. The weights are iteratively
varied and the values with the best performance in terms of
the EER are selected. If the EER cannot be estimated, for
example because of the ECC-limitation, we optimize using
βtar instead.

The score fusion algorithm can only be applied when
the scores of both algorithm are available as portrayed by
the accept region in Fig. 6(a) for the AND-configuration
case. The accept region can be extend by using the OR-
configuration given in Fig. 6(b). If only a single score s1

(s2) is available a stricter threshold t∗1 (t∗2) is used. Note that
the ECC settings are set to t∗c for both template protection
systems in order to have the largest acceptance region where
both scores are available, hence fully benefitting from the
score-fusion method. Thus, the threshold variable for the
ROC curve becomes the weighted sum given by (2).

The results for the Sum-rule and Weighted-Sum-rule
score fusion methods are depicted in Fig. 12(a) and (b),
respectively. We investigate both the AND- and OR-
configuration indicated as Sum-AND and Sum-OR for

TABLE V
PERFORMANCE RESULTS OF MULTI-ALGORITHM FUSION AT

FEATURE-LEVEL.

case EER βtar |K|
[%] [%] [bits]

Sum
Clas 2.58 ± 0.30 9.83 ± 1.81 [9, 9]
AND x 10.26 ± 1.80 [9, 9]
OR 3.45 ± 0.37 10.38 ± 1.56 [9, 9]

WSum
Clas 2.57 ± 0.32 9.58 ± 1.74 [9, 9]
AND x 9.63 ± 2.20 [9, 9]
OR 3.28 ± 0.39 11.68 ± 1.74 [9, 9]
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Fig. 13. Convergence of the score-level fusion ROC curves (Sum and
Wsum) towards the decision-level curves (c-1) for the (a) OR-rule and (b)
AND-rule cases.

the Sum-rule and WSum-AND and WSum-OR for the
Weighted-Sum-rule. As a comparison, the classical Sum-
rule and Weighted-Sum-rule without the ECC limitation
are included and referred to as Sum-Clas and WSum-Clas,
respectively. The average weights [w̄1, w̄2] found during the
fusion training are [0.59, 0.41] for the WSum-Clas case,
[0.7, 0.3] for the WSum-AND case, and [0.8, 0.2] for the
WSum-OR case. More performance details are provide
in Table V. Because there are two template protection
system we provide the RHD of the operating point and the
secret size for each system. In terms of the βtar values,
the results indicate that the AND-configuration outperforms
the OR-configuration but not the classical results without
the ECC-limitations. Within the AND-configuration, the
Weighted-Sum-rule has the best performances, while the
Sum-rule has a better performance for the OR-configuration
case. Note, that all the measured differences are within
the estimated confidence intervals, hence the observed
differences cannot be considered as being significant. The
results also show that the Sum-AND (WSum-AND) curve
follows the Sum-Clas (WSum-Clas) curve at smaller α
values, but starts deviating at larger α values. At smaller
α values the accept area for the Sum-AND case is not
limited by the ECC-limitation and is thus equal to the
accept area of the Sum-Clas case. This also holds for the
WSum-AND and WSum-Clas scenario only if the weights
are equal for both cases. However at larger α values the
decision boundary is at a larger Hamming distances with
the consequence that the accept area for the WSum-AND
and Sum-AND cases are limited by the ECC-limitation as
shown in Fig. 6(a) and approaches the accept area for the
AND-rule c-1 decision-level fusion method case as depicted
in Fig. 4(a). Under the same conditions this also holds
for the OR-rule cases. The convergence of the score-level
fusion ROC curves towards the decision-level curves are
portrayed in Fig. 13.

Because we fixed the ECC correcting capability at t∗c
the secret size for each protected template is 9 bits at
nc = 255 and the effective secret size is the sum of 18
bits for the AND-configuration when both secrets are
concatenated before hashing. For the OR-configuration case
the effective secret size is the minimum of both, hence 9 bits.
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Fig. 14. Overview of the best ROC curves obtained at feature-, score-,
and decision-level fusion, and the individual algorithms Algo1 and Algo2.

TABLE VI
SUMMARY OF EMPIRICAL RESULTS OF MULTI-ALGORITHM.

Type EER RHD βtar RHD kc

[%] [%] [%] [%] [bits]
Feature x x 11.16 ± 1.70 24.5 11
Score x x 9.63 ± 2.20 [24.7, 24.7] 2 × 9

Decision x x 11.34 ± 2.72 [22.0, 13.7] [13, 47]
Algo1 x x 15.84 ± 2.10 19.6 21
Algo2 x x 29.97 ± 3.29 2.4 207

5) Summary and Discussions: As a summary we compare
the performance of the individual algorithms with the best
performances obtained at each fusion level, see Fig. 14 for
the ROC curves with the details in Table VI. The best perfor-
mance at feature-level fusion was with a codeword of 1023
bit. At score-level fusion, the best performance is obtained
using the Weight-Sum-rule with the AND-configuration,
while at decision-level fusion the optimal AND-rule method
led to the best performance.

Compared to the individual performances, the performance
improvement with fusion in terms of βtar exceeds 6%.
The difference can be considered as significant because
the combined confidence interval is around 4%. The best
performance is obtained at score-level fusion, however the
differences with the feature- and decision-level fusion meth-
ods are not significant. The effective secret size at score-
level fusion is close to the secret size of the best individual
algorithm. Hence we can conclude that the performance has
been improved while maintaining a similar effective secret
size.

V. CONCLUSIONS

We have shown that it is possible to apply fusion with
the Helper-Data System at feature-, score-, and decision-
level. However, the Helper-Data System inherently has only
a decision as the output, hence it had to be adapted in order
to have a score as output for the score-level fusion. We took
the number of the bits the ECC had to correct as the distance
score measurement.

Furthermore, we have also shown that applying fusion
with template protection at feature- or decision-level is
straightforward and conventional. However, fusion at score-
level is different due to the use of an ECC, which has a
limited error correcting capability. Consequently, for each
template protection system there is only a valid score when
there is a match. Hence, this ECC-limitation limits the
decision boundaries.

The performance at all fusion levels is significantly better
than the performance of the individual biometric sources.
The best performance is obtained at score-level fusion, with
a βtar improvement of 6% while maintaining a similar secret
size.

ACKNOWLEDGMENT

The authors would like to acknowledge the support of the
partners within the 3DFACE project, a European Integrated
Project funded under the European Commission IST FP6
program.

REFERENCES

[1] A. Juels and M. Wattenberg, “A fuzzy commitment scheme,” in
6th ACM Conference on Computer and Communications Security,
November 1999, pp. 28–36.

[2] E. J. C. Kelkboom, B. Gökberk, T. A. M. Kevenaar, A. H. M.
Akkermans, and M. van der Veen, “”3D face”: Biometric template
protection for 3d face recognition,” in Int. Conf. on Biometrics, Seoul,
Korea, August 2007, pp. 566–573.

[3] T. A. M. Kevenaar, G.-J. Schrijen, A. H. M. Akkermans, M. van der
Veen, and F. Zuo, “Face recognition with renewable and privacy
preserving binary templates,” in 4th IEEE workshop on AutoID,
Buffalo, New York, USA, October 2005, pp. 21–26.

[4] P. Tuyls, A. H. M. Akkermans, T. A. M. Kevenaar, G.-J. Schrijnen,
A. M. Bazen, and R. N. J. Veldhuis, “Pratical biometric authentication
with template protection,” in 5th International Conference, AVBPA,
Rye Brook, New York, July 2005.

[5] A. Juels and M. Sudan, “A fuzzy vault scheme,” in Proc. of the
2002 International Symposium on Information Theory (ISIT 2002),
Lausanne, 2002.

[6] K. Nandakumar, A. K. Jain, and S. Pankanti, “Fingerprint-based fuzzy
vault: Implementation and performance,” in IEEE Transactions on
Information Forensics and Security, Decmber 2007, pp. 744–757.

[7] E.-C. Chang and S. Roy, “Robust extraction of secret bits from
minutiae,” in Int. Conf. on Biometrics, Seoul, South Korea, August
2007, pp. 750–759.

[8] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate
strong secret keys from biometrics and other noisy data,” in Advances
in Cryptology - Eurocrypt 2004, LNCS 3027, 2004, pp. 532–540.

[9] N. K. Ratha, J. H. Connell, and R. M. Bolle, “Enhancing security
and privacy in biometrics-based authentication systems,” IBM Systems
Journal, vol. 40, no. 3, pp. 614–634, 2001.

[10] A. A. Ross, K. Nandakumar, and A. K. Jain, Handbook of Multibio-
metrics, D. D. Zhang and A. K. Jain, Eds. Springer, 2006.

[11] K. Nandakumar and A. K. Jain, “Multibiometric template security
using fuzzy vault,” in International Conference on Biometrics: Theory,
Applications and Systems, 2008, pp. 1–6.

[12] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang,
K. Hoffman, J. Marques, J. Min, and W. Worek, “Overview of the
face recognition grand challenge,” in IEEE CVPR, vol. 2, June 2005,
pp. 454–461.

[13] J. Breebaart, C. Busch, J. Grave, and E. Kindt, “A reference architec-
ture for biometric template protection based on pseudo identities,” in
BIOSIG, Darmstadt, Germany, September 2008.

[14] R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error correcting
binary group codes,” Information and Control, vol. 3, no. 1, pp. 68–79,
March 1960.

[15] P. Tuyls and J. Goseling, “Capacity and examples of template-
protecting biometric authentication systems,” in Biometric Authenti-
cation Workshop ECCV2004.

[16] B. Gökberk, M. O. Irfanoglu, and L. Akarun, “3D shape-based face
representation and feature extraction for face recognition,” Image and
Vision Computing, vol. 24, no. 8, pp. 857–869, August 2006.

[17] X. Zhou, H. Seibert, C. Busch, and W. Funk, “A 3D face recognition
algorithm using histogram-based features,” in Eurographics 2008
Workshop on 3D Object Retrieval, Crete, Greece, April 2008, pp. 65–
71.

[18] Q. Tao and R. N. Veldhuis, “Threshold-optimized decision-level fusion
and its application to biometrics,” Pattern Recognition, vol. 4, no. 5,
pp. 823–836, May 2009.




