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ABSTRACT 

This paper will deal with an algorithm for a two­
dimensional representation of the acoustic signal of 
spoken words. Having such an algorithm one can 
use the result for different applications like speech 
recognition and machine control by voice. If such a 
map from the domain of continuous speech signals 
to a two- (or three-) dimensional Euclidean space 
can be argued to be a reasonable model of the 
human speech processing system, then one can 
even investigate with this model psycho linguistic 
phenomena. The algorithm is in fact a shortcut for 
a self-organizing artificial neural network as 
developed by Kohonen 

1. INTRODUCTION 

This paper will deal with an algorithm for a two­
dimensional representation of the acoustic signal of 
spoken words. Having such an algorithm one can 
use the result for different applications like speech 
recognition and machine control by voice. If such a 
map from the domain of continuous speech signals 
to a two- (or three-) dimensional Euclidean space 
can be argued to be a reasonable model of the 
human speech processing system, then one can 
even investigate with this model psycho linguistic 
phenomena. The algorithm is in fact a shortcut for 
a self-organizing artificial neural network as 
developed by Kohonen [Koh88a]. 

Our approach has a great resemblance to the 
"Phonetic Type Writer" as introduced by Kohonen 
[Koh88b]. The main difference will be the pre­
processing of the speech signal. We will give first a 
description of the neural network and in section 3 
the equivalent algorithm. In section 4 we will 
describe the pre-processing of speech signals and in 
section 5 the process of learning to represent 
acoustic signals. Finally. in section 6 we will give 
some preliminary results of simulations. 

2. THE SELF-ORGANIZING NEURAL 

NETWORK 

The neural network consists of n units, the neurons, 
in a d-dimensional grid. In general one uses a two­
dimensional Euclidean lattice. At time t each 
neuron is given the same set of m external inputs, 
represented by a vector x(t) = [x,(t),x,(t), ... .x,,,(t)]. 

Every neuron j will multiply each input x,(t) with 
some factor W;;(t), called the synaptic weight of 
neuron j for input x,(t). According to some 
monotonic increasing and bounded transfer 
function n, the neuron will yield after some delay 
an output y(t+ I) depending among others on the 
weighted input (:Ew/t).xj(t)). The output of neuron 
j multiplied with a so-called fixed lateral weight 'Ykj 
forms an additional internal input for neuron k, this 
holds for all k and j. The lateral weight yki is 
positive if the neurons k and j are neigbors and 
becomes negative if the distance in the lattice of 
neurons between neuron k and j is large. The 
distance dependent value of the lateral weight yki 
represents the effect of lateral excitation and 
inhibition as encountered in real neural nets. 
Depending on the weights w,; some neuron will 
initially optimal respond to some input vector x(t). 
Due to the time delay and the lateral excitation and 
inhibition a dynamic process will start with as a 
final result that within a bounded area around the 
initial most sensitive neuron all neurons will give a 
high output value. 

It is known from neurobiology that the 
synaptic transfer of information between neurons 
will increase if there exists a positive correlation 
between an incoming signal and the output signal 
of a neuron. This so-called Hebb rule is 
implemented in the artificial neural net by the 
following weight adaptation rule: 

w(t+ I) = w(t) + E. ( v(t) - w(t)) .y(I) 
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The application of this rule implies that the 
area of a neuron with high response to some input 
vector v(1) will become next time more sensitive to 
inputs resembling that particular input v(I). When 
the input vectors are taken from an input space V 
with some probability density distribution then 
after a learning period, with a sufficient number of 
sample vectors from V, the neural net will realize a 
vector quantization of the input space V with the 
weight vectors wJ of the n neurons as reference 
vectors. The point density function of the weight 
space will be almost the same as the density 
function of V. 

Besides the vector quantization the neural net 
will yield an ordering of the weight vectors: if the 
final weight vectors can be totally ordered in a d­
dimensional ordering, then that ordering of weight 
vectors is represented by the ordering of the 
corresponding neurons if the dimension of the 
neural net is at least equal to the dimension d. If for 
instance the vectors v are 25-dimensional and 
represent samples with a mask from a two­
dimensional picture, then a two-dimensional self­
organizing neural net will represent the samples in 
a two-dimensional neural net yielding an almost 
photographic copy of the original picture [Vtf89]. 

3. THE SELF-ORGANIZING ALGORITHM 

The complete behavior of the neural net can 
however be simulated by a simple algorithm: Let 

V c Rm (with R the set of real numbers) be a finite 

set of input vectors. Let L c Nd (with N the set of 
natural numbers) be a d-dimensional lattice of 
points (the grid of neurons) with some distance 
measure dL. With each point i in L there is 
associated a weight vector w1(t). Assume we have n 

(the number of neurons) weight vectors w1(1) ERm. 
Given at step I of the learning process some 
element v(I) of V, deterrnine the "winning" weight 
vector w8: 

lv(I) - w,(1)1 = min lv(I) - w,(1)1. 
' 

Adapt every weight vector according to: 

w,(1+ I)= w,(1) + e(1).h(r,s,1). (v(I) - w,(1)) 

with 

E(I) a monotonically decreasing function of 

step t and e(O) s I (e.g., e(O) = 0.5) 

and 

h(r,s,I) a monotone decreasing function of the 
distance dL(r,s) between the points in the lattice 
associated with the weight vectors w, and w, and 
h(s,s,1)=1 for all 1. In addition, h(r,s,1) is decreasing 
with I for r * s. 

For a proper selection of e(I), h(r,s,1) and 
dimension of the lattice L the final result will be a 
vector quantization of V realized by the weight 
vectors w and an ordering of the weight vectors 
realized by the corresponding neurons. 

4. THE PRE-PROCESSING 

It is assumed that the human ear perforrns a pre­
processing of sound which is optimal for speech 
recognition. Physiological research has revealed 
that main operation of the basil air membrane of 
the cochlea in the inner ear is the spectral 
decomposition of the speech signal. The same is 
done in conventional systems for artificial speech 
recognition like the FFT [DeV82]. The pre­
processing can become quite complicated. The pre­
processing system of Kohonen for his "Neural Type 
Writer" consists of eight steps: I. A noise 
cancelling microphone. 2. A low pass filter. 3. An 
analogue to digital conversion with a sampling rate 
of 13 kHz. 4. A 256 point fast Fourier transforrn 
every 9.8 ms using a 256 Hamming window. 5. 
Logarithmization and filtering. 6. Grouping the 256 
spectral component in a 15-component real vector. 
7. Subtraction of the average from all components. 
8. Normalization of the resulting vector. In our 
approach we want to reduce the number of 
artificial steps in the pre-processing. The steps I, 2 
and 3 were the same as Kohonen did (the sampling 
frequency in our case was 16 kHz. and the AD 
conversion was 16 bits). The fast Fourier transforrn 
was, after some experiments, replaced by the next 
simplified transforrn. 

Given an interval of 128 samples s(n) of the 
speech signal, we calculated for seven values of k 
(frequencies) i.e. k=l,2,4,8,16,32,64 the next seven 
components of the input vector v of the neural 
network: 
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Each component v, represents a measure for 
the presence of a frequency component with 
angular frequency 21tk/128 in the particular interval 
of the speech signal. For each interval (shifted over 
one sample) of the acoustic signal of some spoken 
sentence we can obtain in this rather straight 
forward way ?-dimensional vectors as inputs for 
the self-organizing neural network. 

5. LEARNING 

We used for learning the acoustic signal of a 
sentence spoken by 9 different female speakers. 
The sentence was: "She had your dark suit in 
greasy wash water all year." Because of the large 
time length of the sentence we calculated only for 
intervals shifted over 126 samples of the input 
vectors v. The neural net was 2-dimensional with 
size 5x5. 

The time dependent learning rate was equal to 

E(I) =If Ji. 

The region adaptation function was 
equal to 

-di(r,s)/ 

h(r,s,t) = e /a'(i) 

with Cl(I) = 25 /Ji. The input vectors v 
were randomly selected from the set of 
all input vectors obtained from the 
sentence given above. After 5000 
learning steps the adaptation of the net 
was neglectable and learning was 
stopped. 

6. PRELIMINARY RESULTS 

In the test phase we shift with a 
window of 126 samples long over the 
speech signal of a word and present to 
the neural network the corresponding 
sequence of pre-processed vectors v. @ 
The words were taken from the 
sentence mentioned above. At each 
sample interval there will be one 
neuron most sensitive to the vector v of 
a particular speech interval. In this way 
we obtain a sequence of neurons that 

are most sens1uve to the sequence of interval 
samples. The sequence of responding neurons gives 
a two-dimensional representation of a spoken word. 
In Figure I the trace in the neural net for the word 
"year" is given. 

The path in the neural net for the word "year" 
is quite clear. Other words do not give such a 
simple result. In this rather small neural net many 
words result in paths that have jumps and 
crossings. Although we have an initial 
demonstration of the possibility to represent words 
in a self-organizing net, it will be clear that in a 
neural net with only 25 neurons we can not 
represent the multitude of characteristic speech 
intervals, moreover it is very likely that sound 
intervals have more than four resembling 
neighbors, so a two-dimensional neural net is not 
appropriate for full speech representation. A large 
number of neurons and a higher dimension of the 
neural net is required for practical applications, like 
the identification of phonemes by the intersection 
of different words and the identification of 
acoustically similar words by tracks in parallel. 

y (3x) 

y ea (10x) 

@ ®-© ® 
r r l (Bx) 

ea 
G) - (§) G) @ 

t l ! t (~x) 
@ - @ - @ @ 
r r r 

@ @ <W 

Figure 1 
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7. CONCLUSION 

Our experiment reveals that even with a simple 
two-dimensional self-organizing neural network of 
25 neurons and an elementary form of pre­
processing we can obtain a two-dimensional 
representation of spoken words. More sophisticated 
pre-processing and larger neural networks of higher 
dimension requires additional research. 
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