
A. Ambler, S.B. Calo, and G Kar (Eds.): DSOM 2000, LNCS 1960, pp. 107- 118, 2000.
@ Springer-Verlag Berlin Heidelberg 2000

Middleware Platform Management
Based on Portable Interceptors

Olaf Kath1), Aart van Halteren2),
Frank Stoinski1), Maarten Wegdam3), and Mike Fisher4)

1) Humboldt-Universität zu Berlin
{kath,stoinski}@informatik.hu-berlin.de

2) KPN Research
A.T.vanHalteren@kpn.com

3) Lucent Technologies - Bell Labs Twente
wegdam@lucent.com

4) BT Advanced Communications Technology Centre
mike.fisher@bt.com

Abstract. Object middleware is an enabling technology for distributed ap-
plications that are required to operate in heterogeneous computing and
communication environments. Although hiding distribution aspects to ap-
plication designers proves beneficial, in an operational environment sys-
tem managers may need detailed information on information flows and
the locality of objects in order to track problems or tune the system. There-
fore, hooks are required inside the processing core of the middleware to
obtain inside-information and to influence the processing of information
flows. We present the use of portable interceptors for the management of
CORBA as well as COM/DCOM middleware. Management information
is structured in a middleware technology independent way, using XML for
representation. Our approach shows two aspects of “management trans-
parency”: application designers are not burdened with designing manage-
ment functionality, and system managers can manage CORBA and
(D)COM from a single set of management tools.

1 Introduction
This paper gives an overview of some intermediate results from the EURESCOM
Project 910, Technology Assessment of Middleware for Telecommunications. The
project builds on the claim that Public Network Operators (PNOs) and Service Pro-
viders can benefit from distributed object technologies and middleware platforms.
The purpose of the collaboration is the assessment of middleware technology as a
means of providing large scale software infrastructures, suitable for wide range of
telecommunication services. The approach is to assess middleware technologies by
means of hands-on experience gained through actual experiments.

A key element for a large-scale software infrastructure is the operational man-
agement of the middleware and the software components that constitute the infra-
structure. Management of middleware is essential for service providers to operate
large-scale software infrastructures. These infrastructures will unavoidably consist
of multi-vendor software solutions. Operational management of heterogeneous mul-
ti-vendor software infrastructures requires the development of middleware manage-
ment concepts, such as relevant management information and management policies.

108 Olaf Kath et al.

These concepts must be represented in a concrete, but middleware platform technology
independent notation. Section II explains our approach towards developing middleware
management concepts and their representation. In addition, middleware management
information must be obtained in a standardized, portable way to hook management
tools into the core of middleware software infrastructures, e.g. hooks into ORBs and ob-
ject services. Examples of such hooks are CORBAs Portable Interceptors and COM/
DCOM interceptors. Due to the unavailability of a standard and products supporting
portable interceptors during the project lifetime, our own specification was developed
for CORBA and (D)COM platforms, prototypically implemented in a multi vendor
CORBA environment and contributed to the OMG standardisation process[7]. Section
III explains our interceptor design.

All presented middleware management concepts were implemented as prototypes
in a multi-vendor CORBA environment; some of the implementation concepts are pre-
sented in Section IV. Conclusions and future work are presented in Section V.

2 Middleware Management Concepts

2.1 Management Transparency and Management Information
Object middleware offers the so-called distribution transparencies [5]. This means that
the application developer does not have to be aware of issues like the location of ob-
jects, the user programming languages used, the used network, available transport pro-
tocols etc. He can simply focus on the business logic of the software component he is
developing, reducing time-to-market and decreasing development costs. Along the
same lines, we believe that the middleware should also offer management functionality,
and that this management functionality should also be transparent for the application
developer. This management transparency does not only have to be offered to the ap-
plication developer, but also to the system manager. A system manager has to manage
an application consisting of software components running distributed objects which
have been developed independently using different technologies. He should be able to
manage using a single management platform. Management information in a distributed
system can roughly be divided into three different categories; application specific man-
agement information, information which has to do specifically with a middleware plat-
form, and operating system and network resources specific management information.
Only the middleware platform management information is within the scope of this pa-
per. Figure 1 depicts the various information categories, and further divides the middle-
ware management information into object related information, request related informa-
tion, message level information and network level information.

2.2 Multi-domain Management
Our focus in this work is on middleware for large-scale distributed systems crossing or-
ganisational boundaries. It is widely recognised that business relationships are rapidly
becoming much more dynamic. Increasing automation in cross-business processes
means that enterprise systems need to work together in heterogeneous groupings, the
details of which are unknown to the designers of any of the systems involved. A similar
situation is typical in any large organisation, where there is a need for applications de-
signed and built independently to cooperate effectively in unforeseen situations.

Management in these changing environments presents a number of new problems.
There are multiple management domains with multiple uncoordinated points of control,
each making independent design decisions and using a range of middleware technolo-
gies. Centralised decision making is not a viable option for large systems. Global coor-

Middleware Platform Management Based on Portable Interceptors 109

dination is not possible and the response of the system will be the result of a collec-
tion of autonomous actions. However, end-to-end management is required so there
is a need to exchange relevant management information and policies between the in-
teracting systems.

Information exchange between domains requires common information models
or, at least, common information modelling principles and syntax. Here we make the
reasonable assumption that an approach based on Events (for monitoring the state of
system components) and Policies (for expressing the desired behaviour of system
components) will be applicable to the management of a range of different middle-
ware technologies. Our principal focus here is on mechanisms to support manage-
ment of heterogeneous middleware platforms. Management information and policies
should therefore be represented in a platform technology independent way. This is
essential for information that is relevant across multiple platform technologies. For
specific platforms specialisation of management information is anticipated.

XML [4] is becoming the de facto standard for information representation and
exchange, particularly where the information must be automatically processed. It al-
lows users to define representations specific to their own applications with a well-
defined formal syntax. XML meets our requirement for a syntax which is not tied to
a specific middleware technology but which has the necessary flexibility to represent
a very wide range of information. Our approach, therefore, is to define management
concepts using XML DTDs (Document Type Definitions) and then to apply a map-
ping to platform specific formats.

Figure 2 illustrates this approach. A prerequisite is a common understanding of
management concepts and processes which have relevance wider than a single prod-
uct (across different CORBA implementations, for example), or middleware technol-
ogy (across CORBA and (D)COM, for example). These concepts are then expressed
in XML DTDs or Schema to provide reference representations of information which
has a consistent meaning in multiple systems. Ideally these representations would be
standardised but where this is not possible, automated transformation can be used.

The next step is to map in a well-defined way to specific technologies, such as
for example CORBA and (D)COM. This approach does not impose restrictions on
the message coding, protocols or management mechanisms used within a specific
technology or product. This is similar to the way the CORBA specifications allow
interoperability but also diversity in implementation. There is the capability of ex-
pressing information in a form that can be unambiguously understood in another

Fig. 1. Scope of Middleware Platform Management Related Information

Distributed System
Information
Categories

operating system
level information

network level
information

message
level information

request
related information

object
related information

application
level information

Scope of
middleware

platform
management

network level
information

message
level information

request
related information

object
related information

110 Olaf Kath et al.

technology domain when required. Although conceptually this is accomplished via the
reference XML representation, there is no need actually to generate an intermediate
XML document. Similarly, although it is a useful lowest common denominator, partic-
ularly in wide area networks, the XML-based approach does not imply the use of http
as a transport protocol. The representation syntax and the protocols for information ex-
change are independent of each other.

3 Plug-In of Management Services into the Middleware Core
Management of a multi-vendor middleware infrastructure requires a standard way for
obtaining management information and controlling the infrastructure (i.e. application of
policies). This requirement in turn implies the need for a technology which allows man-
agement components to interact with the core components of a middleware platform in
a portable, product independent manner. By the core of a middleware platform we mean
runtime components that provide all the necessary basic capabilities for the interaction
between distributed objects. Examples of such core components are object request bro-
kers (ORBs) running on nodes belonging to a CORBA based platform, or containers
that host Enterprise Java Beans (EJB Containers).

Current approaches for providing such standardized interaction hooks are CORBA
Portable Interceptors [9] and Interceptors in COM+. During the project, both approach-
es were evaluated for their applicability for platform management purposes.

3.1 CORBA Interceptors
Interceptors were introduced into CORBA to provide a way for security mechanisms to
interact with the ORB without the ORB having to be explicitly aware of the mecha-
nisms. Interceptors clearly have potential application in a number of other areas, in par-
ticular management of CORBA systems, and several ORB vendors have provided in-
terception mechanisms to increase the flexibility of their products. It turns out, that Port-
able Interceptors can be used to collect dynamic management information of a CORBA
runtime system and to verify if the system complies with the management policies.
However, interceptors in CORBA 2.2 are underspecified and not portable. The OMG
issued a Portable Interceptors RFP [9] for 'a portable definition of interceptors so that
system services and users may “plug into” ORB processing at particular points'. Due to
the unavailability of an adopted portable interceptors specification, we have developed
our own architectural model and a detailed specification, and contributed that to the
standardization process within the OMG [7].

Fig. 2. Platform Technology Mapping of Management Relevant Events

XM L Docum entXM L Docum ent

Identification of m anagement
relevant events
and categories

XM L Docum ent
Type Definition

XM L Docum ent
Type Definition

Systematization,
categorization

Instantiation

CORBA-IDL
Specification
CORBA-IDL
Specification

COM Events
Specification
COM Events
Specification

Platform
M apping

Middleware Platform Management Based on Portable Interceptors 111

Based on an abstract ORB processing model, intercepted actions or interactions
can be categorised into conceptual different abstraction levels, mainly object level in-
terceptors, request related interceptors (request level and message level interceptors)
and network level interceptors. For reasons of brevity, we present here only the con-
ceptual model and a number of design decisions we have taken, and not the whole
specification.

Object Lifetime Related Interception
We have identified the need to monitor and control the lifecycle of objects, proxies
and object adapters. These lifecycle states can be intercepted just before and/or just
after the lifecycle state changed, using an Object Adapter (OA) interceptor.

We focus here on the Portable Object Adapter (POA), since we do not consider
it worth the effort to also include the deprecated Basic Object Adapter. Information
that can be monitored or changed with an OA-interceptor includes the IOR template,
the name, the parent POA and the policies that will be used. In a POA context there
are four state changes for an object: creation, activation, deactivation and destruction.
Potentially each of these four can be intercepted just before and just after the state
change.

At the client side we identified a need to intercept the creation of a proxy. The
term proxy refers to the client side ORB internal representation of an object refer-
enced by an interoperable object reference (IOR). With a request interceptor it is pos-
sible to discover a connection between a client and a server as soon as it is actually
used (at the first request). A proxy interceptor however allows the discovery of a log-
ical connection between a client and a server before it is actually used, or even if it is
never used. Available information is the IOR that was used to create the proxy, and
the resulting object (i.e. proxy).

Request Related Interception
Request related interceptors are invoked during the ORBs processing of operation in-
vocations. During information modelling, we identified several interception points
and the information available at each point.

There are four interception points which directly correspond to activities of an
ORB or POA during the processing of a particular operation invocation:

• The client side ORB receives the operation invocation from a client co-located
to it. For this activity, we identified the corresponding interception point Cli-
entPreInvoke. The client side ORB communicates the operation invocation in
some form, corresponding to a particular interoperability protocol, to the target
object, using either a network connection or some local invocation paradigm,
if the target is in the same capsule.

• The target ORB receives the operation invocation and identifies a servant
which implements that operation. Before the servant is invoked, we identified
the corresponding interception point ServerPreInvoke.

• When the servant completes the processing of the requested operation, the
ORB at the target side gains the control of the invocation processing. At that
point, we identified the corresponding interception point ServerPostInvoke.

• The target side ORB communicates the reply for the requested operation back
to the client side ORB, which in turn receives that reply and hands it back to

112 Olaf Kath et al.

the client. Before the client receives the reply, we identified the corresponding in-
terception point ClientPostInvoke.

• During the processing of a particular request, at both client and target side ORBs,
system exceptions may be thrown. Because this can happen at any activity an
ORB processes, we identified the corresponding interception point SystemExcep-
tion.

Several other interception points may be of great interest at request level, for exam-
ple the ability to intercept the ORB's identification of a servant on the target side. To
define the semantics of this activity and to include this in the specification, is an item
for future work.

Network Related Interception
During the implicit binding for a non capsule-local interaction between a client and the
target object, an ORB actively establishes connections or accepts incoming connection
requests. Such network connection related activities include the choice of a transport
endpoint to listen on at the server side, the choice of a transport endpoint for connection
establishment and the actual connect procedure in the client ORB, the acceptance of an
incoming connection and connection closure, performed by either the client or server
side ORB.

Network level interceptors may be involved during such activities at five intercep-
tion points related to connection management activities:

• The PreAccept interception point relates to the choice of a transport endpoint to
listen for incoming connection requests at the server side,

• The PreConnect interception point relates to the choice of a transport endpoint for
connection establishment, just before the actual connection establishment, at the
client side - the object reference of the target object is known, which contains a
number of transport protocol specific profiles;

• The PostAccept interception point relates to the acceptance of an incoming con-
nection request at the server side - the selected and activated transport endpoint
for a particular network connection is known.

• The PostConnect interception point corresponds to the activities done by a client
side ORB just after successful or unsuccessful connection establishment - the se-
lected and activated transport endpoint for a particular network connection is
known.

• The Close interception point relates to activities to close a network connection,
performed at either a client or server side ORB.

The network connection interception concepts can be applied to connection orient-
ed networks. Although the use of TCP/IP in the CORBA world is common, more work
is needed to develop concepts for interception of network related activities for the usage
of connectionless network. One use of a connectionless network is already proposed by
the GIOP over SCCP mapping in [1][8], another one for GIOP over IP-M and UDP has
been presented in [3].

Management of Interceptors
Interceptors can access and modify information of object interactions, passed within the
ORB core. In this way, they work together with the ORB in a very tight manner. Nev-
ertheless they are entities, which should be distinguished clearly from the ORB core.

The lifetime of an interceptor seen from an information viewpoint is only correlated
with the ORB i.e. an interceptor cannot exist without the ORB it belongs to. During the

Middleware Platform Management Based on Portable Interceptors 113

lifetime of the ORB, new interceptors can be created and existing interceptors can be
deleted. Depending on the lifetime of an interceptor, the visibility of an interceptor
to the ORB could be defined such that a certain interceptor may or may not take part
in an invocation.

Interceptors are not assumed to inform the ORB of any modification they make
to the information they receive before or after an invocation. The ORB has to trust
an interceptor not to harm to the whole system in terms of security, functionality and
error recovery. Furthermore no standardization of interceptor functionality can be
done, so that ordering constraints on the invocation of different interceptors of the
same interceptor type have to be applied from another entity.

This leads to the idea of an interceptor registry, which is responsible for register-
ing and de-registering interceptors and for applying invocation constraints on the
registered interceptors. The interceptor registry is the only entity that controls which
interceptors to call during each invocation. In this role it has no knowledge about the
functionality of each interceptor in principle, but classifies each interceptor accord-
ing to the different interceptor types. Using this information, the interceptor registry
can instruct the ORB to call the appropriate interceptors at each stage of the invoca-
tion.

The classification of an interceptor is done upon registration by providing the ap-
propriate information about the nature of the interceptor. A registered interceptor is
then able to intercept subsequent invocations. The question of whether a registered
interceptor should be used in invocations or not is controlled by the interceptor reg-
istry on behalf of the application. No decisions are made by the interceptor registry
itself, since the only appropriate information about the interceptor it has, is the inter-
ceptor type.

For the same reason that the interceptor registry cannot decide for itself whether
to enable or disable a certain interceptor during invocations, it cannot make decisions
about the ordering of interceptors, i.e. which interceptor to call first and which to call
last during an invocation. Again this decision is up to the application, which must
have appropriate knowledge about the registered interceptors. The interceptor regis-
try assists the application through providing appropriate information about the cur-
rent invocation order of the registered interceptors and providing a mechanism for re-
ordering, but has no responsibility for defining the correct ordering of the intercep-
tors.

To correlate an incoming reply with a previous outgoing request, interceptors of-
ten need to store some information about certain invocations for later evaluation.
This requires some kind of cookie, which can be filled with information and can be
accessed by the interceptor. These cookies, held within the interceptor registry for
each registered interceptor, are created during the invocation phase of the interceptor
and are made available to the interceptor again during the response phase.

Computational Model
After completing the phase of defining interception points and their related informa-
tion, we developed a computational model for the interactions between the ORB
runtime system and interceptor objects as well as computational concepts for the
management of interceptors. The purpose of the computational model for intercep-
tors is to define the interfaces and operations which are provided by both the ORB
runtime system and the interceptors. Beyond that, the architectural model for inter-

114 Olaf Kath et al.

ceptor invocations, the related interceptor management concepts and instantiation se-
mantics are specified. A main goal was to ensure the portability of interceptor imple-
mentations across different ORB products.

More than one interceptor may be registered with an ORB for a particular intercep-
tion point at the same time. These registered interceptors are invoked during the ORB's
processing of an invocation.

We found three basic architectures for how an ORB may invoke interceptors:
• Daisy-chained invocation - The ORB calls the first interceptor, which in turn calls

the second directly or indirectly, and so on.
• Serial invocation - The ORB calls each interceptor at each interception point, and

the invoked interceptor returns control to the ORB before the ORB invokes the
next interceptor.

• Conditionally serialized - The ORB calls each interceptor serially, but may omit
an interceptor based on some constraint or condition.

A main advantage of daisy chained interceptor invocations is stacking of intercep-
tors. In daisy-chained invocations of interceptors, there is no need for the ORB to ex-
plicitly remember, which interceptor was invoked during the request processing and
should therefore be invoked again during reply processing. On the other hand, daisy-
chained interceptors require different request related operations to handle synchronous,
deferred synchronous and asynchronous requests. Moreover, an application of daisy-
chained interceptors together with time independent invocations in CORBA Messaging
[11] seems to require another set of operations to handle requests. Finally, a serial native
ORB architecture would have to jump through hoops to emulate a daisy-chained archi-
tecture.

Serialized interceptor invocations require explicit mechanisms within the ORB to
register which interceptors were called while request processing in order to invoke
those interceptors again during reply processing in reverse order. On the other hand, this
more complex ORB behaviour will be compensated by a number of advantages. First,
a serial architecture for portable interceptors can be implemented over a wider variety
of existing ORB implementations. A serial architecture is less sensitive to the various
types of invocations that may be made in a CORBA client, including those invocation
types supported by CORBA Messaging. Due to the mentioned advantages of serialized
interceptor invocations and with respect to ease of implementation using existing ORB
sources and the proprietary filter technologies of some ORB products, we decided to
base all interceptor specifications on the serialized approach.

Another design consideration regards the number of interceptor local objects in-
volved in the processing of a request or reply at an interception point. Each interceptor
local object fulfils a particular functionality, e.g. an interceptor local object that imple-
ments a transaction service, or another that supports a certain management task. The
question now is, whether such an interceptor local object should be instantiated each
time that interception point is reached. Interceptor instantiation can be managed in two
ways. An interceptor instance is created for each interception processing, e.g. an in-
stance creation for each request/reply or an interceptor instance is created once and will
be activated for each interception processing, e.g. for each request/reply. The first ap-
proach is more flexible, but requires extensive management capabilities as well as
standardized factory interfaces for interceptors. The second approach is not as flexible
but doesn't require such extensive management capabilities as the dynamic one.

Another criterion for interceptor processing is whether an interceptor may affect the
ORB's behaviour with respect to a certain invocation processing or not. If an interceptor

Middleware Platform Management Based on Portable Interceptors 115

is not allowed to change the way an ORB controls the request processing, this inter-
ceptor can only be applied to monitoring tasks. If an interceptor affects the ORB's in-
teraction processing, this may be done in several ways. A request related interceptor
may change parameters of a request or reply message, but not the control flow with
respect to the handled interaction. Changed request or reply parameters may or may
not include changes to the service context of an interaction. A request related inter-
ceptor may change the control flow of an ORB regarding a particular interaction.
This means for example, that a request related interceptor registered at the client side
with respect to a certain object may produce a reply for a given request and send this
reply back to the client directly. A network level interceptor may or may not send a
given byte stream by itself, i.e. the interceptor instead of the ORB core sends the byte
stream through a network API.

To identify to what extent an interceptor influences the ORB's behaviour with re-
spect to a certain interaction processing, we defined capability sets for interceptors
support within a particular CORBA runtime environment. These capability sets in-
clude

• Monitoring capability - an interceptor is only able to monitor the ORB's
processing of a certain interaction,

• Parameter changing capability - an interceptor is able to change parameters of
a certain interaction, like operation request parameters or service contexts,

• Control flow changing capability - an interceptor is able to change the ORBs
normal control flow while processing a certain interaction.

3.2 COM/DCOM Interception Mechanisms
The architectural layering of COM is different from CORBA, and the interlocking of
the COM runtime system with the Windows system is very tight. For this reason, it
is very difficult to extract information from a (D)COM method invocation in an uni-
form way.

The extraction of method call information can be done on the component side us-
ing a message filter. A message filter is a component that exposes the interface IM-
essageFilter. Through this interface, the COM runtime system tells about in-
coming calls to components. The method that will be called in this case, is:

DWORD HandleInComingCall (
[in] DWORD dwCallType,
[in] HTASK htaskCaller,
[in] DWORD dwTickCount,
[in] LPINTERFACEINFO lpInterfaceInfo
);

A message filter component can extract the interface identifier from the iid pa-
rameter, and the method number. The method number is actually the offset of the
called method in the virtual function table of the object inside the component imple-
menting the called interface. On this point at least the interface and the invoked meth-
od can be extracted. In contrast to CORBA there is no easy way to extract the method
name or method parameters for management purposes.

This could be overcome with COM+, the successor to (D)COM. COM+ (version
1.0) introduces interceptors for attaching standard services (e.g. MTS) to compo-
nents. Microsoft promises for future version of COM+ the introduction of user-de-

116 Olaf Kath et al.

fined interceptors. It is supposed that these user-defined interceptors can play a similar
crucial role in management, like interceptors in CORBA.

4 Management Service for CORBA Based Middleware Platforms
The Portable Interceptors framework, as the base for management information collec-
tion and management policy verification, was implemented during the project in order
to verify its applicability for management purposes. In general, the interceptors speci-
fication was used for interactions between the specific management interceptor imple-
mentations and the ORB core, while the management interceptors interact with the en-
vironment using specific management channels (see Figure 3).

In more detail, a management specific interceptor object interacts with the ORB in
a portable way to obtain object interaction information as well as to set and verify cer-
tain management policies. On the other hand, such interceptors interact with manage-
ment channels to notify management-relevant events which occur during an ORB's ob-
ject interaction processing. Furthermore, management interceptors receive manage-
ment policies from such management channels. In that sense, management interceptors
are context specific software components that interact with the platform core compo-
nents in a portable, product independent manner.

The implementation of the portable interceptors framework focused on commer-
cially available ORB products, we chose to use Inprise' VisiBroker, IONA's OrbixWeb
and OOC's ORBacus. For these products, different implementation strategies were ap-
plied. While for VisiBroker and OrbixWeb, the product specific proprietary filtering
mechanisms were wrapped in order to comply with the specification, for the ORBacus,
the available source code was extended in order to support the interception of object in-
teraction events presented above. Our management interceptors can be plugged into the
interceptor framework implementation for each product in a portable way.

Management interceptors interact on one side with platform core components, like
Object Request Brokers. On the other side, they communicate management-related no-
tifications to management applications and receive management policies from those.
For that purpose, the document type definition for management-related events and pol-
icies is mapped to CORBA specific constructs for transmission purposes. To achieve
this, we defined a generic mapping between XML DTD constructs and constructs of the
Interface Definition Language (IDL) of CORBA. This mapping in general uses IDL
valuetypes as target constructs for XML elements. Attributes of elements are
mapped to members of their representing valuetypes. This language mapping was ap-

Fig. 3. Management Interceptors Connected to the ORB and Management Channels

Capsule

ORB

POA POA
POA

Application
Object

Application
Object

Application
Object

Management
Request

Interceptor

Management
Object

Interceptor

Management
Network

Interceptor

ORB
Interface

Portable
Interceptors
Specification

Management
Channel

Middleware Platform Management Based on Portable Interceptors 117

plied to both the management-relevant events specification and the management pol-
icies definition, resulting in IDL definitions that represent the XML specification.
These IDL definitions are used as communication elements between a management
interceptor and management applications via management channels. Management
channels are realized using the Notification service adopted by OMG [12]. Each con-
ceptual management channel maps to a notification channel within a CORBA plat-
form. The complete picture of how a management interceptor collects management
information is depicted in Figure 4.

If for instance an ORB receives a system exception as result of a operation invo-
cation by an application object, it first verifies, whether an interceptor is registered
for the SystemException interception point. If so, then the registered interceptor is
notified on the happened system exception. The management interceptor in turn cre-
ates a IDL construct, that represent the according management event and sends that
event through a notification channel to a management application. The application
object, that originally invoked the operation that resulted in the system exception, re-
ceives that exception as usual.

If on the other hand a management policy is received by the management inter-
ceptor, it uses the standard ORB interface to override policies for the current thread
of invocation. The mapping between management policies arriving through the man-
agement channel and those policies that can be set at the ORB is currently imple-
mented as known by the interceptor object.

5 Conclusions and Further Work
Management services for middleware platforms must be provided with hooks within
the core platform components so that basic object interaction processing can be mon-
itored and controlled. “Management transparency” is an extremely desirable feature
of heterogeneous systems - it should be possible to achieve end-to-end management
in a distributed system which is built using a range of different middleware products
and technologies. The use of Interceptors in CORBA and COM+, as described in this
paper, offers the prospect of being able to “break out” of a specific middleware tech-
nology when required, which is an essential capability if portable management serv-
ices are to be realized. In addition, some degree of standardization in the mechanisms
for extracting relevant state information (i.e. Events) and inserting control informa-
tion (i.e. Policies) is required. The correspondence or relationships between the idi-

Fig. 4. Collection of Management Information

ORB

Management
Interceptor

Notification
Channel

Application
Object

Reception of
system exception

notify interceptor
on system
exception

Send
management

event on system
exception

create
management

event according
to language mapping

definitions

throw
system

exception

118 Olaf Kath et al.

oms used in particular technology domains must be established where it is necessary to
exchange management information between domains.

It is not envisaged that all middleware management will be restricted to some com-
mon subset of concepts applicable to all platforms. In other words, not all management
services will be portable. Particular products are likely to offer management function-
ality that is product-specific. Equally, families of products (e.g. CORBA ORBs) are
likely to have some management functionality in common. Beyond this, there will be a
core of management information which is applicable across technologies. In addition a
neutral reference representation and syntax must be chosen. XML seems to be a suitable
choice for a standard representation. It is flexible enough to represent a very wide range
of structured information, has a strict enough syntax to allow automated processing and
has broad industry acceptance. Standard document types will be required to define the
structure of management information but the text-based nature of XML documents and
their straightforward structure makes automated transformation realistic.

There are several open issues, not addressed in this paper. These include techniques
and concepts to support the correlation of multiple management events in heterogene-
ous distributed systems. In addition, while the concepts seem to provide many attractive
features for introducing management functionality into heterogeneous middleware sys-
tems, the performance implications of specific implementations, based on CORBA
Portable Interceptors or on COM+ interceptors need to be assessed.

References
[1] Fischbeck, Kath: CORBA Interworking over SS7, in Proc. of ISN'99
[2] Fischbeck, Holz, Kath, Vogel: Flexible Support of ORB Interoperability, in Proc. of Inter-

working ´98
[3] Halteren, Noutash, Nieuwenhuis, Wegdam: Extending CORBA with specialised Protocols

for QoS Provisioning, in Proc. of DOA'99
[4] W3C Rec.: Extensible Markup Language V. 1.0
[5] ITU Rec. X.901-X.904: Reference Model for Open Distributed Processing, ITU-T '95
[6] OMG: The Common Object Request Broker Architecture: Architecture and Specification,

Revision 2.3, OMG docs. formal/99-07-01 to formal/99-07-28
[7] Expersoft et.al.: Portable Interceptors Joint Initial Submission; OMG doc. orbos/99-04-10
[8] AT&T et.al.: Interworking Between CORBA and TC Systems, OMG doc telecom/98-10-03
[9] OMG: Portable Interceptors Request for Proposals, OMG doc. orbos/98-09-11
[10] BEA Systems et al: Portable Interceptors, OMG doc. orbos/99-12-02
[11] OMG: CORBA Messaging, OMG doc. ptc/00-02-05
[12] OMG: Notification Service Specification, OMG doc. telecom/98-11-01

	1 Introduction
	2 Middleware Management Concepts
	3 Plug-In Management Services into the Middleware Core
	4 Management Service for CORBA Based Middleware Platforms
	5 Conclusions and Further Work
	References

