
Achieving adaptability through separation and composition of concerns 1

Achieving adaptability through separation and
composition of concerns

Mehmet Aksit, Bedir Tekinerdogan, Lodewijk Bergmans
TRESE Project, Department of Computer Science, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands.
email: { aksit | bedir | bergmans }@cs.utwente.nl
www server: http://wwwtrese.cs.utwente.nl

Abstract

This paper discusses separation and composition of concerns as a means for
improving adaptability of object-oriented programs. Separation of concerns
results in a weak coupling of the concerns and as such satisfies the need for
increased flexibility and reusability. We will illustrate the separation of
concerns mechanism for the conventional object model and set out the
requirements for an enhanced and adaptable object model. We propose the
composition filters model as a framework for language extensions. The
composition filters model separates the basic application code from the more
special purpose concerns such as synchronization, real-time constraints and
multiple views. Its applicability to solving various modeling problems is
briefly illustrated.

1 Separation and composition of concerns

Large scale and complex software systems have to incorporate and deal with a
variety of special computing concerns such as synchronization, real-time behavior
and coordinated behavior. Separating these concerns both at the conceptual and the
implementation level is generally considered important to manage complexity and
increase the adaptability [31][12]. In the (conventional) object-oriented (OO) model
[36], the separation of concerns principle is supported basically in three ways:

1. By defining objects as the models of the real-world concepts, which are
"naturally" separated from each other;

2. By separating the concerns of providing an abstract object interface and the
implementation of it; and

3. By grouping functions together around objects so that functions which are less
related are structurally separated from each other.

To be able to construct complex software systems, the separated concerns must be
put together using minimum effort. The OO model provide various ways in
composing concerns together:

2 Mehmet Aksit, Bedir Tekinerdogan, Lodewijk Bergmans

1. In the implementation part of an object, the structure and the behavior of the
nested implementation objects can be composed under the definition of the
encapsulating object;

2. Both inheritance and delegation mechanisms define composition of
behavior. For example, in inheritance, the operations defined within a sub-
class is composed with the operations of its super-class(es);

3. By defining a set-of protocols among cooperating objects, the software
engineer may create more complex system structures provided that each
component (or object) fulfil the protocol specification.

2 Application Domain Concerns

Application domains may define additional concerns. Consider for example, an
electronic mail object. This object provides operations for defining the sender,
receiver and the content of the mail. In addition, various operations are defined to
approve and deliver the mail to its destination. An important requirement here is that
only the "system objects" are allowed to invoke the approve and deliver operations.
In addition to the previously mentioned concerns, a mail object has therefore an
additional concern: "multiple-views". Each mail object has a user-view and a
system-view that restrict the operations of the mail object with respect to the clients
of the mail object.

To implement the mail object, each concern must be mapped to an OO concept.
For example, views can be implemented as operations. The operation approve, for
instance, can be executed if the operation checkSystemView returns True. This
implementation, however, blurs the separation of the multiple-views concern
because the views are then realized within the operations of objects.

The problem appears if we want to extend/modify the mail object. For example,
we may further partition the user view as sender and receiver views. We may extend
the sender and receiver views to group-sender and group-receiver views. We may
like to give a warning message if the same operation is invoked for the same mail
object twice. In almost all these cases, the OO model cannot express these
extensions without redefining the previously defined mail object. This is because the
mail object cannot implement multiple-views on objects as a separate and
composable concern.

Obviously, there can be many other concerns. For example, various
synchronization constraints can be defined for the mail object. A request for send,
for instance, can be delayed if the sender, receiver and the mail content have not
been defined yet. Other possible concerns are for example, addressing the history
information, evolution of behavior, coordinated behavior, security and reliability
measures, real-time behavior, distribution aspects, etc. Since, the OO model may not
separate these concerns adequately, the resulting programs are likely to be less
adaptable and reusable. Several publications identified the composability problems

Achieving adaptability through separation and composition of concerns 3

for certain concerns such as atomic transactions [17], synchronization [27] and real-
time specifications [6].

The proposed design patterns in [14] cannot solve these problems adequately
because the composability features of the patterns are defined by the capabilities of
the conventional OO model.

3 Extensions to the Object Model

One may define a composable model for a particular concern by identifying the
orthogonal components and the composition operators for that concern. For
example, the multiple view problem can be modeled by representing views as
explicit concepts and by defining accept functions between views and the operations
of the mail object. These additional concepts and operators have to be integrated
with the OO model. This can be realized basically in two ways:

1. Using special language constructs: Many research proposals introduce new
language constructs and/or computation models to tackle a given problem.
For example, [21], [34], [18] and [23] introduce language constructs to
model synchronization, real-time, coordinated bahavior and multiple-views
concerns, respectively. The introduced language constructs must be
uniformly integrated with the composability features of the underlying
object model. Otherwise, the resulting programs cannot be fully
composable. In most publications, expressiveness is the major concern and
the proposed language constructs are hardly composable.

2. Meta-level programming: Meta-level programming can be used to solve
specific concerns at a meta-level. Reflection techniques can be used to keep
different levels consistent with each other. For example, views and accept
functions can be defined at a meta-level without modifying the basic
structure of the mail object. A number of papers presented meta-level
solutions for various problems, such as distributed architectures [28], atomic
transactions [32], concurrent programming [20], operating system
structuring [37] and compiler design [25].The challenge here is to define
reflection techniques which supports, in addition to the basic OO concerns, a
large number of possible application defined concerns in a composable
manner. Most research activities in this area do not address the
composability issues of the proposed meta-level concerns.

Apart from our work, recently, a number of publications have appeared to address
the composability problems in object-oriented modeling [30][29][13][19]. Recently,
the concept of aspect-oriented programming (AOP) has been introduced which
focuses on a basic categorization of concerns [22]. Aspect-Oriented Programming
enables programmers to first express each of a system’s aspects of concern in a

4 Mehmet Aksit, Bedir Tekinerdogan, Lodewijk Bergmans

separate and natural form, and then automatically combine those separate
descriptions into a final executable form using a tool called an Aspect Weaver™.

We have extended the conventional OO model with the concept of composition
filters (Cfs). We formalize four objectives that should be fulfilled when making
extensions to a language model:

1. The language model must be rich enough to express major concerns such as
synchronization, real-time specifications, control flow specifications,
etcetera.

2. The adopted language mechanisms must be uniformly integrated with the
conventional object model.

3. It must be possible to freely combine several independent concerns into a
single object, whenever this combination is semantically meaningful.

4. Objects that are extended with the new concerns must be adaptable,
extensible and reusable without causing inheritance anomalies.

The composition filters model is based on the following assumptions:
• The object-oriented model as defined by current methods and languages has

many useful features and therefore it must be kept as an abstraction
mechanism.

• To solve the modeling problems for different concerns, the object model
must be enhanced.

• Since more than one problem can be experienced for the same object,
enhancements must be specified independent from each other;

• Extensions have to be specified at the interface of objects, preferably in a
consistent and declarative manner.

The composition-filters object model provides a mechanism for adding an open-
ended range of concerns to object models without violating their basic mechanisms.
Furthermore, it allows for independent specification of these concerns and the
composability of objects. The composition filters approach can be seen as a
specialization of the before mentioned AOP.

In the following sections we will give an overview of the composition filters
model and the integration of composition filters with the conventional object model.

4 An overview of the composition-filters model

The composition filters model is a modular extension to the conventional object
model as adopted e.g. by Smalltalk and C++. The behavior of a conventional object
can be modified and enhanced through the manipulation of incoming and outgoing
messages only. To achieve this, the kernel object is surrounded by a layer called the
interface part. The resulting model and its components are shown in Figure 1.

The most significant components in the CF model are the input filters and output
filters. A single filter specifies a particular manipulation of messages. Various filter
types are available. The filters together compose the behavior of the object, possibly

Achieving adaptability through separation and composition of concerns 5

in terms of other objects. These other objects can be either internal objects or
external objects. Internal objects are encapsulated within the composition filter
object whereas external objects remain outside the composition filters object, such
as globals or shared objects. The behavior of the object is a composition of the
behavior of its internal and external objects.

In addition, –part of– the behavior of the object will be implemented by the
kernel object, which is therefore also referred to as the implementation part. On the
interface of the kernel object appear two types of methods: normal methods and
condition methods. The normal methods may be invoked through messages, if the
filters of the object allow this. Condition methods are essentially Boolean
expressions that provide information about the state of the object. The condition
methods are used by the filters to decide how to manipulate messages. As an
example, a specific filter may reject messages, based on their properties or based on
the state of the object.

Figure 1. The components of the composition-filters model.

4.1 The principle of message filtering

We will explain the basic mechanism of message filtering by composition filters
with the aid of Figure 2. The discussion focuses on input filters, but output filters
work in exactly the same manner. The main difference is that output filters deal with
sent messages instead of received messages.

To understand the schema the following should be kept in mind: filters are
defined in an ordered set. A message that is received by an object is first reified, i.e.

6 Mehmet Aksit, Bedir Tekinerdogan, Lodewijk Bergmans

a first-class representation of the message is created1. The reified message has to
pass the filters in the set, until it is discarded or can be dispatched. Dispatching
means that the message is activated again, for example to start the execution of a
method body, or to be delegated to another object. Each filter can either accept or
reject a message. The semantics associated with acceptance or rejection depend on
the type of the filter.

Figure 2. An intuitive schema of message filtering.

Figure 2 visualizes the processing of messages by three filters, A, B and C. An object
can receive a variety of messages, in the figure exemplified by m(), n(), o() and p().
All received messages are subject to manipulation by the successive filters.
Different types of filter exist for different manipulations on messages. Each filter
tries to match messages based on a specific pattern. A common syntax is used by all
filters for defining these patterns. The matching process can be defined in terms of
message properties, but may also depend on the current state of the object.

We follow the message m() as it passes through the filters. In Figure 2, message
m() does not match with the pattern defined by filter (A). Thus, the message is
rejected by this filter. In the example, the rejected message is simply passed on to
the next filter.

The message will then be evaluated by filter (B). The pattern that is defined by
this filter matches with the message. This is referred to as acceptance of the message
by the filter. This initiates a particular action, that depends on the filter type: the
message may be manipulated and modified. In the example of filter (B), the message
is modified (designated in the figure by its changed shape and color), and then
passed on to the next filter.

For the last filter in the example, filter (C), the pattern also matches the message.
The acceptance of the message in this case causes the message to be dispatched, for

1 Composition filters thus apply a form of message reflection.

Achieving adaptability through separation and composition of concerns 7

example to a local method of the object. The message itself contains information
that determines how it should be dispatched (i.e. the target object and the message
selector).

In general, every filter set should contain a filter that causes messages to be
dispatched, as this is the only means to trigger the execution of a method. For output
filters, dispatching means that the message is submitted to the target object. Note
that upon its reception by the target object, the message must first pass the input
filters of the target object.

In summary, each filter specification consists of a pattern definition and a filter
type. Messages are matched against the pattern, then the filter type determines the
action to be performed upon acceptance, respectively rejection. For a more detailed
description of the composition filters model, we refer to [9], [24], or various other
papers that each discuss a specific application of composition filters1.

5 Solving modeling problems with filters

In order to provide a clear motivation for adopting composition filters, in this
section we briefly describe a number of modeling problems which have been
experienced in several practical pilot projects [4]. For each of these modeling
problems, we outline the solution that can be provided by adding one or more filters
to a kernel object.

5.1 Multiple views

Not all operations provided by an object should be accessible to each object that
uses its services. Therefore it is desirable to define interfaces for an object that
differentiate between clients, that is, between the senders of a message. For
example, a public mailbox should make a distinction between a postman and others,
since everybody is allowed to put a letter in it, but only a postman is allowed to
empty the mailbox. Interfaces may also change depending on the internal state of the
object; for example, the mailbox cannot be opened –not even by the postman– while
it is locked.

We have coined the term multiple views in [3] to designate this problem. In a
conventional object-oriented language such as Smalltalk, multiple views can only be
realized by inserting explicit checks in all the methods of an object. The resulting
mixing of concerns causes problems when trying to reuse and extend objects with
multiple views.

An Error filter allows for ‘preconditions’ on messages, based on both the
properties of the message (such as the identity of the sender) and the state of the
object. Views are defined by condition methods, and the Error filter defines the

1 At http://wwwtrese.cs.utwente.nl/~sina/ a tutorial on the composition filters model as adopted by

the programming language Sina can be found.

8 Mehmet Aksit, Bedir Tekinerdogan, Lodewijk Bergmans

mapping from the views to sets of messages. Several views can be combined or
added later in subclasses.

5.2 Dynamic inheritance and delegation

Dynamic inheritance or delegation means that the inheritance hierarchy (delegation
structure) is not fixed, but that an object can specify a set of superclasses (delegated
objects) from which it may possibly inherit (delegate to) [3]. Dynamic inheritance or
delegation can be needed if an application must be able to adapt its behavior due to:
performance reasons or space requirements, different clients or contexts, or even to
different hardware, as for example in distributed systems.

By attaching a Dispatch filter to an object we can provide dynamic inheritance
and/or delegation. The Dispatch filter will forward received messages to different
target objects, depending on results of condition methods. If the target object is
encapsulated within the object itself, inheritance is simulated [1]. If the target object
resides outside the encapsulation boundary of the receiver object, this becomes a
delegation mechanism. Since the Dispatch filter can forward messages to different
objects, multiple inheritance and delegation is supported as well. The self
pseudovariable is retained as it is always the original receiver of the message.

Condition methods capture the state of an object, which may change at run-time.
The results of condition methods also affect the dispatching process, and thus
inheritance and delegation may change dynamically.

5.3 Coordinated behavior

Coordinated behavior can be encountered for example in distributed control
systems, in which several distinct units, such as controlling algorithms, sensors and
actuators, must work together in order to keep the controlled system in a consistent
state.

The conventional object-oriented models do not provide high-level mechanisms
to abstract coordinated behavior among several objects since the message passing
semantics only involve two partner objects and the message communication is
invisible at the application level. To implement coordinated behavior, the
coordination-related application code must be spread over several objects which
means that the application becomes more complex, less reusable, while its
interaction semantics are more difficult to understand, verify and enforce.

The coordinated behavior problem [5] can be solved by attaching a Meta filter to
the kernel object. A Meta filter captures incoming messages and forwards them as
first class objects to a so-called abstract communication object which implements
the coordinated behavior. The abstract communication object can be shared by any
number of objects to coordinate and manipulate their communication. An important
characteristic of this approach is that it allows for defining and reusing hierarchies of
abstract communication objects.

Achieving adaptability through separation and composition of concerns 9

5.4 Reuse versus synchronization constraints

In the previous sections we already introduced the problem of inheritance
anomalies, which frequently occurs when adding synchronization constraints to
objects. This problem may occur for instance when synchronization code is mixed
with application code (i.e. embedded inside the method code). Then changing the
synchronization is impossible without affecting the application code. Another source
for inheritance anomalies comes from the lack of decomposability of
synchronization specifications in some languages. It is then hard to add a new
synchronization constraint, or to partly reuse or redefine the synchronization
specification in a subclass.

We can use a Wait filter to specify synchronization constraints while avoiding
inheritance anomalies [10]. The synchronization constraint condition is then
specified by condition methods as an abstraction of the state of the object. A Wait
filter defines a mapping from these conditions to the messages to which the
synchronization constraint applies. Reuse and extension of (objects with)
synchronization is possible, without unnecessary redefinitions.

5.5 Reuse versus real-time constraints

In real-time environments, at least some of the classes in the system impose real-
time constraints upon the execution of methods. When such classes are reused in
other applications, changes to either the application requirements or to the real-time
constraint specifications in subclasses may result in excessive redefinitions of
superclasses whereas this would be intuitively unnecessary. This so called real-time
specification anomaly can arise when real-time specifications are mixed with the
application code, or when specifications are not polymorphic, i.e. they cannot be
used for more than one method, or when independently defined but related
specifications are composed together.

A RealTime filter [6] can define or modify deadlines as well as other scheduling
attributes of an execution. This is achieved by letting messages carry scheduling
attributes1. At the interface of objects, RealTime filters can modify these attributes
for selected messages and under selected circumstances (as controlled by condition
methods). The filters specify a mapping from the real-time constraints to sets of
messages. The resulting decoupling ensures that the real-time specification anomaly
will not occur.

6 Discussion and Conclusions

1 At least conceptually; another view would be that the scheduling attributes are associated with

threads.

10 Mehmet Aksit, Bedir Tekinerdogan, Lodewijk Bergmans

Although the conventional object model as adopted by object-oriented languages
like Smalltalk and C++ have widely shown their benefits in building reusable and
extensible software it still suffers from a variety of modeling problems. The
separation of concerns principle has been identified as a useful mechanism to
provide solutions for these problems. The benefits of the separation of concerns
principle are better management of complexity, better understandability and
increased adaptability. Since the object model may not separate the different
application concerns adequately, the resulting programs are likely to be less
adaptable and reusable.

The composition filters (CFs) has been proposed as a modular and orthogonal
extension to the conventional object model to cope with the modeling problems in
an elegant way and to provide the necessary adaptability of the programs. CFs can
be attached to objects expressed in different languages [16][11]; the conventional
OO model can be used to implement the basic concepts and each additional concern
can be expressed as a CF.

Since different types of CFs show a similar structure, we have been investigating
more primitive compositional structures than the ones provided by the CF model.
We modeled the currently defined CFs using so-called message manipulators [33].
Message manipulators define logical operators for the received (and sent) messages
to (or from) an object. These operators are for example, AND, Conditional-AND,
OR, Conditional-OR, and Sequential manipulators. Each manipulator can be further
decomposed by using sub-manipulators, etc. A "terminal manipulator" is composed
of a constraint checker and accept and reject handlers. Constraint checkers are
applied to messages. The accept and reject handlers are first class objects and
represent the semantics of different concerns. Our conclusion here is that defining
logical message composition operators with extensible semantics is a promising way
for composing separated concerns together.

We believe that the concept of composition of different concerns must be also
applied during the software development process. Propagation Patterns [26], for
example, separate the concern of defining algorithms and class structures from each
other. During software development, the so-called software artifacts are generated in
various formats, from informal textual information to executable object-oriented
programming concepts. Composability of design models require explicit
representation of software artifacts in a composable way. In our recent work [8], we
have applied fuzzy-logic based techniques to represent and compose various
software artifacts. In contrast to deterministic object-level compositions, we found
the fuzzy-logic based reasoning techniques more appropriate for representing design
level concerns because fuzzy-logic can deal with design uncertainties.

The so-called software architecture definition languages (ADLs) [15] are used to
model and structure higher-level design concepts. Most architecture definition
languages, however, do not adequately address the issue of evolution and
composition of different architectural concepts [12]. In this direction, we are

Achieving adaptability through separation and composition of concerns 11

currently defining an ADL based on the concept of composition of specializations of
knowledge domains [7].

References

1. Aksit, M & Tripathi, A: Data Abstraction Mechanisms in Sina/ST, Proc. of the OOPSLA ’88

Conference, ACM SIGPLAN Notices, Vol. 23, No. 11, November 1988, pp. 265-275.

2. Aksit, M., Dijkstra, J.W., & Tripathi, A: Atomic Delegation: Object-oriented Transactions, IEEE

Software, Vol. 8, No. 2, March 1991, pp 84-92.

3. Aksit, M. & Bergmans, L: Obstacles in Object-Oriented Software Development, Proceedings

OOPSLA ’92, ACM SIGPLAN Notices, Vol. 27, No. 10, October 1992, pp. 341-358

4. Aksit, M., Bergmans, L., & Vural, S: An Object-Oriented Language-Database Integration Model: The

Composition-Filters Approach, Proc. of the ECOOP ’92 Conference, LNCS 615, Springer-Verlag,

1992, pp. 372-395.

5. Aksit, M., Wakita, K., Bosch, J., Bergmans, L., & Yonezawa, A: Abstracting Object-Interactions

Using Composition-Filters, In Object-based Distributed Processing, R. Guerraoui, O. Nierstrasz and

M. Riveill (eds), LNCS 791, Springer-Verlag, 1993, pp 152-184.

6. Aksit, M., Bosch, J., Sterren, W. v.d., & Bergmans, L: Real-Time Specification Inheritance

Anomalies and Real-Time Filters, Proc of the ECOOP ’94 Conference, LNCS 821, Springer Verlag,

July 1994, pp. 386-407.

7. Aksit, M., Marcelloni, F., Tekinerdogan, B., Vuijst, C., & Bergmans, L.: Designing Software

Architectures as a Specializations of Knowledge Domains, University of Twente, Memoranda

Informatica 95-44, December 1995.

8. Aksit, M., & Marcelloni, F: Minimizing Quantization Error and Contextual Bias Problems of Object-

Oriented Methods by Applying Fuzzy-Logic Techniques, University of Twente, 1996.

9. Bergmans, L: Composing Concurrent Objects, Ph.D. thesis, University of Twente, The Netherlands,

1994.

10. Bergmans, L. & Aksit, M:Composing Synchronization and Real-Time Constraints, Journal of Parallel

and Distributed Computing , No. 36, June 1996, pp. 32-52.

11. Dijk, W van., & Mordhorst, J: CFIST, Composition Filters in Smalltalk, Graduation Report, HIO

Enschede, The Netherlands, May 1995.

12. Dijksta, E. W: The Structure of the T.H.E. Multiprogramming System, Communications of the

ACM, No. 11, pp. 341-346, 1968

13. Forman, I., Danforth, S., & Madduri, H: Composition of Before/After Metaclasses in SOM, Proc. of

the OOPSLA ’94 Conference, ACM SIGPLAN Notices, Vol. 29, No. 10, October 1994, pp. 427-439.

14. Gamma, E., Helm, R., Johnson, R., & Vlissides, J: Design patterns: Elements of Reusable Object-

Oriented Software, Addison-Wesley, 1995.

15. Garlan, D., Allen, R., & Ockerbloom, R: Architectural Mismatch or, Why it’s Hard to Build Systems

out Existing Parts, Proc. of the 17th. Int. Conf. on Software Engineering, April 1995.

16. Glandrup, M: Extending C++ Using the Concepts of Composition Filters, M.Sc. Thesis, University of

Twente, November 1995.

17. Guerraoui, R: Atomic Object Composition. Proc of the ECOOP ’94 Conference, Springer-Verlag,

1994, pp. 118-138.

18. Holland, I: Specifying Reusable Components Using Contracts, Proc. of the ECOOP ’92 Conference,

LNCS 615, Springer-Verlag, 1992, pp. 287-308.

19. Hürsch, W., & Lopes, C: Separation of Concerns, Northeastern University, February 1995.

12 Mehmet Aksit, Bedir Tekinerdogan, Lodewijk Bergmans

20. Ichisugi, Y., Matsuoka, S., & Yonezawa, A: A Reflective Object-Oriented Concurrent Language

Without a Run-Time Kernel, Int. Workshop on New Models for Software Architecture’92, Reflection

and meta-Level Architecture, Yonezawa & Smith (eds), November 1992, pp. 24-35.

21. Kafura, D.G., & Lee, K.H: ACT++: Building a Concurrent C++ with Actors, J. of Object-Oriented

Programming May/June 1990, Vol. 3, No. 1, pp. 25-37.

22. Kiczales, G., Irwin, J., Lamping, J., Loingtier, J., Lopes, C,V., Maeda, C., Mendhekar, A : Aspect

Oriented Programming, in: Max Muehlhaeuser (general editor) et al.: Special Issues in Object-

Oriented Programming dpunkt Heidelberg, 1996.

23. Kiessling, H., & Kruger, U: Sharing Properties in a Uniform Object Space. Proc. of the ECOOP’95

Conference, LNCS 952, Springer Verlag, 1995, pp. 424-448.

24. Koopmans, P: On the Definition and Implementation of the Sina/st Language, M.Sc. Thesis,

University of Twente, The Netherlands, July 1995

25. Lamping, J., Kiczales, G., Rodriguez, L., & Ruf, E: An Architecture for an Open Compiler, Int.

Workshop on New Models for Software Architecture’92, Reflection and meta-Level Architecture,

Yonezawa & Smith (eds), November 1992, pp. 95-106.

26. Lieberherr, K: Adaptive Object-Oriented Software the Demeter Method with Propagation Patterns.,

PWS Publishing Company, 1995.

27. Matsuoka, S., & Yonezawa, A: Inheritance Anomaly in Object-Oriented Concurrent Programming

Languages, in Research Directions in Concurrent Object-Oriented Programming, (eds.) G. Agha, P.

Wegner and A. Yonezawa, MIT Press, April 1993, pp. 107-150.

28. McAffer, J: Meta-level Programming in CodA, Proc. of the ECOOP’95 Conference, LNCS 952,

Springer Verlag, 1995, pp. 190-214.

29. Mullet, P., Malenfant, J., & Cointe, P:Towards a Methology for Explicit Composition of

MetaObjects, OOPSLA’95 Conference Proceedings, ACM Sigplan Notices, Vol. 30, No. 10, October

1995, pp. 316-330.

30. Nierstrasz, O., & Tsichritzis, D (eds): Object-Oriented Software Composition, Prentice Hall, 1995.

31. Parnas, D.L: On the criteria to be used in decomposing systems into modules, Communications of the

ACM 15, 12, 1972, pp. 1053-1058.

32. Stroud, R., & Wu, Z: Using Metaobject Protocols to Implement Atomic Data Types, Proc. of the

ECOOP’95 Conference, LNCS 952, Springer Verlag, 1995, pp. 168-189.

33. Stuurman, C: Techniques for Defining Composition-Filters Using Message Manipulators, M.Sc.

Thesis, University of Twente, August 1995.

34. Takashio, K., & Tokoro, M: DROL: An Object-Oriented Programming Language for Distributed

Real-Time Systems, Proc of the OOPSLA ’92 Conference, ACM SIGPLAN Notices, Vol. 27, No. 10,

October 1992, pp. 276-294.

35. Vestal, S: A Cursory Overview and Comparision of Four Architecture Description Languages,

Honeywell Technology Center, Minneapolis, February 1993.

36. Wegner, P: Dimensions of Object-Based Language Design, Proceedings OOPSLA ’87, ACM

SIGPLAN Notices, Vol. 22, No. 12, December 1987, pp. 168-182

37. Yokote, Y: The Apertos Reflective Operating System: The concept and its Implementation, Proc of

the OOPSLA’92 Conference, ACM SIGPLAN Notices, Vol. 27, No. 10, October 1992, pp. 414-434.

