
Channel communication and Reconfigurable
Hardware

Martinus Bos, Paul J.M. Havinga, Gerard J.M. Smit
University of Twente

Department of Computer Science
PO Box 217, 7500 AE Enschede, the Netherlands

phone: +31 53 4893730; fax: +31 53 4894590
E-mail: m.bos@cs.utwente.nl

Abstract—Many applications can be structured as a set of
processes or threads that communicate via channels. These
threads can be executed on various platforms (e.g. general
purpose CPU, DSP, FPGA, etc). In our research we ap-
ply channels as a basic communication mechanism between
threads in a reconfigurable system.

The research involves providing system level functions
to describe the setup of communicating threads, which
may now either run timeshared on a general CPU or in
dynamically-setup special purpose logic that runs on recon-
figurable hardware. The use of channels and threads run-
ning in both software and hardware, will be made transpar-
ent for the application level programmers by the system level
functions.

By first describing the threads and how they are connected
and then letting the operating system decide on ’geograph-
ical’ placement of the threads and buffers, multiprogram-
ming will be supported and programs will be able to run on
different setups of hardware (i.e. different amount of CPUs
or available programmable logic).

This is an ongoing work, the paper is a collection of
thoughts, which lead to a first setup of rudimentary support
functions in the operating system.

Keywords— Reconfigurable, csp, operating system, In-
ferno.

I. I NTRODUCTION

Rconfigurable computing. The term hasn’t been around for
very long yet. It all started with Field Programmable Gate Ar-
rays (FPGAs) that grew so big that at one point they became
usable for things other than just glue logic. Things have gone
fast since. Many specialized platforms have been built, most us-
ing a setup with both FPGAs and a general purpose CPU, but
each using its own specific ways to talk to the host system, to
carry out reconfigurations and even to store configurations. This
is much like coding an application in assembly, or like running
a system without Operating System (OS) and rewriting drivers
every time. Maybe the OS can make things more comfortable
for reconfigurable computing too.

The research involves providing consistent methods for stor-
ing configurations (maybe just the normal filesystem to begin
with), for distinguishing between different implementations of
the same algorithm and for reasoning about these different im-
plementations for Quality of Service purposes. Also, the re-

search is about how to share configurable resources between
concurrent applications, how to multi-program them and how
to use them for energy efficient computation.

The first basic approach is to provide system level functions
to describe the setup of communicating threads, which may now
either run time shared on a general CPU or in dynamically-setup
special purpose logic that runs on reconfigurable hardware. The
use of channels and threads running in both software and hard-
ware, will be made transparent for the application level pro-
grammers by the system level functions.

By first describing the threads and how they are connected
and then letting the operating system decide on ’geographical’
placement of the threads and buffers, multiprogramming will be
supported and programs will be able to run on different setups
of hardware (i.e. different number of CPUs or different amount
of available programmable logic).

II. SOFTWARE WORLD

Many applications can be structured as a set of processes
or threads that communicate via channels. Hoare already used
Communicating Sequential Processes (CSP) in [1].

Communicating threads are implemented very straightfor-
ward in Lucent’s Inferno [2]. They are actually integrated into
the Limbo language which is the language to write programs in
for Inferno. Limbo includes constructs for both typed channels
and threads. A thread is created by thespawnkeyword, which
works much like a normal function call. If a thread is to com-
municate with other threads, channels can be used and these can
be passed as arguments in the spawn call.

The channel mechanism provides both buffered and un-
buffered unidirectional communication from one thread to an-
other. It also provides a means of synchronization as channels
are blocking such that a writing thread blocks until there is room
in the channel buffer and a reading thread blocks until data is
available.

On Inferno, threads all share a single CPU. Threads take turn
in executing on the CPU. One thread runs on the CPU for a max-
imum fixed number of instructions or until it executes a blocking
system call. Counting instructions is easy as all programs in In-
ferno run on a virtual machine. When programs are precompiled
task switching is no longer forced by counting the number of in-
structions and thus all threads must give up the CPU voluntarily.
The only exception is that systems calls implicitly give up the
CPU.



With the mechanism of communicating only through chan-
nels, no other complicated mutual exclusion on data structures,
critical sections or other synchronization primitives are needed
as a thread can be sure it is the only thread running as long as it
does not give up the CPU.

In a truly parallel system, one with multiple CPUs or with
parallel threads in reconfigurable hardware, this assumption is
no longer true. Fortunately, if channels are only used in a pass-
by-value manor, i.e. not passing pointers to data, nothing really
changes. Parallel systems benefit considerably from many lo-
cal small memories since these highly increase internal memory
bandwidth. So pass-by-value is probably the natural fit in paral-
lel systems as passing pointers is only useful in shared memory
systems. In multi-CPU systems the shared memory bandwidth
bottleneck can usually be made smaller by the use of on-chip
CPU caches. These caches work most efficient when succe-
sive computation on data is executed on the same CPU. Pointer-
passing is possible completely transparent when tasks are moved
between CPUs, but their gain of moving less data is then lost.

III. C ONFIGURABLE WORLD

In general purpose machines, task-switches occur constantly,
10 millisecond time-slices are normal. With reconfigurable
hardware it is likely that task-switches are very expensive.
Whereas saving CPU state consists mostly of backing up register
contents, saving the state of a reconfigurable piece of hardware
includes saving all configuration bits. When memories that can
hold multiple configurations which can be swapped instantly are
used, one configuration store can be updated while the hardware
is running from another. [3] describes prefetching of configura-
tion data on single-context devices and in [4] an architecture is
described where multiple configurations are cached. So at least
some of the configuration overhead can then be overlapped with
useful computation. Reconfiguration can be almost free when
runtime is generally much longer than the time needed for stor-
ing a configuration. [5] actually shows a technique of compress-
ing configuration data to reduce configuration time.

For this to work in practise, tasks need to be sufficiently big
and computations should be regular such that the sequence of
configurations is data-independent. When computation is con-
ditional, i.e. different configurations are needed depending on
the outcome of current computations, overlapping computation
and configuration is no longer possible (unless multiple shadow
configutations can be loaded, but that increases configuration
time and some configurations would be loaded but never used).

Signal processing algorithms like for example GSM speech-
transcoding or video encoding/decoding, in general can be made
data-independent when saturating operators are available. With
algorithms that perform multiple transformations on blocks of
data, a setup where intermediate data is preserved between con-
figurations (one configuration executes one transformation) is
possible. This works best when data amounts are big compared
to configuration data and the algorithms are latency tolerable.
Multiple such local memories connected to the reconfigurable
hardware highly increase aggregate memory bandwidth. They
do complicate multiprogramming the reconfigurable hardware
as saving all state might be close to impossible unless special

precautions are taken. A scheduling granularity where tasks are
only swapped when internal temporary data is no longer needed
seems worth investigating. In [6] an architecture is proposed that
interconnects many small memories and reconfigurable tiles in
a hierarchical way. In this architecture memories are not really
local, but reading/writing memories is more efficient the closer
the memories are. Obvious advantage is that the location a cer-
tain configuration has to be loaded is not fixed by the location of
temporal data from previous computations.

As one algorithm runs best on a DSP and another may run
best on an FPGA or CPU, the OS should support a heteroge-
nous mixture of all. In our research we apply channels as a
basic communication mechanism between processes in a recon-
figurable system. These channels act as the glue between all
resources. Occam is one language that includes channels. More
recently, they appeared in the language Limbo, that comes with
Inferno and just now they have also made their entrance into re-
configurable systems [7]. In Inferno, channels and threads are
fully integrated into the system and their use is really natural.

A good example of an application that can make efficient use
of channels and threads is a firewall. In a firewall a thread per-
forms some function on the packets coming through. The way
these threads are connected is really a streaming setup as pack-
ets eventually flow from an input port of the switch to an output
port. As firewalls needs constant changing of the functions they
perform, and the amounts of data they work on are huge, recon-
figurable hardware has the potential to really speed things up.

Taking these huge amounts of state into account it is likely
that reconfigurable hardware will be claimed by one and only
one task for the duration of that task. Multi-configuration
memories can be used both under control by the task (self-
reconfiguring programs) and under control by the OS. A com-
piler directed approach to provide reconfiguration within tasks
is described in [8]. In our research scheduling by the OS at
points where state is minimal will be investigated. To orches-
trate a system in which several tasks are to run simultaneously
and each task can potentially be run in different configurations
(i.e. performs the same function, but faster/slower, more/less en-
ergy efficient), the operating system needs some detailed model
upon which it can base its allocation and scheduling decisions.

Although not very common, it seems a good idea to separate
running an application into two stages. In the first stage the ap-
plication consists of one thread running on a general CPU. The
application starts negotiating with the OS telling it which mod-
ules it needs to run and how these modules communicate with
each other. In other words, the application describes to the OS
its internal model of communicating processes. The second step
of the application is to actually perform the task it is meant to do.
As the OS now knows beforehand which modules are needed it
can allocate and schedule the resources the application will need
and make sure that these resources are efficiently geographically
positioned such that all communications are as local as possible.

IV. STATUS

A first library now exists that allows for experiments with the
setup described in the previous sections. The library currently
runs on plan9’s thread library which has been ported to both



Linux and the Windows operating system. Although not first
choice, experiments are now run on Windows, as all tools for
the available reconfigurable engine are still not available for any
other operating system. Windows is not first choice because it
does not, while both plan9 and Linux do, provide sources for
the kernel. Kernel support incurs a lot less overhead than a user
level library does. To allow future enhancements a lot of work
is still needed to get the reconfigurable engine supported in one
of the other OS’s.

V. CONCLUSIONS

As the library does allow describing the model of an algo-
rithm in terms of modules and how these modules are connected
through channels, basic allocation schemes can now be devel-
oped and tested. Allocation schemes need parameters like cir-
cuit size, minimum data throughput, run time and others. Meth-
ods to provide these have to be developed and can now be tested.
Which parameters a partitioner needs to make valid decisions
that can guarantee energy efficiency during runtime and also al-
low for clear QoS is yet to be determined. The number of vari-
ables to base a decision on are likely to grow fast. Extensive
simulation of different scenarios should lead to some rules of
thumb to allow runtime decision making.

REFERENCES

[1] C.A.R. Hoare, “Communicating sequential processes”, inPro-
ceedings of the Joint IBM University of Newcastle upon Tyne Sem-
inar, Newcastle upon Tyne, UK, 1978, pp. 145–56.

[2] Sean Dorward, Rob Pike, David Leo Presotto, Dennis Ritchie,
Howard Trickey, and Phil Winterbottom, “Inferno”, inProceed-
ings of the IEEE Compcon 97 Conference, San Jose, 1997, pp.
241–244.

[3] S. Hauck, T.W. Fry, M.M. Hosler, and J.P. Kao, “Configuration
prefetch for single context reconfigurable processors”, inPro-
ceedings of ACM/SIGDA International Symposium on FPGA, Feb.
1998.

[4] J.R. Hauser and J.Wawrzynek, “Garp: A mips processor with a re-
configurable coprocessor”, inProceedings of the IEEE Symposium
on FCCM, Apr. 1997.

[5] S. Hauck, Z. Li, and E.J. Schwabe, “Configuration compression for
the xilinx xc6200 fpga”, inProceedings of the IEEE Symposium
on FCCM, Apr. 1998.

[6] E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek, and A. De-
Hon, “Stream computations organized for reconfigurable execu-
tion (score)”, in Field-Programmable Logic and Applications,
The Roadmap to Reconfigurable Computing, Reiner W. Harten-
stein and Herbert Grunbacher, Eds. Aug. 2000, vol. 1896 ofLec-
ture Notes in Computer Science, pp. 605–614, Springer-Verlag.

[7] Jones-M; Scharf-L; Scott-J; Twaddle-C; Yaconis-M; Yao-K;
Athanas-P; Schott-B, “Implementing an api for distributed adap-
tive computing systems”, inSeventh Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, Los Alamitos,
CA, USA, 1999, pp. 222–230.

[8] X. Tang, M. Aalsma, and R. Jou, “A compiler directed approach to
hiding configuration latency in chameleon processors”, inField-
Programmable Logic and Applications, The Roadmap to Reconfig-
urable Computing, Reiner W. Hartenstein and Herbert Grunbacher,
Eds. Aug. 2000, vol. 1896 ofLecture Notes in Computer Science,
pp. 29–38, Springer-Verlag.


