
A Case Study for Tooling the Design Trajectory of
Embedded Control Systems∗)

Dusko Jovanovic, Gerald H. Hilderink and Jan F. Broenink

Twente Embedded Systems Initiative,
Cornelis J. Drebbel Institute for Mechatronics and Control Engineering,

Dept. of Electrical Engineering, University of Twente,
P.O.Box 217, NL-7500 AE Enschede, The Netherlands

Phone: +31 53 489 2288 Fax: +31 53 489 2223
E-mail: D.Jovanovic@utwente.nl

∗) This research is supported by PROGRESS, the embedded system research program of the Dutch organization for
Scientific Research, NWO, the Dutch Ministry of Economic Affairs an the Technology Foundation STW.

Abstract – We strive to allow a mechatronic system de-
signer the power of designing mechatronic systems in
manners of concurrent engineering in short time at a frac-
tion of the present day costs. In our context, this means a
methodology and tool support to stepwise refinement in
analysis and design of the plant to be controlled, computing
and I/O hardware and computer code which provide all
operational functionalities.

Nowadays, it is impossible to separate control engineer-
ing from software engineering. There is no way of imple-
menting control strategies other than transform them in
computer code for chosen processing target. Usually, there
are not many “general-purpose programmers” available in
control engineering research teams in companies and uni-
versities. In these cases, used software development tech-
niques suffer from insufficiencies in knowledge in disci-
plines of software modeling, familiarity with concurrency
in software, ways of allowing for reusability, software test-
ing and so on. The gap between control laws design and
implementing them on the targeted platform(s) is recog-
nized as critical and not methodologically covered by exist-
ing approaches and tools.

This paper, reporting on the progress of project
TES.5224, presents evolution of a system based on a 2DOF
robot as a prototype of a design trajectory.

Keywords – embedded control systems (ECS) design,
system-level modeling, stepwise refinement, integrated
tools, CSP/CT, simulate-ability, design portability, soft-
ware quality, software specification, concurrency, robotics

I. INTRODUCTION
The dynamic changes in technologies and markets of

computers’ platforms make the problems to control engi-
neers difficult. Usually, due to existing experiences, im-
plementation teams are stuck to certain hardware plat-

forms, programming languages or libraries that provide
software development environments the researchers are
used to. Often, there is resistance to migrating to new,
more advanced and more adequate hardware and soft-
ware platforms. This is not hard to understand: being ex-
perienced with peculiarities of certain processing units
and knowing all issues of software (code) development
for those, designers are not eager to put time and energy
in mastering new targets. The same holds also for updat-
ing models with new discovered modeling issues, espe-
cially if the methodology and/or the tool do not auto-
matically reflect changes in the rest of the system prop-
erly. Usually, time costs for getting in touch with new
implementation conditions have unmotivating effects. In
the other hand, staying stuck to old platforms and meth-
ods introduce severe constraints to design modernization.

Notions of Stepwise refinement [1] approach in de-
signing control systems from its conception to real-life
implementation and CSP/CT [2] paradigm for dealing
with concurrent behavior of computing part of those sys-
tems are recognized like promising design manners. By
building tools upon these mechanisms it is believed that
control engineers will be handed with a rather tractable
means of managing computing aspects of modern control
engineering. Since that design entries are suitable for
graphical environments (bond graphs [3], 20-SIM [4] or
Simulink [5] block diagrams, CSP diagrams [6]), accep-
tance of the methodology and tools in the embedded con-
trol systems industry segment can be expected.

Section II reports the achievements on the methodol-
ogy for designing control software for mechatronic sys-
tems. Section III makes the core of the paper – a robotic
case study.

PROCEEDINGS OF THE 3D PROGRESS WORKSHOP ON EMBEDDED SYSTEMS

© PROGRESS/STW 2002, ISBN 90-73461-34-0 OCTOBRE 24, 2002 JAARBEURS UTRECHT NL

II. METHODOLOGY
General ECS design methodology has an intention to

allow a designer freedom of exploring the design space,
i.e. arbitrary stepping in the (sub) phases captured by the
ECS design trajectory. The four main phases in engineer-
ing an embedded control system are articulated in Figure
1, [2]. During each step, results are verified by simula-
tion, also in the last phase (realization) when some parts
are still a model. This demand of simulate-ability actu-
ally means that the design models at hand must always
be completely specified, but not necessary in full detail.
This might seem a strong demand, but gives opportuni-
ties to fully exploit the Stepwise Refinement approach
including sophisticated tool support.

Since the focus of this research is on Embedded Con-

trol System implementation (the third, yellow-high-
lighted phase), only this phase is further detailed. It com-
prises of the following subphases:

1. Integrate control laws
Combine the control law(s) with the sequence and

supervisory control layers. Reaction to external com-
mands, like from the operator or from connected systems
is taken into account.

The implementation is still assumed to be ideal.

2. Capture non-ideal components
Those components, being considered ideal in the pre-

vious step, are now modeled more precisely by augment-
ing the specification with their relevant dynamic effects
(i.e. adding non-idealness of components).

Also, add algorithms to process signals to obtain
other signals which could not be measured directly in the
practical situation (e.g. add an estimator to derive an in-
ternal variable, for which no sensor will be available).

3. Incorporate safety, error and maintenance facilities
Facilities for safety of the system are specified and

designed (like reaction on external events from emer-
gency stops and end switches, etc.). Furthermore, facili-
ties for maintenance processing can be added here.

The impact of these additions on the behavior of the
ECS can be checked by means of simulation.

4. Effects due to non-idealness of computer hardware
The control computer hardware and software archi-

tecture are added. The inherent parallelism in control
systems can be made explicit in the control software by
using CSP diagrams [6]. Effects of computational la-
tency and accuracy can be checked. Scheduling tech-
niques and / or algorithm optimization techniques may
be used to obtain a viable realization.

These steps need not be performed in the order speci-
fied here. The designer has the freedom to tackle the in-
dividual subproblems in any order.

By stimulating an iterative approach, which is a quite
natural way of working, tool support becomes inevitable.
This motivates our research on the design framework and
tool development. Note that iterative ways of develop-
ment is also performed in the separate areas of software
development for embedded systems and controller de-
sign.

In the remainder of this section we discuss three
methodological topics: Stepwise Refinement, Exploiting
Parallelism and Code Generation. For all three topics, we
will also indicate how tool support using the tool 20-SIM
can be done.

A. Stepwise Refinement
 Our stepwise refinement (SWR) paradigm strives for

development of methodologies and tools to support
mechatronics engineers in treatment (analysis and de-
sign) of a control system as a whole, allowing them to
start with a sketch of overall system, and gradually refine

Figure 1 Design trajectory

93

the model of solution in the course of understanding the
problem in hand.

The SWR procedure is applied in all vital parts of a
mechatronic system: controlled plant, computing and I/O
hardware and computer code which provides all supervi-
sion, command and control functionalities.

Normally, mechatronic design engineers start with
modeling the dynamic behavior of the plant, and derive
control laws for it. These control laws are then gradually
transformed towards efficient concurrent algorithms (i.e.
the control-computer code). The SWR process thus trans-
forms the control laws into an execution model that is
ready to be translated into control software, whereby one
can easily specify concurrency with symbols stemming
from the CSP language in a block diagram [7]. The reali-
zation of the Embedded Control System (ECS) is also
worked on as a SWR sequence. Parts of the system stay
as models while other parts are coded on their target
hardware.

The 20-SIM modeling and simulation tool can be
used well for SWR, because it allows organizing a
mechatronic model in the abstractions of high-level
building blocks. Non-basic building-blocks are parti-
tioned in hierarchies of simpler and simpler building-
blocks, which can be easily accompanied with basic de-
fault dynamic behavior. In that manner, simulations can
be used as verification means in very early phases of the
system design.

B. Exploiting parallelism
Although embedded systems are inherently parallel,

this natural parallelism need to be specified explicitly in
the embedded control software. Furthermore, there are
some software engineering reasons to exploit this natural
parallelism:

It is straightforward to add new functionality by add-
ing software components. Just add a new ‘block’ in the
CSP diagram of the software, and connect it to the other
software components. It is like adding a block in a block
diagram.

The parallel structure of the software can be used to
deploy the processes over different processing units, thus
making a distributed implementation easier.

Since the communication with the components is ex-
plicitly through its interface, reusability is easier
achieved.

Two other, more functional, reasons for exploiting
this natural parallelism are:

The performance can be better, in the sense that the
throughput of data can be faster.

The responsiveness to external stimuli is better, in the
sense that the control software will react as quick as ex-
pected. This is especially useful when errors occur.

By using CSP diagrams, we can specify exactly what
we mean and how the execution framework should fulfil
our requirements [6]. CSP diagrams reflect the organiza-
tion of software in two views: in data-flow and composi-
tion aspects. For the first aspect, the diagram is called a
communication graph, and has much resemblance with a
block diagram. For the second aspect, the blocks are
linked with so-called composition connections, showing
whether the blocks run in parallel, in sequence and if one
has priority over the other. It is called a composition
graph.

The composition graph also allows putting software
execution in concurrent network. In short, by designing
CSP diagrams we will have complete control over the
execution framework of the controller software and we
can extent the execution model with additional processes
that cannot (yet) be dealt with by 20-SIM. Examples of
CSP diagrams are shown when the JIWY case is dis-
cussed (section III).

Currently, 20-SIM does not support specifying the
execution framework in CSP (diagrams), so for “paral-
lelization" of the software design 20-SIM can be used to
rather limited extent. Namely, using the diagram editing
features (explode / implode of model parts), the model
can be structured such, that the resulting blocks represent
software processes, for which the parallel execution
structure can be defined. Actually, the CSP diagrams are
made by hand, and currently tool support is being de-
signed.

C. Code generation
The project decision in respect to computer code en-

gineering is to rely on the concepts of Communicating
Sequential Processes (CSP) [8]. Furthermore, the code
for all necessary software components (supervision,
command, control, adaptation, safeguarding, communi-
cation, etc) will be generated automatically from the
simulated models. This assures the quality and maintain-
ability of the code. Besides, it is believed to allow or-
thogonality of additional software layers in respect to
control code. For instance, we try to eliminate anomalies
(impacts) of adding safeguards to the existing code as
much as possible so that we end up with a clean design
that is easily maintainable, extendable and reusable [1].

20-SIM is used to this end too. At the moment, code
generation is performed in interplay of the models and
target-specific templates. The templates, along with tar-
get-specific (device) drivers, make connection between
simulation models and concrete target resources.

Unfortunately, 20-SIM does not support user’s influ-
ence in execution framework of the code that could be
generated out of existing model. Namely, the execution
framework is the same as simulation framework, which
is simple sequential, as implied by the simulation frame-

94

work. As indicated above, the annotation of parallelism
has as yet to be entered by hand.

III. CASE STUDY: JIWY
As case study, a 2DOF robot has been chosen. This is

a small positioning robot, for orienting some device, i.e.
a camera, laser pointer or similar (see Figure 2 for a
photo). The construction contains two revolute joints that
allow mounted device to rotate on a horizontal axis and a
vertical axis. The joints are equipped with DC motors
and incremental encoders.

The idea is to put the robot in a typical closed position
servo loop, according to the direct digital control (DDC)
manner.

In the remainder, the flow of Stepwise Refinement
from the closed loop towards the realization of them is
explained in several iteration steps.

A. Result of the first two phases of the design trajectory
SWR starts with a coarse-grained sketch (similar to

paper-sketches), able to “mimic” basic shape of the engi-
neered system, see [2] and [9] for the JIWY-specific
situation.

Tooling support for iterative steps has to allow flexi-
bility for the models to reflect design decisions. Further-
more, the simulations have to be enabled as soon as pos-
sible.

According to certain design decisions, an analogue
joystick is attached to the computer. This suggests an up-
date of the scheme of general closed loop concept, re-
flected in Figure 5. Consequently, the starting 20-SIM
top-level model (Figure 4) is adapted, see Figure 6.

Since the aim of this paper is to concentrate on the re-
finement of the software, the model has to be enhanced
with enough detailed behavioral description.

The internals of the top building blocks are obtained
in the first two phases of our design trajectory (Figure 1)
to show the level of details necessary to start SWR of
software part (“Controller”) solely.

The motors in joints of the robot are modeled by
bond-graphs models, which reside in the “motor” boxes
of Figure 7.

The power amplifiers for the steering signals and the
encoders measuring the angle of both the axes are suffi-
ciently modeled with gains Figure 8. The joystick serves
as a set-point generator, and therefore is modeled as two
signal generators from the standard 20-SIM submodel li-
brary Figure 9. On the control computer, besides the con-
trol law (here a standard PID control law), also the A/D
and D/A converters are commanded (Figure 10). This in-
terfacing hardware resides on the PCI interface card from
National Instruments. The choice for this card, and the
development of the device drivers for it are discussed in
[10].

B. Refinement in ECS implementation
This third phase in the design process is the core of

the research reported here. The JIWY case is rather
small, such that not all subphases of the ECS design
phase are applicable here. As indicated in section II, the
subphases need not be followed in the specified order,
nor each subphase really needs to result in some refine-
ment. At our case, subphase one was not applicable and
subphases three and four were exchanged.

1. Integrate control laws
As yet, we only have one standard loop controller for

each of the two axes working independently; integration
of control laws is not applicable here.

2. Capture non-ideal components
We needed signal condition functions for both the

Joystick signals and the encoder signals representing the
angle of the two axes of the robot. Initial tests also indi-
cated that filtering the Joystick signal was necessary, due
to its spiky waveform. The result is shown in Figure 11.

The signal limiter symmetrizes the ranges of the po-
tentiometers in the analogue joystick; the attenuators ad-
just the signal levels. The noise filter is a forth order But-
terworth low-pass filter, designed for 100Hz sampling
frequency with cut-off on 2Hz. The filter is designed us-
ing 20-SIM’s Linear System Editor.

Actually, we did not model the Joystick behavior in-
cluding its output signal quality in detail, but only added
a software component to enhance the quality of the sig-
nal. So, with the resulting model, we cannot show what
the origin of these spiky signals is. For our design con-
text (i.e. use the given Joystick for the demo), it is not
relevant to know where these spikes come from. How-
ever, it is relevant to understand that whenever the Joy-
stick will be replaced, the signal conditioner should be
reconsidered.

Figure 2 Photo of JIWY

95

Figure 3 Closed control loop

Figure 4 Top-level JIWY model

Figure 5 Closed-loop control with man-machine interface

Figure 6 Top-level JIWY model in 20-SIM, with a joy-

stick as set-point generator

Figure 7 Model of the robot

Figure 8 The internals of the amplifier I/O box

Figure 9 Sufficient model of joystick

Figure 10 The control computer: the outcome of the first

2 design phases: physical system modeling and de-
riving control laws

96

3. Computer Architecture
 The next step is to enhance the models of the control-

ler part (i.e. those parts that will be implemented in soft-
ware), such that a more close resemblance with the final
real situation will be reached, i.e. the parallelism will be
added. By using the CSP diagrams, we can specify ex-
actly what we mean and how the execution framework
should fulfill our requirements. Currently, 20-SIM does
not support specifying the execution framework in CSP
diagrams, so for "parallelization" of the software design
20-SIM can be used to a rather limited extent.

 For revealing the possibilities of parallel execution
of the software components, first the model of the soft-
ware part should be decomposed, such that pieces appear
that can be run in parallel. Except for the controller, all
submodels consist of 2 groups of independent, parallel
parts. The controller consist of two parallel working PID-
controllers. So treating each controller as a separate
block, results in a parallel description of the controller.
The resulting system is now parallelizable: In Figure 12,

the vertical colored boxes denote the subsystems of the
previous figures, and the two horizontal boxes denote the
two parallelized parts of JIWY.

At this stage, the block diagram of the control soft-
ware part can be converted to CSP diagrams (Figure 13).
The communication and composition graphs are drawn,
whereby the topography of the originating block diagram
is maintained. It is actually a notational conversion from
Figure 12 to Figure 13.

The µ-processes in Figure 13 indicate that the process
at the other end of the relationship, to which it is con-
nected, will be executed in an infinite loop. Via the pa-
renthesis symbols ‘¡’ and their indices, it is indicated
that the upper two processes will be executed independ-
ently from the lower two processes. This way, the de-
coupling of the two axes is indicated.

Figure 11 The refinement of the Controller building-block in 20-SIM for one axis

Figure 12 The total JIWY model with parallelized controller

97

Figure 13 Communication graph (above) and composition graph (below) of the JIWY controller

Figure 14 Stop button and homing process added

98

4. Incorporate safety, error and maintenance facilities
For each control loop, we designed a stop button, to

stop the controller. As a reaction, we start a homing
process to bring JIWY to a defined position.

The first CSP graphs (Figure 13) are extended to re-
flect this enhancement, resulting in Figure 14. For each
loop, a choice operator (a square box) executing the con-
trol loop until a joystick button is pressed, has been
added. Pushing the button stops the µ-process via the
Boolean variable stop_x or stop_y.

The ?-process is a primitive reader process. The
reader process is conditionally related to the choice op-
erator. The reader will read from the channel buttonchan1
when buttonchan1 is ready (i.e. a writer writes to the
channel) and condition is true (i.e. [true]); otherwise the
reader will not be selected. If both the channel is ready
and the expression is true then the choice operator may
select the reader. The reader will immediately read chan-
nel buttonchan1. Also Boolean stoph will be set to true.
This is similar for buttonchan2.

IV. CONCLUDING REMARKS
The dot-framed phases of the design trajectory, as

shown in Figure 15, are subject of current research and
development. Hence, the main focus is put on stepwise
refinement of the embedded software to be automatically
generated, exhaustively verified and enabled for retarget-
ing from one to another embedded platform.

Note that in this research, we focus on the embedded
control software part. However, the CSP diagrams as
shown in the last part of Section III.B can also be used to
describe the communication and composition behavior of
the hardware. By doing so, design space exploration on
hardware-software co-design issues can be supported.

Future work mainly will with the following topics:
Analyze the scalability and effects of increasing com-

plexity and analyzing the maintainability when new op-
erational functionality is added to the software part.

Measure and assess real-time behavior (performance)
and compliance with equipment constraints (memory
footprint).

Investigate possibilities of integration of the CSP case
tool under development with other graphical CAD and

Figure 15 Current situation of the tool support

99

CASE tools (20-SIM, Rhapsody or RT-Rose).
Extend expressiveness capabilities of the framework

to support reasoning in terms of heterogeneous distrib-
uted networked embedded systems.

REFERENCES

[1] D. Jovanovic, G. H. Hilderink, and J. F. Broenink,

“Integrated Design Tool for Embedded Control
Systems,” presented at Progress 2001 Workshop,
Veldhoven, Netherlands, 2001.

[2] J. F. Broenink and G. H. Hilderink, “A structured
approach to embedded control systems imple-
mentation,” presented at 2001 IEEE International
Conference on Control Applications, México
City, México, 2001.

[3] P. C. Breedveld and J. v. Amerongen, Dynamische
Systemen: modelvorming en simulatie met
bondgrafen. Enschede, 1996.

[4] J. F. Broenink and C. Kleijn, “Computer-aided
design of mechatronic systems using 20-SIM
3.0,” presented at Proc. 2nd Workshop on
European Scientific and Industrial Collaboration
WESIC'99, Newport, United Kingdom, 1999.

[5] -, “Matlab, Simulink” http://www.mathworks.com:
Mathworks, 2002.

[6] G. H. Hilderink, “A graphical Specification
Language for Modelling Concurrency based on
CSP,” presented at Communicating Process
Architectures 2002, Reading UK, 2002.

[7] D. Jovanovic, G. H. Hilderink, and J. F. Broenink,
“A communicating Threads -CT- case study:
JIWY,” presented at Communicating Process
Architectures 2002, Reading UK, 2002.

[8] A. W. Roscoe, The Theory and Practice of
Concurrency: Prentice Hall, 1997.

[9] J. F. Broenink, D. Jovanovic, and G. H. Hilderink,
“Controlling a mechanic setup using Real-time
Linux and CTC++,” presented at Mechatronics
2002, Enschede, 2002.

[10] R. A. Stephan, “Real-time Linux in Control
Applications Area,” in Dept. Electrical
Engineering. Enschede: University of Twente,
2002.

100

	Contents

