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Abstract – We strive to allow a mechatronic system de-
signer the power of designing mechatronic systems in 
manners of concurrent engineering in short time at a frac-
tion of the present day costs. In our context, this means a 
methodology and tool support to stepwise refinement in 
analysis and design of the plant to be controlled, computing 
and I/O hardware and computer code which provide all 
operational functionalities.  

Nowadays, it is impossible to separate control engineer-
ing from software engineering. There is no way of imple-
menting control strategies other than transform them in 
computer code for chosen processing target. Usually, there 
are not many “general-purpose programmers” available in 
control engineering research teams in companies and uni-
versities. In these cases, used software development tech-
niques suffer from insufficiencies in knowledge in disci-
plines of software modeling, familiarity with concurrency 
in software, ways of allowing for reusability, software test-
ing and so on. The gap between control laws design and 
implementing them on the targeted platform(s) is recog-
nized as critical and not methodologically covered by exist-
ing approaches and tools.  

This paper, reporting on the progress of project 
TES.5224, presents evolution of a system based on a 2DOF 
robot as a prototype of a design trajectory. 
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I. INTRODUCTION 
The dynamic changes in technologies and markets of 

computers’ platforms make the problems to control engi-
neers difficult. Usually, due to existing experiences, im-
plementation teams are stuck to certain hardware plat-

forms, programming languages or libraries that provide 
software development environments the researchers are 
used to. Often, there is resistance to migrating to new, 
more advanced and more adequate hardware and soft-
ware platforms. This is not hard to understand: being ex-
perienced with peculiarities of certain processing units 
and knowing all issues of software (code) development 
for those, designers are not eager to put time and energy 
in mastering new targets. The same holds also for updat-
ing models with new discovered modeling issues, espe-
cially if the methodology and/or the tool do not auto-
matically reflect changes in the rest of the system prop-
erly. Usually, time costs for getting in touch with new 
implementation conditions have unmotivating effects. In 
the other hand, staying stuck to old platforms and meth-
ods introduce severe constraints to design modernization. 

Notions of Stepwise refinement [1] approach in de-
signing control systems from its conception to real-life 
implementation and CSP/CT [2] paradigm for dealing 
with concurrent behavior of computing part of those sys-
tems are recognized like promising design manners. By 
building tools upon these mechanisms it is believed that 
control engineers will be handed with a rather tractable 
means of managing computing aspects of modern control 
engineering. Since that design entries are suitable for 
graphical environments (bond graphs [3], 20-SIM [4] or 
Simulink [5] block diagrams, CSP diagrams [6]), accep-
tance of the methodology and tools in the embedded con-
trol systems industry segment can be expected. 

Section II reports the achievements on the methodol-
ogy for designing control software for mechatronic sys-
tems. Section III makes the core of the paper – a robotic 
case study. 
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II. METHODOLOGY 
General ECS design methodology has an intention to 

allow a designer freedom of exploring the design space, 
i.e. arbitrary stepping in the (sub) phases captured by the 
ECS design trajectory. The four main phases in engineer-
ing an embedded control system are articulated in Figure 
1, [2]. During each step, results are verified by simula-
tion, also in the last phase (realization) when some parts 
are still a model. This demand of simulate-ability actu-
ally means that the design models at hand must always 
be completely specified, but not necessary in full detail. 
This might seem a strong demand, but gives opportuni-
ties to fully exploit the Stepwise Refinement approach 
including sophisticated tool support. 

 
Since the focus of this research is on Embedded Con-

trol System implementation (the third, yellow-high-
lighted phase), only this phase is further detailed. It com-
prises of the following subphases: 

1. Integrate control laws 
Combine the control law(s) with the sequence and 

supervisory control layers. Reaction to external com-
mands, like from the operator or from connected systems 
is taken into account.  

The implementation is still assumed to be ideal.  

2. Capture non-ideal components 
Those components, being considered ideal in the pre-

vious step, are now modeled more precisely by augment-
ing the specification with their relevant dynamic effects 
(i.e. adding non-idealness of components). 

Also, add algorithms to process signals to obtain 
other signals which could not be measured directly in the 
practical situation (e.g. add an estimator to derive an in-
ternal variable, for which no sensor will be available). 

3. Incorporate safety, error and maintenance facilities 
Facilities for safety of the system are specified and 

designed (like reaction on external events from emer-
gency stops and end switches, etc.). Furthermore, facili-
ties for maintenance processing can be added here. 

The impact of these additions on the behavior of the 
ECS can be checked by means of simulation. 

4. Effects due to non-idealness of computer hardware 
The control computer hardware and software archi-

tecture are added. The inherent parallelism in control 
systems can be made explicit in the control software by 
using CSP diagrams [6]. Effects of computational la-
tency and accuracy can be checked. Scheduling tech-
niques and / or algorithm optimization techniques may 
be used to obtain a viable realization. 

These steps need not be performed in the order speci-
fied here. The designer has the freedom to tackle the in-
dividual subproblems in any order. 

By stimulating an iterative approach, which is a quite 
natural way of working, tool support becomes inevitable. 
This motivates our research on the design framework and 
tool development. Note that iterative ways of develop-
ment is also performed in the separate areas of software 
development for embedded systems and controller de-
sign. 

In the remainder of this section we discuss three 
methodological topics: Stepwise Refinement, Exploiting 
Parallelism and Code Generation. For all three topics, we 
will also indicate how tool support using the tool 20-SIM 
can be done.  

A. Stepwise Refinement  
 Our stepwise refinement (SWR) paradigm strives for 

development of methodologies and tools to support 
mechatronics engineers in treatment (analysis and de-
sign) of a control system as a whole, allowing them to 
start with a sketch of overall system, and gradually refine 

 
Figure 1 Design trajectory  
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the model of solution in the course of understanding the 
problem in hand. 

The SWR procedure is applied in all vital parts of a 
mechatronic system: controlled plant, computing and I/O 
hardware and computer code which provides all supervi-
sion, command and control functionalities. 

Normally, mechatronic design engineers start with 
modeling the dynamic behavior of the plant, and derive 
control laws for it. These control laws are then gradually 
transformed towards efficient concurrent algorithms (i.e. 
the control-computer code). The SWR process thus trans-
forms the control laws into an execution model that is 
ready to be translated into control software, whereby one 
can easily specify concurrency with symbols stemming 
from the CSP language in a block diagram [7]. The reali-
zation of the Embedded Control System (ECS) is also 
worked on as a SWR sequence. Parts of the system stay 
as models while other parts are coded on their target 
hardware. 

The 20-SIM modeling and simulation tool can be 
used well for SWR, because it allows organizing a 
mechatronic model in the abstractions of high-level 
building blocks. Non-basic building-blocks are parti-
tioned in hierarchies of simpler and simpler building-
blocks, which can be easily accompanied with basic de-
fault dynamic behavior. In that manner, simulations can 
be used as verification means in very early phases of the 
system design. 

B. Exploiting parallelism 
Although embedded systems are inherently parallel, 

this natural parallelism need to be specified explicitly in 
the embedded control software. Furthermore, there are 
some software engineering reasons to exploit this natural 
parallelism: 

It is straightforward to add new functionality by add-
ing software components. Just add a new ‘block’ in the 
CSP diagram of the software, and connect it to the other 
software components. It is like adding a block in a block 
diagram. 

The parallel structure of the software can be used to 
deploy the processes over different processing units, thus 
making a distributed implementation easier. 

Since the communication with the components is ex-
plicitly through its interface, reusability is easier 
achieved. 

Two other, more functional, reasons for exploiting 
this natural parallelism are: 

The performance can be better, in the sense that the 
throughput of data can be faster. 

The responsiveness to external stimuli is better, in the 
sense that the control software will react as quick as ex-
pected. This is especially useful when errors occur. 

By using CSP diagrams, we can specify exactly what 
we mean and how the execution framework should fulfil 
our requirements [6]. CSP diagrams reflect the organiza-
tion of software in two views: in data-flow and composi-
tion aspects. For the first aspect, the diagram is called a 
communication graph, and has much resemblance with a 
block diagram. For the second aspect, the blocks are 
linked with so-called composition connections, showing 
whether the blocks run in parallel, in sequence and if one 
has priority over the other. It is called a composition 
graph. 

The composition graph also allows putting software 
execution in concurrent network. In short, by designing 
CSP diagrams we will have complete control over the 
execution framework of the controller software and we 
can extent the execution model with additional processes 
that cannot (yet) be dealt with by 20-SIM. Examples of 
CSP diagrams are shown when the JIWY case is dis-
cussed (section III). 

Currently, 20-SIM does not support specifying the 
execution framework in CSP (diagrams), so for “paral-
lelization" of the software design 20-SIM can be used to 
rather limited extent. Namely, using the diagram editing 
features (explode / implode of model parts), the model 
can be structured such, that the resulting blocks represent 
software processes, for which the parallel execution 
structure can be defined. Actually, the CSP diagrams are 
made by hand, and currently tool support is being de-
signed. 

C. Code generation 
The project decision in respect to computer code en-

gineering is to rely on the concepts of Communicating 
Sequential Processes (CSP) [8]. Furthermore, the code 
for all necessary software components (supervision, 
command, control, adaptation, safeguarding, communi-
cation, etc) will be generated automatically from the 
simulated models. This assures the quality and maintain-
ability of the code. Besides, it is believed to allow or-
thogonality of additional software layers in respect to 
control code. For instance, we try to eliminate anomalies 
(impacts) of adding safeguards to the existing code as 
much as possible so that we end up with a clean design 
that is easily maintainable, extendable and reusable [1]. 

20-SIM is used to this end too. At the moment, code 
generation is performed in interplay of the models and 
target-specific templates. The templates, along with tar-
get-specific (device) drivers, make connection between 
simulation models and concrete target resources. 

Unfortunately, 20-SIM does not support user’s influ-
ence in execution framework of the code that could be 
generated out of existing model. Namely, the execution 
framework is the same as simulation framework, which 
is simple sequential, as implied by the simulation frame-
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work. As indicated above, the annotation of parallelism 
has as yet to be entered by hand.  

III. CASE STUDY: JIWY 
As case study, a 2DOF robot has been chosen. This is 

a small positioning robot, for orienting some device, i.e. 
a camera, laser pointer or similar (see Figure 2 for a 
photo). The construction contains two revolute joints that 
allow mounted device to rotate on a horizontal axis and a 
vertical axis. The joints are equipped with DC motors 
and incremental encoders.  

The idea is to put the robot in a typical closed position 
servo loop, according to the direct digital control (DDC) 
manner. 

In the remainder, the flow of Stepwise Refinement 
from the closed loop towards the realization of them is 
explained in several iteration steps. 

A. Result of the first two phases of the design trajectory 
SWR starts with a coarse-grained sketch (similar to 

paper-sketches), able to “mimic” basic shape of the engi-
neered system, see [2] and [9] for the JIWY-specific 
situation. 

Tooling support for iterative steps has to allow flexi-
bility for the models to reflect design decisions. Further-
more, the simulations have to be enabled as soon as pos-
sible. 

According to certain design decisions, an analogue 
joystick is attached to the computer. This suggests an up-
date of the scheme of general closed loop concept, re-
flected in Figure 5. Consequently, the starting 20-SIM 
top-level model (Figure 4) is adapted, see Figure 6. 

Since the aim of this paper is to concentrate on the re-
finement of the software, the model has to be enhanced 
with enough detailed behavioral description. 

The internals of the top building blocks are obtained 
in the first two phases of our design trajectory (Figure 1) 
to show the level of details necessary to start SWR of 
software part (“Controller”) solely. 

The motors in joints of the robot are modeled by 
bond-graphs models, which reside in the “motor” boxes 
of Figure 7.  

The power amplifiers for the steering signals and the 
encoders measuring the angle of both the axes are suffi-
ciently modeled with gains Figure 8. The joystick serves 
as a set-point generator, and therefore is modeled as two 
signal generators from the standard 20-SIM submodel li-
brary Figure 9. On the control computer, besides the con-
trol law (here a standard PID control law), also the A/D 
and D/A converters are commanded (Figure 10). This in-
terfacing hardware resides on the PCI interface card from 
National Instruments. The choice for this card, and the 
development of the device drivers for it are discussed in 
[10].  

B. Refinement in ECS implementation  
This third phase in the design process is the core of 

the research reported here. The JIWY case is rather 
small, such that not all subphases of the ECS design 
phase are applicable here. As indicated in section II, the 
subphases need not be followed in the specified order, 
nor each subphase really needs to result in some refine-
ment. At our case, subphase one was not applicable and 
subphases three and four were exchanged. 

1. Integrate control laws 
As yet, we only have one standard loop controller for 

each of the two axes working independently; integration 
of control laws is not applicable here.  

2. Capture non-ideal components 
We needed signal condition functions for both the 

Joystick signals and the encoder signals representing the 
angle of the two axes of the robot. Initial tests also indi-
cated that filtering the Joystick signal was necessary, due 
to its spiky waveform. The result is shown in Figure 11. 

The signal limiter symmetrizes the ranges of the po-
tentiometers in the analogue joystick; the attenuators ad-
just the signal levels. The noise filter is a forth order But-
terworth low-pass filter, designed for 100Hz sampling 
frequency with cut-off on 2Hz. The filter is designed us-
ing 20-SIM’s Linear System Editor. 

Actually, we did not model the Joystick behavior in-
cluding its output signal quality in detail, but only added 
a software component to enhance the quality of the sig-
nal. So, with the resulting model, we cannot show what 
the origin of these spiky signals is. For our design con-
text (i.e. use the given Joystick for the demo), it is not 
relevant to know where these spikes come from. How-
ever, it is relevant to understand that whenever the Joy-
stick will be replaced, the signal conditioner should be 
reconsidered. 

 

 
Figure 2 Photo of JIWY 
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Figure 3 Closed control loop 

 
 
 

 
Figure 4 Top-level JIWY model 

 
 
 

 
Figure 5 Closed-loop control with man-machine interface 

 
 
 

 
Figure 6 Top-level JIWY model in 20-SIM, with a joy-

stick as set-point generator 

 
 

 
Figure 7 Model of the robot 
 

 
Figure 8 The internals of the amplifier I/O box 
 

 
Figure 9 Sufficient model of joystick 
 

 
Figure 10 The control computer: the outcome of the first 

2 design phases: physical system modeling and de-
riving control laws 
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3. Computer Architecture 
 The next step is to enhance the models of the control-

ler part (i.e. those parts that will be implemented in soft-
ware), such that a more close resemblance with the final 
real situation will be reached, i.e. the parallelism will be 
added. By using the CSP diagrams, we can specify ex-
actly what we mean and how the execution framework 
should fulfill our requirements. Currently, 20-SIM does 
not support specifying the execution framework in CSP 
diagrams, so for "parallelization" of the software design 
20-SIM can be used to a rather limited extent. 

   For revealing the possibilities of parallel execution 
of the software components, first the model of the soft-
ware part should be decomposed, such that pieces appear 
that can be run in parallel. Except for the controller, all 
submodels consist of 2 groups of independent, parallel 
parts. The controller consist of two parallel working PID-
controllers. So treating each controller as a separate 
block, results in a parallel description of the controller. 
The resulting system is now parallelizable: In Figure 12, 

the vertical colored boxes denote the subsystems of the 
previous figures, and the two horizontal boxes denote the 
two parallelized parts of JIWY. 

At this stage, the block diagram of the control soft-
ware part can be converted to CSP diagrams (Figure 13). 
The communication and composition graphs are drawn, 
whereby the topography of the originating block diagram 
is maintained. It is actually a notational conversion from  
Figure 12 to Figure 13. 

The µ-processes in Figure 13 indicate that the process 
at the other end of the relationship, to which it is con-
nected, will be executed in an infinite loop. Via the pa-
renthesis symbols ‘¡’ and their indices, it is indicated 
that the upper two processes will be executed independ-
ently from the lower two processes. This way, the de-
coupling of the two axes is indicated. 

 
 
 

 
Figure 11 The refinement of the Controller building-block in 20-SIM for one axis 

 

Figure 12 The total JIWY model with parallelized controller  
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Figure 13 Communication graph (above) and composition graph (below) of the JIWY controller 

 

 

Figure 14 Stop button and homing process added 
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4. Incorporate safety, error and maintenance facilities 
For each control loop, we designed a stop button, to 

stop the controller. As a reaction, we start a homing 
process to bring JIWY to a defined position.  

The first CSP graphs (Figure 13) are extended to re-
flect this enhancement, resulting in Figure 14. For each 
loop, a choice operator (a square box) executing the con-
trol loop until a joystick button is pressed, has been 
added. Pushing the button stops the µ-process via the 
Boolean variable stop_x or stop_y.  

The ?-process is a primitive reader process. The 
reader process is conditionally related to the choice op-
erator. The reader will read from the channel buttonchan1 
when buttonchan1 is ready (i.e. a writer writes to the 
channel) and condition is true (i.e. [true]); otherwise the 
reader will not be selected. If both the channel is ready 
and the expression is true then the choice operator may 
select the reader. The reader will immediately read chan-
nel buttonchan1. Also Boolean stoph will be set to true. 
This is similar for buttonchan2. 

 
 
 

IV. CONCLUDING REMARKS 
The dot-framed phases of the design trajectory, as 

shown in Figure 15, are subject of current research and 
development. Hence, the main focus is put on stepwise 
refinement of the embedded software to be automatically 
generated, exhaustively verified and enabled for retarget-
ing from one to another embedded platform. 

Note that in this research, we focus on the embedded 
control software part. However, the CSP diagrams as 
shown in the last part of Section III.B can also be used to 
describe the communication and composition behavior of 
the hardware. By doing so, design space exploration on 
hardware-software co-design issues can be supported.  

 
Future work mainly will with the following topics: 
Analyze the scalability and effects of increasing com-

plexity and analyzing the maintainability when new op-
erational functionality is added to the software part. 

Measure and assess real-time behavior (performance) 
and compliance with equipment constraints (memory 
footprint). 

Investigate possibilities of integration of the CSP case 
tool under development with other graphical CAD and 

 

Figure 15 Current situation of the tool support 
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CASE tools (20-SIM, Rhapsody or RT-Rose). 
Extend expressiveness capabilities of the framework 

to support reasoning in terms of heterogeneous distrib-
uted networked embedded systems.  
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