Efficient Reinforcement Learning using Relational Aggregation

Martijn van Otterlo

OTTERLOQCS.UTWENTE.NL

TKI, Department of Computer Science, University of Twente

P.O. Box 217, 7500 AE, Enschede, The Netherlands
1. Introduction

Much research in Reinforcement Learning (RL) has fo-
cused on learning algorithms and generalization using
simple representation languages for states and actions.
Recently, there is much interest in various kinds of ab-
straction. Abstractions over time or primitive actions,
e.g. in hierarchical RL, are useful ways to abstract over
specific sub-actions or time. Currently there is also in-
terest in using more powerful representation languages
for abstraction in RL, in which subsets of first-order
logic are used for representing sets of states and ac-
tions. For an overview of these methods, see (van Ot-
terlo., 2003; van Otterlo, 2002).

Some issues in relational representations were recently
addressed in both decision theoretic planning and
(model-free) RL. The work by Dzeroski et al. (Dze-
roski, 2002) on Relational Reinforcement Learning
(RRL) uses an online tree induction algorithm that
was upgraded to relational representations. RRL in-
duces a relational representation of the value function,
thereby generalizing over the state-action space by us-
ing predicates and variables. The work by Morales
(Morales, 2003) uses a relational representation for
states and actions too, but does not induce a represen-
tation of the state space. Instead, it uses a predefined
partitioning of the state space and predefined (global)
actions that can be applied.

Here we present a new method for RL using a rela-
tional representation that is also predefined, but we
use local actions (i.e. defined relatively to some (ab-
stract) state). Our representation involves identifiable
states and actions as exact abstractions of parts of
the underlying MDP. With this we can extend our ap-
proach by learning a model and by using model-based
RL algorithms such as prioritized sweeping (PS).

2. Approach

A relationally factored MDP (RMDP) M =<
P A, D, TR >, where P is a set of predicate tem-
plates (fluents), A is a set of action templates and D
is a domain of objects. The state space S is defined

as a subset of the set of interpretations over P and D.
Let A be the set of interpretations over A and D (i.e.
the set of ground actions), then T': & x A — P(S)
and R: S8 x A — R. Solving the RMDP involves
finding a policy 7 : & — A that maximizes expected
rewards. In this paper we do this by learning a value
function.

In order to solve an RMDP, a representation is defined
as follows. Formally, an abstracted state-action space
T is a set of regions, defined by T = {(c,Q)} in which
o is a relational expression describing an abstract state
and € a set of abstract actions that can be applied in
that state. If p € T is a region, we use p° and p as
notation for the two parts of a region p. For example
(A, B and C are variables), p? = 3A, B,C [on(A, B)A
on(B,C)Non(C, f)AN=(A = B)A—(B = C)] and p* =
{move(A, f)} for some blocks world example. Value
functions are defined for Y: if p € T, then Q(p?,w)
is the Q-value for some action w € p and V(p°) =

mawapQQ(pov w)'

Algorithm 1 Main Reinforcement Learning Loop

Require: environment is initialized etc.
1: for all episodes do
2: Initialize start state
3: while NOT ((end of episode) OR
(maximum number of steps reached)) do

4: s is current ground state
5: Find covering region: p € T for which s+ p°
6: Take action set p
7 if exploration then
8: exploration strategy chooses w from p
9: else
10: w = argmax,,c o Q(p7,w")
11: end if
12: get set of substitutions 0 = {6; | s kg, p7}
13: take random substitution 6; from 0
14: apply ground action a = wb;
15: observe new state s’ and reward r
16: Find new region: p’ € T for which s’ - p'”
17: Q(p7,w) = Q(p”,w)+

Oé(’f‘ + Y IMAX s g pr2 Q(pl07 wl) - Q(p07w))'
18: end while

19: end for

Interaction with the environment happens in terms
of ground representations (e.g. mno variables are

used). In the RL cycle of perceiving states, doing
actions and getting rewards, all states and actions
are ground. The learner perceives a state that con-
sists of all simple features that are true in the cur-
rent state, i.e. a state is a first-order interpretation.
For a blocks world, just the on(,-) and clear(-) rela-
tions are used for states. An example ground state
is {on(a,b),on(b,c),on(b, f),clear(a),clear(f)}. The
abstract states are specified using the simple features
and variables, but can make use of background knowl-
edge relations as well. The relation height(X,N) - say-
ing the X is the top of stack of height N - is not
provided in the ground state, but it can be defined
in terms of simple state features like on and clear.
Background knowledge, if available, enables powerful
abstractions.

Algorithm 1 shows the main algorithm for standard
Q-learning over an abstract state space. Notice that
the main differences with standard Q-learning are the
random action choice in line 13 and the covering test
by proving (F). Also different is that regions have their
own set of actions. Each action is dependent on the
representation of the region it is in.

By learning a model of the underlying RMDP, i.e.
approximate transition probabilities and expected re-
wards for Y, we can speed up learning the value func-
tion. For this we modified line 17 of algorithm 1 into
a call to a PS algorithm® with p as argument.

ppppppppppppp

Figure 1. (a) Q-learning on a ground state space vs. PS on an abstract
state space for a four blocks world (averaged over 5 runs). Notice the large
variance in ground learning. Learning over the abstract space converges
after only a few episodes. (b) Q-learning vs. PS on the same abstract five

blocks world (mean over the last 10 episodes, averaged over 10 runs).

We have performed some experiments in simple blocks
world problems and the game of Tic-Tac-Toe (see fig-
ures 1 and 2). To give some impression, in the 4-blocks
world a ground representation consists of 240 state-
action-pairs (SAP), but in our representation just 12.
For Tic-Tac-Toe a ground representation has roughly
6000 states and many more SAP’s, whereas we have
only 15 states and 41 SAP’s for reasonable play.

We use Wiering’s modified PS algorithm, adapted for
our specific (action) representation.

3. Conclusions and Further Research

The experiments show that i) the use of our rela-
tional representation significantly reduces the number
of episodes needed to learn a task (because of the re-
duction of the size of the state space) and ii) because
our representation enables the learning of a transition
model for the underlying MDP, it also enables us to
use PS to speed up learning of the value function.

0.4

episode

Figure 2. Sample graph of learning Tic-Tac-Toe on an abstract space

(mean over 3 runs). The data points are moving averages over 30 games.

Working with relational representations is computa-
tionally demanding. For example, proving coverage
of a state is harder in a relational language than
for propositional languages. Also, the combination
of value-based methods (RL and other stochastic ap-
proximation techniques) and logical induction meth-
ods such as inductive logic programming has not been
studied much. Nevertheless, the benefits of relational
languages, i.e. compact state space, comprehensibil-
ity, applicability in large (relational) state spaces etc.
(see also (van Otterlo, 2002)) will outweigh this com-
putational burden in the end.

Our current and future work deals specifically with a
second disadvantage, that is the predefined state space.
We are working on methods to adaptively learn a rep-
resentation while learning (e.g. like in RRL) and we
have some initial work ongoing in bottom-up general-
ization, using information from the value function and
transition probabilities. Unlike RRL, which learns an
abstraction of the value function, we want to learn
a representation of the state space and learn a value
function for this.

References

Dzeroski, S. (2002). Relational reinforcement learning for agents in worlds
with objects. In Proceedings of the AISB’02 Symposium on Adaptive
Agents and Multi-Agent Systems (pp. 1-8).

Morales, E. (2003). Scaling up reinforcement learning with a relational
representation. Published at a local workshop in Sidney (in january).

van Otterlo, M. (2002). Relational expressions in reinforcement learning:
Review and open problems. Proceedings of the ICML’02 Workshop on
Development of Representations.

van Otterlo., M. (2003). Efficient reinforcement learning using relational
aggregation (Technical Report 2003-XX). Department of Computer Sci-
ence, University of Twente, The Netherlands. forthcoming.

