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Depth-averaged flow in presence of submerged cylindrical elements
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ABSTRACT: The hydraulic resistance of vegetation can play a major role in the hydrodynamics of rivers with
extensive natural floodplains. Vegetation penetrates the flow field and thereby causes drag that, in addition to
the flow resistance at the bed level, causes energy losses and slows down the flow. Here, these flow processes
are studied in an idealized form by treating vegetation as cylindrical roughness elements with homogeneous
geometrical dimensions. Based on scaling considerations of the forces involved, depth-averaged flow velocities
within the resistance layer and in the free flowing layer above the roughness elements are estimated. This yields
a new description of the overall average flow field, which is entirely determined by measurable geometrical
boundaries. We tested the new relation against laboratory flume experiments and found very good agreement
(R2 = 0.98). The new description even showed realistic results when the depth of flow is of similar size as
the height of the roughness elements themselves. This result demonstrates its superiority over commonly used
wall-roughness methods.

1 INTRODUCTION

Submerged vegetation directly influences the dis-
charge capacity in rivers, floodplains or irrigation
channels. As a result, the hydraulic resistance of vege-
tation has been extensively studied in the past decades
(for overview see Green 2005). While the hydraulic
resistance of solid boundaries with small scale irreg-
ularities is quite well understood, situations in which
resistance elements are of similar sizes as flow depths
still pose large problems (e.g. Smart et al. 2002, Stone
and Shen 2002). Especially near the roughness tops,
the general form of the most representative velocity
profile is still a matter of debate (e.g. Nikora et al.
2004). In case of vegetation, this is further compli-
cated by the natural variability in plant dimensions or
streamlining effects.

Laboratory flume studies with natural vegetation
have resulted in several empirical flow resistance equa-
tions (e.g. Huntington et al. 1992, Copeland 2000). A
drawback of these resistance relations is that it is not
possible to attribute the relative importance of different
flow processes to overall energy losses. General appli-
cation is therefore difficult, especially in situations that
differ much from the original experiments.

More general insight into the hydraulic resistance
of vegetation can be achieved by ruling out effects
that are due to streamlining effects of leaves and

natural variability. Natural vegetation is then replaced
by an idealized form: rigid cylindrical stems. Exam-
ples hereof can be found in flume studies (e.g. Meijer
and van Velzen 1998 or Stone and Shen 2002) and
detailed numerical flow models (e.g. Uittenbogaard
2003, Neary 2003). While numerical flow models have
shown to represent flow characteristics realistically,
the computational effort makes them of limited use
for large-scale river applications.Therefore, more sim-
plified solutions are desired that describe the mean
flow field in terms of the cylinder characteristics and
flow depth.

Stephan and Gutknecht (2002) suggest that the
mean deflected plant height is a suitable measure for
vegetation resistance. However, Klopstra et al. (1997)
claim that a roughness height analogy underestimates
vegetative resistance and developed a method that
takes into account drag due to individual stems (cylin-
ders) and turbulent mixing. Through depth-integration
of the vertical velocity profile an analytical expression
for the mean velocity was derived. Unfortunately, the
expression is still quite complex and the necessary
turbulence closure parameter is poorly understood.
Consequently, there are still difficulties in its practical
application.

In the current work, flow over vegetation is des-
cribed by an average-velocity model where distinct
flow characteristics are attributed to two separate flow
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Figure 1. The depth-averaged velocity Ur0 is the result of the
balance between the gravitational force (i.e. gravity-driven
flow, because of channel with bed slope i), the drag force
and the bed resistance. The individual stems have a diam-
eter D [m] and a separation s [m] (s = 1/

√
m, m = surface

density [m−2]).

layers. These two regions will be referred to as the sur-
face layer and the resistance layer (see also Figure 2).
General scaling assumptions are made, which avoid
the necessity of integration over depth and the associ-
ated complications of depth-dependence of turbulence
intensities. Even though specifics of natural vegeta-
tion are neglected, its accurate description of flow
through an array of cylindrical stems gives confi-
dence in applications that involve vegetative hydraulic
resistance.

2 FLOW THROUGH VEGETATION

When a flow field is penetrated by vegetation, tur-
bulent vortices are created in the wake behind the
protruding stems (e.g. Akilli and Rockwell 2002).
Consequently, in addition to the resistance at the bed,
drag effects around the individual plant stems cause the
flow to slow down. By replacing the vegetation with a
homogeneous field of identical cylindrical stems, the
water movement is represented by a bulk force balance
(e.g. Baptist 2005):

where the individual stems, with diameter D [m] and
bed surface density m [m−2], exceed the flow depth
h [m] (see Figure 1). Furthermore, CD [-] is the drag
coefficient, i [-] the slope of the channel, and f [-] is
the bed resistance function. The separation between
individual cylinders s is entirely determined by their
bed surface density m:

Also, the stem diameter D and the stem surface den-
sity m can be combined to give a new length scale.
Together with the drag coefficient we introduce b, the
drag length:

By using (3), the average velocity Ur0 [m/s] may be
written as:

where U ∗
r0 is the average flow velocity in the resis-

tance layer if no bed resistance effects were present
(i.e. when f = 0).

The average flow velocity Ur0 can now be determined
if the bed resistance function f is specified. For turbu-
lent flows, several functions for f exist (see e.g. Yen
2002). A commonly used relation for turbulent rough
flow was proposed by Strickler (1923), here given in
a dimensionally homogeneous form:

where Strickler’s roughness height kS [m] reflects the
size of the irregularities on the bed and U the asso-
ciated depth-averaged velocity. Considering that kS is
usually much smaller than the flow depth h, the contri-
bution of bed resistance is often negligible in the force
balance (1) and, consequently, the average velocity in
the resistance layer Ur0 is practically equal to U ∗

r0.
Kadlec (1990) warns of the possibility that within

the resistance layer flow velocities could reduce to
yield a laminar flow field. In that case, the resistance
function f is inversely proportional to the Reynolds
number (see e.g. Yen 2002).

3 SUBMERGED VEGETATION

3.1 The resistance layer

Whenever cylindrical elements become submerged,
the flow in the surface layer has a higher average veloc-
ity because in this layer no drag due to the stems is
experienced. The energy losses in the surface layer
are then entirely due to a shear stress near the top of
the resistance layer, which balances the gravitational
force that drives the flow. Subsequently, the shear stress
between surface and resistance layer (i.e. the interface
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Figure 2. The depth-averaged velocity Ur in the layer occu-
pied by the cylindrical stems (i.e. in the resistance layer) in
the case that the stems are submerged.

shear) also causes the flow in the top of the resistance
layer to speed up (see Figure 2). With an extra com-
ponent due to the surface layer, the force balance (1)
modifies to:

The two contributions on the left-hand-side of (7) are
due to the gravitational force that acts on the surface
and in the resistance layer, respectively. The drag force
acts over a depth k , as opposed to the total flow depth
h in case of (1), where the cylindrical stems were not
submerged. As a result, the average velocity in the
resistance layer Ur becomes:

where Ur0 is the average velocity in the resistance
layer if no free flowing layer above the cylindrical
stems were present (equation (4)). Inserting the bed
resistance function f as given in (6) into (7), yields
for Ur0:

In earlier works, results similar to the square root
law in (8) have been found. Smart et al. (2002) point
out that with increasing relative roughness, a concep-
tual drag coefficient model would lead to a square-root
law of the flow resistance. Baptist et al. (2006) used
dimensionally aware genetic programming (Keijzer
and Babovic 2000) and also found a square root
dependence with respect to the relative flow depth h/k .

3.2 The surface layer

Based on physical principles and scaling assumptions,
the well-known Strickler equation (6) can be derived

h-k
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Figure 3. The depth-averaged velocity in the surface layer
Us. Two hydraulic radii are also shown: Rs reflects the depth
of the surface layer with respect to an artificial rough bed and
r (the spacing hydraulic radius) reflects the roughness height
of the artificial rough bed.

for the case of rough channel flow (see Gioia and
Bombardelli 2002). The main principles behind the
derivation are: (i) a simple force balance; (ii) scaling
of turbulent velocity fluctuations to the average flow
velocity; and (iii) the concept of a constant energy dis-
sipation rate when large turbulent flow patterns (i.e.
eddies) break up into smaller ones (known as Kol-
mogorov scaling). Here we will follow the same line
of reasoning to describe depth-averaged flow over sub-
merged rigid cylinders (i.e. for the surface layer; see
Figure 3).

3.2.1 Shear stress in the surface layer
In steady flow over a rough bed, the shear stress at the
top of the bed τk balances the gravitational pull on the
water volume above the bed. In analogy, for the surface
layer this gives an expression for the shear stress (Rs
is the hydraulic radius of the surface layer):

Furthermore, from the Reynolds averaged Navier-
Stokes equation it follows that the (Reynolds) shear
stress at any location in a (2D) flow field is deter-
mined by the magnitude of fluctuations in the velocity
field (e.g. Pope 2000):

where vz and vx are velocity fluctuations perpendicular
and parallel to the direction of the average flow field.
The overbar denotes time-averaging of these fluctu-
ations. Gioia and Bombardelli (2002) argue that for
the shear stress near the bed, vx is associated with the
characteristic velocity in the surface layer and that the
perpendicular component is related to turbulent eddies
that dominate between the roughness elements. The
average velocity in the surface layer is Us and the
velocity associated with the dominating eddies near
the artificial rough bed is denoted by ur . Following
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Gioia and Bombardelli the shear stress at the artifi-
cial bed (i.e near the top of the resistance layer, see
Figure 3) scales as:

Together with the force balance (10) this yields:

To find a relation for the average velocity in the surface
layer Us an independent expression for ur needs to be
found. For that purpose, energy considerations of the
turbulent flow field are used.

3.2.2 Turbulent energy and Kolmogorov scaling
In the Kolmogorov view on turbulent flow, turbu-
lent energy is created through external forcing at the
largest scale of the system (energy containing range)
and is dissipated to successively smaller scales until
eventually viscosity damps the smallest flow patterns
(viscous dissipation). The rate of dissipation of tur-
bulent kinetic energy per unit mass is denoted by ε
[m2/s3] and, at large scales, is independent of molec-
ular viscosity. For the energy input at the largest scale
(the energy containing scale), a scaling expression for
ε is composed of representative geometrical parame-
ters (hydraulic radius Rs) and the representative flow
velocity (Us), based on dimensional analysis (e.g. Pope
2000).

Furthermore, if we assume that:

• the turbulence intensity at the artificial rough bed
is a result of the energy cascade to smaller scales;

• eddies of size r and velocity ur dominate the flow
field near the artificial rough bed;

then the dissipation rate should also scale as:

Now ε is related to the characteristic velocity ur and
the spacing hydraulic radius r that bounds the extent of
the dominant local eddies. The characteristic velocity
in the resistance layer can be related to the average
velocity in the surface layer as (using (14) and (15)):

Expression (16) can now be inserted into relation
(13). This yields a scaling expression for the average
velocity in the surface layer:

Note that relation (17) reduces to the Manning/
Strickler equation (Manning 1889, Strickler 1923) if
the total relative flow depth is large (Rs large) and
the spacing hydraulic radius is small (r becomes an
equivalent roughness height). Also, using expression
(16) and (17) a scaling equation for the characteristic
velocity at the top of the resistance layer (ur) can be
established:

To specify the hydraulic radii Rs and r in terms of
geometrical quantities, we will analyze the two scaling
expressions (17) and (18) for their behaviour in certain
limiting cases (asymptotic analysis).

3.2.3 Asymptotic behaviour of hydraulic radii
Scaling the average velocity in the surface layer Us
(17) to the velocity Ur0 (9) yields the dimensionless
velocity function:

For most practical cases the bed resistance can be
neglected (kS << h). Therefore, (19) reduces to:

We now assume that both Us and ur scale to the rel-
ative depth of the surface layer (h − k)/�, where � is
an unknown scaling length to be determined empir-
ically. By making Us and ur dimensionless through
division with Ur0 we define the following power law
asymptotics:

The power law expressions (21) and (22), with constant
γ and η, express complete similarity between the con-
sidered dimensionless velocities and the relative flow
depths of the surface layer (as opposed to incomplete
similarity when γ and η are variable, see Barenblatt
1996). According to (21) and (22) Us and ur allow dif-
ferent rates of convergence, but both eventually vanish
when the surface layer disappears. The latter observa-
tion immediately limits the validity of the assumptions
that lead to (21) and (22): the average flow velocity in
the surface layer should always be larger than the flow
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velocity in the resistance layer (Ur0), even if the sur-
face layer is extremely shallow. Essentially, power laws
(21) and (22) no longer give realistic results when val-
ues below unity are found (i.e. when the depth of the
surface layer, h − k , becomes smaller than �). Nev-
ertheless, we continue with (21) and (22), realizing
their limitations, and later on evaluate implications for
practical application.

Solving for Rs and r by combining (21) and (22)
with (17) and (18) yields:

Next, the two unknowns in the power law η and γ are
determined by investigating the expected behaviour in
the case that the water depth becomes much larger than
the roughness height. Experimental observations (e.g.
Manning 1889, Strickler 1923) have shown that when
the depth of flow is much larger than the roughness
height, then the flow hydraulic radius can be replaced
by the flow depth h. For these conditions, the spacing
hydraulic radius r as it appears in relation (17) reflects
a roughness height and is independent of depth. Thus:

• If h >> r then Rs ∼ h
• If h >> r then r ∼ constant

A priori it is not quite clear which parameter, or combi-
nation of parameters, r should scale to when h becomes
much larger than k , but as long as r is not dependent
on the depth h then the power law for r in (24) should
vanish:

The hydraulic radius in the surface layer scales with h;
therefore the power law in (23) should behave as:

Solving for η and γ by combining expression (25) and
(26) yields η = 1/3 and γ = 2/3.As a result, the power
law expressions for Rs and r become:

It was mentioned earlier that r reflects the extent of
the largest eddies near the artificial bed. This means
that when the separation between roughness elements

s is equal to the dynamic diameter of the cylinders
(i.e. CDD) then the largest eddies are bounded by s.
However, when the diameter of the elements are sig-
nificantly smaller than the spacing between elements,
then (28) shows that r exceeds s. In effect, relation (28)
tells us that whenever the spacing between elements is
large as compared to the size of the elements them-
selves, then the eddies are not confined to the space in
between the roughness elements.

Expressions (27) and (28) are inserted into the scal-
ing expressions for the average velocity in the surface
layer (19), and we arrive at:

This is the new scaling expression for the average
velocity in the surface layer. Basic assumptions that
lead to this result were (i) similarity between velocities
and relative flow depths (power laws (21) and (22)) and
(ii) correspondence with Manning’s equation at large
flow depths. A specification of the unknown scaling
length � in terms of measurable geometric parameters
follows from comparison with laboratory experiments.

4 COMPARISON TO DATA FROM FLUME
EXPERIMENTS

4.1 Average velocities in the two flow layers

The experimental data used in this section is adopted
from laboratory flow studies as performed at the De
Voorst WL|Delft Hydraulics facility in 1996 (Meijer
and van Velzen 1998, Meijer 1998, also reported in
Baptist 2005). Based on four flow experiments without
artificial vegetation, the roughness height kS of the
flume bed was determined to be kS = 2.3 ± 0.6 mm.
In the results presented here, this value for kS is used
for computing Ur0 (equation 9).

Further data from these studies comprise 48 flow
experiments with homogeneously distributed cylindri-
cal stems that all have the same diameter D of 8 mm.
Flow depths h and cylinder heights k were varied
between the experimental runs (three values for k were
used: 0.45, 0.9 and 1.5 [m]). Half of the experiments
were carried out with a surface density of m = 256
cylindrical stems per square meter, and the other half
with a surface density of m = 64 [m−2]. Flow veloci-
ties were measured at different depths 0.10 [m] apart.
Using linear interpolation the average flow depth for
the surface and the resistance layer were estimated sep-
arately. From the measured average velocities in the
resistance layer, local Reynolds numbers were calcu-
lated (Re ∼ 3·104 − 4·104) and, subsequently, the drag
coefficients CD for the circular cylinders. Standard
works on fluid mechanics report that in such a flow
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Figure 4. The proposed scaling relation for the
depth-averaged velocity Ur in the resistance layer (relation
(8), on horizontal axis) as compared to results from labora-
tory flume experiments (m = number of cylindrical stems
per m−2 on the bed surface).

regime the drag coefficient remains fairly constant
with a value of nearly 1 (e.g. Schlichting 1979).

Figure 4 shows the measured average velocities in
the resistance layer as compared to the predictions of
relation (8). Although for slow flows the velocities
are slightly overestimated, by using relation (8) overall
agreement with data is very good (R2 = 0.94).

For the specification of the unknown scaling length
� in relation (29), several combinations of available
length scales were attempted (D, s, b and combina-
tions of these). It turns out that for � = s the proposed
scaling law gives best agreement with laboratory data
(see Figure 5). The correlation coefficient is again
R2 = 0.94, in which we have chosen the coefficient of
proportionality equal to unity. Apparently, the spacing
between the roughness elements is a suitable measure
of the extent to which the flow in the surface layer
influences the flow field in the resistance layer. Based
on this finding, it seems natural to assume that � may
never exceed the height of the cylinders k . By imposing
a limit of height k on the scaling length �, we pro-
pose the following scaling expression for the average
velocity in the surface layer:

In section 3.2.3 it was argued that expression (29),
or (30), is no longer valid when the flow depth
(h − k) is close to or smaller than the scaling length �
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Figure 5. The depth-averaged velocity Us in the surface
layer; the proposed relation (30) (on horizontal axis) vs.
measured flow velocities.

(i.e. � = min (s, k)). However, in the considered exper-
imental data the flow depth (h − k) goes down to less
than three times �, and still expression (30) performs
well (see Figure 5).

4.2 A two-layer scaling model for the entire flow
depth

The average flow velocity for the entire flow depth
UT can be found by adding the weighted average flow
velocities of the resistance and the surface layer (Ur
and Us, respectively):

By making use of scaling relations (8) and (30), the
expression for the average velocity over the entire flow
depth (31) becomes:

In the previous section the validity of (30) was
addressed for cases when the depth of the surface layer
(h − k) becomes small. Significant errors in (30) are
expected when (h − k) becomes close to or smaller
than �. However, relation (31) shows that in such cases
the average velocity in the surface layer (Us) only
contributes little to the overall average velocity (UT ).
Therefore, errors in (30) due to shallowness of the
surface layer only have a minor impact on the total
depth-averaged velocity UT .
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In Figure 6, the predictions of relation (32) are
shown in comparison to the measured average flow
velocities (interpolation between flow velocities mea-
sured at different depths). The combined performance
of the velocity scaling expressions (8) and (30) is
even better than found before, yielding a correlation
coefficient of R2 = 0.98.

5 CONCLUSIONS

For open channel flow over rough surfaces, several
suitable relations exist that relate the average flow
velocity to a roughness height that reflects the resis-
tance of the bed. However, when the bed is covered
with large roughness elements such as vegetation, or
cylindrical elements, these methods are theoretically
no longer valid. In this paper, a two-layer scaling model
is proposed that treats the flow field above and in
between the roughness elements separately, and, when
combined, gives a description of the depth-averaged
velocity of the entire flow field. When comparing
the newly derived description to results from flume
experiments, very good agreement is found (correla-
tion coefficient R2 = 0.98). The scaling length �, that
completes the velocity relation in the surface layer, is
found to be well represented by the spacing between
the cylindrical stems. It is expected that this is no
longer the case when the height of the cylinders is
smaller than the distance between them. Further inves-
tigations with different geometrical properties of the
cylinders, and different spatial distributions, should be
carried out to substantiate this claim.

The difficulty of describing flow over vegetation
is primarily due to flow characteristics near the top
of the vegetation, as reflected in the scaling length
� that is necessary to describe the flow in the sur-
face layer. The flow field in between the resistance
elements is satisfactorily described by drag forces.
However, for the surface layer energy losses are due to
the turbulent patterns, for which in a bulk flow descrip-
tion a representative closure parameter is required. In
the used experimental data set, vegetation was repre-
sented by homogeneously distributed identical rigid
stems, and the turbulent length scale was adequately
described by one geometrical length scale from within
the resistance layer. Future work will be focussed
on the characteristics of such a scaling length when
geometric variability between the resistance elements
exist. Eventually, the aim is to describe flow over nat-
ural vegetation, which involves further complications
as stem flexibility, or leaves and side branches that
individual plants may have.

NOTATION

ρ [kg/m3] Water density
g [m/s2] Gravitational acceleration
i [–] Bed slope of channel
h [m] Flow depth
k [m] Height of cylinders
CD [–] Drag coefficient
m [m−2] Bed surface density of cylinders
D [m] Diameter of cylinders
s [m] Separation between cylinders
b [m] Drag length
f [–] Bed resistance function
kS [m] Strickler’s roughness height
Ur [m/s] Depth-averaged flow velocity in

resistance layer (general)
Ur0 [m/s] As Ur , for h < k
U ∗

r0 [m/s] As Ur0, neglecting bed resistance
Us [m/s] Depth-averaged flow velocity in

surface layer
UT [m/s] Depth-averaged flow velocity

over total flow depth
ur [m/s] Characteristic eddy-velocity near

top of resistance elements
Rs [m] Hydraulic radius of surface layer
r [m] Spacing hydraulic radius
� [m] Unknown scaling length
ε [m2/s3] Energy dissipation rate
v [m/s] Velocity fluctuation
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