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ABSTRACT

A flexure which retains its support stiffness characteristics for large deflections, is optimized with respect
to maximum allowable stress, low actuation stiffness and high support stiffnesses. Such an optimization
requires an efficient model which accurately describes the stiffness characteristics and stress distribution of
flexures. For this purpose a multibody modelling approach based on a non-linear finite element description
is investigated and extended to include the computation of the stress distribution in the deformed configura-
tion. It is shown that the accuracy of the maximum occurring stress is comparable with those obtained from
a classical non-linear finite element analysis. An optimized shape of the flexure is found and for deflection
angles larger than7.4◦, it is preferable over a single leaf-spring flexure.
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1 INTRODUCTION

In high precision manipulator mechanisms, flexure elementsare often utilized for their deterministic static
and dynamic behaviour. A typical example is the leaf-springflexure, shown in figure 1(a). The leaf-spring
has a high support stiffness inx-, z- and ry-direction, while it has a low actuation stiffness in therz-
direction. However, with increasing deflection in therz-direction, the support stiffnesses rapidly decrease.
This results in a deteriorating static and dynamic behaviour of the mechanism, making this flexure element
less suited for long stroke applications. Other flexure elements such as the cross-pivot flexure [3], suffer
from this same drawback. Recently, a flexure has been introduced that shows promising results in retain-
ing its support stiffness over a large range of deflection [1]. This so called curved hinge flexure (CHF),
figure 1(b), consists of two pre-curved stress free leaf-springs. In the deflected state, one of the leaf-springs
becomes straight, figure 1(c), providing the support stiffnesses. A drawback of the CHF in its current

x
y

z

rz

ry

rx

γ

(a) (b) (c)

Figure 1. Leaf-spring flexure (a), curved hinge flexure undeformed state (b) and curved hinge flexure
deflected state (c).

design is the occurrence of high stress levels in the deflected state. Smaller stress levels can be obtained
with an optimized shape and topology of the flexure, using an adequate optimization criteria: a low actu-
ation stiffness, high support stiffnesses within the working range and a constraint on the allowable stress.
For this optimization, an efficient model is required which accurately describes the stiffness characteristics
and stress distribution of flexures. The flexible multibody modelling approach implemented in the SPACAR
software [4], is based on a non-linear finite element beam description and is well-suited to create the models



for this optimization. In this approach, the geometricallynonlinear relations for the beam element defor-
mations, expressed in terms of the nodal coordinates, play acentral role. Its implementation is based on
the adoption of an appropriate description of finite rotation kinematics, where properly chosen deformation
parameters are defined as generalized strains with energetically dual generalized stress resultants [5]. The
approach has already proven to be quite accurate and efficient in predicting stiffness characteristics [7].
However, correctly interpreting the generalized stress resultants of the element in a deformed configuration
is not straightforward. In this paper it is shown how the distributed stress resultants, along the elastic line in
a deformed configuration, are derived from the generalized stress resultants. The normal and shear stresses
in the cross-section can then be computed from the distributed stress resultants. The von Mises criterion is
used to determine whether the maximal allowable stress has been exceeded. The computation of the stresses
and stiffnesses are used as input in the optimization problem of the CHF.
In section 2 a description is given of the multibody modelling approach of [5], which is extended to ac-
quire the distributed stress resultants and the von Mises stresses. Section 3 gives an overview of the CHF
model, the optimization criteria and optimization results. A comparison with a finite element method (FEM)
analysis is performed to determine the accuracy of the model. In section 4 the conclusions are presented.

2 THE FINITE BEAM ELEMENT

In this section a description is given of the beam element presented in [5], which is used in the model of
the curved hinge flexure (CHF). The concept of the generalized strains and the dual generalized stresses,
are explained. Relations are derived for the distributed stress resultants along the elastic line of a deformed
beam element, which are used to compute the von Mises stresses in the cross-section of the beam.

2.1 Definition of the coordinate vector and the generalized strains
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Figure 2. The finite beam element, showing the generalized strainsε̄2 throughε̄6. Note that in the left
view ε̄3−6 = 0 and in the two views on the right̄ε1 = 0.

In figure 2, different views of the beam element are shown. Theconfiguration of the beam element is defined
by position vectorsxp andxq, and the orientation of the orthonormal triads,

[

epx, e
p
y, e

p
z

]

and
[

eqx, e
q
y, e

q
z

]

,
rigidly attached to nodesp andq. The orientation of the triads can be computed by rotation matricesRp

andRq
[

epx, e
p
y, e

p
z

]

= Rp [eX , eY , eZ ] ,
[

eqx, e
q
y, e

q
z

]

= Rq [eX , eY , eZ ] ,
(1)

whereeX , eY andeZ are the unit vectors in the global coordinate system. The rotation matricesRp

andRq can be parametrized in several ways such as Euler parameters, modified Euler angles, Rodriques
parameters and the Cartesian rotation vector. Here the Cartesian rotation vector is used to parametrize the



rotation matrix, because it provides a natural way of representing the rotation axis and the rotation around
this axis. The rotation matrix can be written in terms of the Cartesian rotation vector, as [2]

R = I cosψ +
sinψ

ψ
ψ̃ +

1− cosψ

ψ2
ψψT with ψ = ‖ψ‖ , (2)

and

ψ =





ψx

ψy

ψz



 , ψ̃ =





0 −ψz ψy

ψz 0 −ψx

−ψy ψx 0



 , (3)

whereψ is the Cartesian rotation vector andψ the angle of rotation. Together with the three position
coordinates, a total of six coordinates are needed to define the location and orientation of a node. For the
whole element, these parameters can be combined in the nodalcoordinate vectorx:

x =
[

xpT,ψpT,xqT,ψqT
]T
, (4)

wherexp andxq are the position vectors andψp andψq are the Cartesian rotation vectors of nodep andq
respectively. Since the beam element has twelve independent nodal coordinates and six rigid body modes,
six independent deformation modes, specified by a set of generalized strains̄ε [5], can be expressed as
analytical functions of the nodal coordinate vectorx and the original lengthl0,

ε̄ = D̄ (x) , (5)

where
ε̄1 = l − l0,

ε̄2 = l0
(

epz · e
q
y − e

p
y · e

q
z

)

/2,

ε̄3 = −l0el · e
p
z,

ε̄4 = l0el · e
q
z,

ε̄5 = l0el · e
p
y,

ε̄6 = −l0el · e
q
y,

with l = ‖xq − xp‖ and el = (xq − xp) /l.

(6)

The first generalized strain,̄ε1, describes the elongation of the beam, the second one,ε̄2, describes the
torsion and the remaining four are the bending strains. The generalized strains̄ε2−6 are visualized in
figure 2. To better describe the influence of loading of the element on its stiffness properties, the generalized
strains are modified as [6] [7]:

ε = D (x) . (7)

where,
ε1 = ε̄1 +

(

2ε̄23 + ε̄3ε̄4 + 2ε̄24 + 2ε̄25 + ε̄5ε̄6 + 2ε̄26
)

/ (30l0) + ctε̄
2
2/
(

2l30
)

,

ε2 = ε̄2 + (−ε̄3ε̄6 + ε̄4ε̄5) /l0,

ε3 = ε̄3 + ε̄2 (ε̄5 + ε̄6) / (6l0) ,

ε4 = ε̄4 − ε̄2 (ε̄5 + ε̄6) / (6l0) ,

ε5 = ε̄5 − ε̄2 (ε̄3 + ε̄4) / (6l0) ,

ε6 = ε̄6 + ε̄2 (ε̄3 + ε̄4) / (6l0) .

(8)

These are the second order generalized strain definitions. The additional terms inε1 take into account
extra elongation due to bending and torsion. Forε2, the additional terms are due to extra torsion caused
by bending and forε3 throughε6 they represent additional bending caused by torsional deformation of the
beam.

2.2 Nodal forces and moments

Let us consider the equilibrium force system given by the nodal forces,F p andF q, and nodal moments,
T p andT q, represented in a vector of element nodal forces

f =
[

F pT,T pT,F qT,T qT
]T
, (9)



then the energetically dual virtual nodal variations are the virtual nodal displacements,δxp andδxq, and
the virtual rotations,δϕp andδϕp, given by

δu =
[

δxpT, δϕpT, δxqT, δϕqT
]T
. (10)

The virtual rotationsδϕ are infinitesimal rotations around the global coordinate axes and are related to
virtual variationsδψ by

δϕ = (T (ψ))
T
δψ =

(

(

sin ‖ψ‖

‖ψ‖

)

I +

(

1− cos ‖ψ‖

‖ψ‖
2

)

ψ̃ +

(

‖ψ‖ − sin ‖ψ‖

‖ψ‖
3

)

ψψT

)

δψ, (11)

whereT is the so-called tangent operator [2]. Using equation (11),the relation betweenδu and the virtual
variations of the nodal coordinate vectorδx of equation (4), is given by a block diagonal matrixA:

δx = Aδu = diag
[

I; (T (ψp))
−T

; I; (T (ψq))
−T
]

δu. (12)

According to the principle of virtual work, the element willbe in a state of equilibrium if

fTδu = σTδε, (13)

holds for allδε compatible with

δε =
∂D (x)

∂x
δx. (14)

Here the components of the vectorσ are defined to be dual to the generalized strains and are called the
generalized stress resultants. With equation (12) we obtain

fTδu = σTDδu, with D =
∂ε

∂u
=
∂D (x)

∂x
A. (15)

This yields the equilibrium equations of the beam element

f =DTσ, (16)

where the matrixD is the Jacobian matrix which can be found directly without making use of the transfor-
mation matrixA.

2.2.1 The Jacobian matrix

Consider a vectore undergoing an infinitesimal virtual rotationδϕ around the global axes, resulting in

e′ = Re = (I + δϕ̃) e, (17)

where the tilde denotes a skew symmetric matrix. Defining thevirtual change betweene′ ande to be

δe ≡ e′ − e = δϕ̃e = δϕ× e, (18)

then by takinge to be the columns of the rotation matrices of equation (1), the following expressions can
be derived:

δepx = δϕp × epx, δepy = δϕp × epy, δepz = δϕp × epx, (19)

δeqx = δϕq × eqx, δeqy = δϕq × eqy, δeqz = δϕq × eqx. (20)

With these relations the Jacobian matrix from equation (16)can be found directly. If the second order gener-
alized strain expressions are not considered, then by taking the derivatives of the expressions in equation (6)
with respect tou we obtain [5]
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(21)



When the second order generalized strain expressions are taking into account, the derivatives of equation (8)
need to be computed with respect tou. Forε1 this is

∂ε1
∂u

=
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+
ctε̄2
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. (22)

Similarly, the derivatives forε2−6 can be computed, where the resulting Jacobian matrix can be written as
a matrix multiplication of equation (21),

D = E D̄, with E =
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2.2.2 The distributed stress resultants
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Figure 3. The finite beam element, showing the nodal forces,F
p andF q, nodal moments,T p andT q,

and the stress resultants,N andM in the global coordinate system.

The configuration of the beam element is described by the position vectorr on the elastic line from the
inertial origin, and a body-fixed frame[ex, ey, ez] representing the orientation of the cross-section with
respect to the inertial frame. It is noted that the beam cross-section is allowed to rotate such that it is
not necessarily perpendicular to the neutral axis, in orderto model transverse shear deformations. The
orientation of the body-fixed reference frame with respect to the inertial frame is expressed as

[ex, ey, ez] = R (ξx) [eX , eY , eZ ] , with ξx ∈ [0, 1] , (24)

whereR is a rotation matrix withR (0) = Rp andR (1) = Rq. The components of the matrixR are
computed from the beam shape functions of the Timoshenko beam model presented in [5].
For the case of small element deflections, the distributed stress resultantsN andM for the left handed side
of the beam shown in figure 3, are expressed as

N = F q = −F p,

M (ξx) = T p(ξx − 1) + T qξx, ξx ∈ [0, 1] ,
(25)

whereF p andF q are the element nodal forces andT p andT q are the element nodal moments, respectively
defined by equation (16). The nodal forces and moments dependon the generalized stress resultantsσ,



which are computed from a kinetostatic analysis on system level. For the special case of zero deformation,
equation (25) simplifies to

N =





Nx

Ny

Nz



 =





σ1
σ5 − σ6
σ4 − σ3



 , M(ξx) =





Mx

My(ξx)
Mz(ξx)



 =





l0σ2
l0(1− ξx)σ3 + l0ξxσ4
l0(1− ξx)σ5 + l0ξxσ6



 , (26)

whereσ1−6 are the six components ofσ dual toε.
The distributed stress resultants from equation (25) can betransformed to the local coordinate system using
equation (24),

N ′ (ξx) = (R (ξx))
T
N ,

M ′ (ξx) = (R (ξx))
T
M (ξx) ,

(27)

whereN ′ andM ′ are the stress resultants in the local axes and their individual components are

N ′ (ξx) =
[

N ′

x (ξx) , N
′

y (ξx) , N
′

z (ξx)
]T

and M ′ (ξx) =
[

M ′

x (ξx) ,M
′

y (ξx) ,M
′

z (ξx)
]T
, (28)

whereN ′

x,N ′

y andN ′

z are the normal and the shear forces andM ′

x,M ′

y andM ′

z are the torsion and bending
moments acting in the local coordinate system in the deformed configuration.

2.3 Stress distribution in a rectangular cross-section

The stresses in the cross-section, in the sense of normal andshear stresses, can directly be obtained from
the stress resultants of equation (27). The normal and shearstresses for a beam element can be written as

σx (ξx, ξy, ξz) = σNx
x (ξx) + σ

My
x (ξx, ξz) + σMz

x (ξx, ξy) ,

τxy (ξx, ξy, ξz) = τ
Ny
xy (ξx, ξy) + τMx

xy (ξx, ξy, ξz) ,

τxz (ξx, ξy, ξz) = τNz
xz (ξx, ξz) + τMx

xz (ξx, ξy, ξz) ,

with ξy ∈ [−1, 1] , ξz ∈ [−1, 1] ,

(29)
whereσNx

x , σMy
x andσMy

x are normal stresses caused by the normal force and the bending moments around
the localy andz-axis, τNy

xy , τNz
xz are shear stresses caused by the shear forces acting in the local y and

z-direction, andτMx
xy andτMx

xz are shear stresses caused by torsion. Expressions for the normal stresses in
case of a rectangular cross-section are

σNx
x (ξx) =

N ′

x (ξx)

w h
, σMy

x (ξx, ξz) =
M ′

y (ξx) ξzw

2Iy
and σMz

x (ξx, ξy) = −
M ′

z (ξx) ξyh

2Iz
, (30)

whereh andw are the height and the width of the cross-section,Iy andIz are the area moments of inertia
for a rectangular cross-section about the localy andz-axis. Expressions for the shear stresses caused by the
shear forces are

τNy
xy (ξx, ξy) =

3N ′

y (ξx)
(

1− ξ2y
)

2 w h
and τNz

xz (ξx, ξz) =
3N ′

z (ξx)
(

1− ξ2z
)

2 w h
. (31)

For the torsion shear stresses, Prandtl’s membrane analogyshould be used, resulting in [8]

τMx
xy (ξx, ξy, ξz) =

8M ′

x (ξx)w

π2It

∞
∑

n=1,3,5...

1

n2
(−1)(n−1)/2

(

1−
cosh

nπξyh
2w

cosh nπh
2w

)

sin
nπξz
2

,

τMx
xz (ξx, ξy, ξz) = −

8M ′

x (ξx)w

π2It

∞
∑

n=1,3,5...

1

n2
(−1)(n−1)/2

(

sinh
nπξyh
2w

cosh nπh
2w

)

cos
nπξz
2

,

(32)

whereIt is the Saint-Venant torsion constant.
From the stresses of equation (29), an equivalent stress in the sense of the von Mises criterion, can be
computed

σeq (ξx, ξy, ξz) =

√

(σx (ξx, ξy, ξz))
2
+ 3 (τxy (ξx, ξy, ξz))

2
+ 3 (τxz (ξx, ξy, ξz))

2
, (33)

which gives the von Mises stresses as a function of the position along the elastic line and in the cross-section.
It can be used to check whether the maximal allowable stress in the beam element is not exceeded.



3 MODELLING AND OPTIMIZATION OF THE CURVED HINGE FLEXURE

In this section a parameterized model of the CHF is presented. For the optimization of the CHF, adequate
optimization criteria are derived. The final results of the optimization are compared with a FEM analysis to
illustrate the quality of the model.

3.1 Curved hinge flexure model

The model of the CHF is defined by a number of fixed parameters, such as material properties, and variable
parameters that can be adjusted for optimization purposes.These parameters are e.g. leaf-spring dimensions
and the pre-curved shape of the individual leaf-spring flexures. The fixed and variable parameters are
visualized in figure 4 and will be explained next. The CHF model consists of twelve flexible pre-curved
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Figure 4. Curved hinge flexure model. Model parameters (a)(b) and coordinate system in deflected
state (c).

beam elements and two rigid beam elements. It is symmetric inthe undeformed configuration. The pre-
curved shape is defined by a third order Bézier curve, making it possible to describe a wide variety of curves
using only a few parameters. The fixed properties of the beam elements are the Young’s modulus,E, the
shear modulus,G, the height of the CHF,h, and the length of the Bézier curve,l. The variable parameters
are the thickness of the leaf-spring flexures,t, the distance between the leaf-spring flexures,d, and the
parameters that define the Bézier curve: the position of the control pointsp1 andp2 in the local coordinate
systemx′y′, and the inclination angleθ. The position of control pointp3 is not an independent model
parameter as its position on the localx′-axis, is determined by the fixed lengthl.
The coordinate system shown in figure 4(c) is rigidly attached to the CHF. At this position, the translational
stiffnesses,cx, cy and cz, and the rotational stiffnesses,kx, ky andkz, are computed while the CHF is
deflectedγ degrees. The deflection angleγ is limited to−20◦ ≤ γ ≤ 20◦. The theory from section 2 is
used to compute the occurring stresses during deflections. For optimization, only the support stiffnessescx,
cz, andky, and the stress distribution are used, which are written as

kchfy (γ,p) , cchfx (γ,p) , cchfz (γ,p) with p = [t, d,p1,p2, θ] ,

and σchf
eq (ξ, γ,p) with ξ = [ξx, ξy, ξz] ,

(34)

to express their dependency on the parameter vectorp andσchf
eq is the equivalent von Mises stress defined

by equation (33).

3.2 Optimization

The CHF typically has a low actuation stiffness,kz, and high support stiffnessescx, cz, andky [1]. The
same is true for an undeflected leaf-spring. However, by choosing the parameters from figure 4(a) correctly,
the CHF should be able to retain its support stiffnesses overa wide angle of rotation without exceeding the
maximal allowable stress. To achieve this goal, suitable optimization criteria are derived.



3.2.1 Optimization criteria

The performance of the CHF is measured by comparing the support stiffnesses to that of a leaf-spring
flexure. To make a fair comparison, the height, length and initial actuation stiffnesskz, determined by
the thickness, are equal to the CHF. As a consequence, the model of the leaf-spring flexure is indirectly
dependent on the parameter vectorp, because the actuation stiffness of the CHF is dependent onp. By
determining at what angle of deflection the support stiffness in a certain direction of the leaf-spring, is equal
to the minimum occurring support stiffness of the CHF in thatsame direction, it can be determined at what
angle of deflection the CHF starts to outperform the leaf-spring, see figure 5. For optimal results, this angle
should be as close to zero as possible for all support stiffness directions. The support stiffnesses of the
leaf-spring flexure, as a function of the deflection angleγ, are written as

klsy (γ,p) , clsx (γ,p) , clsz (γ,p) . (35)

These stiffnesses decrease monotonically with increasingangleγ, from which it is possible to uniquely
determine at which angleγ the support stiffnesses of the leaf-spring are equal to the minimum support
stiffnesses of the CHF, resulting in

klsy
(

γky
(p),p

)

= min
γ
kchfy (γ,p) → γky

(p),

clsx (γcx(p),p) = min
γ
cchfx (γ,p) → γcx(p),

clsz (γcz (p),p) = min
γ
cchfz (γ,p) → γcz (p).

(36)
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Figure 5. Stiffness optimization results, corresponding to the unconstrained parameter optimization.
The dotted line represents the leaf-spring stiffnesses and the solid line the CHF stiffnesses.

For optimal results, the maximal value of the angles from equation (36), need to be minimized, resulting in
the following minimization criterion and cost functionγcost,

popt = argmin
p

γcost(p), with γcost(p) = max
{

γky
(p), γcx(p), γcz (p)

}

, (37)

subject to the constraint on the maximal occurring stresses

σchf
max(p)− σa ≤ 0, with σchf

max(p) = max
ξ,γ

(

σchf
eq (ξ, γ,p)

)

, (38)

whereσa is the maximal allowable stress. Constraints on the parameter vectorp from equation (34), can be
applied to restrict e.g. the minimum thicknesst or the distanced between the leaf-springs.

3.2.2 Optimization results

For the optimization, steel X40Cr13 (Stavax) is used as material for the CHF. It is capable of withstanding
high stress levels and the maximal allowable stress is therefore set to 600 MPa. The optimization problem



of equations (37) and (38), can be solved using any optimization algorithm which is capable of integrating
a non-linear constraint function in the optimization criteria, such as simulated annealing and the Nelder-
Mead simplex method. The results of such an optimization aresummarized in table 1, where the model
is evaluated using the SPACAR software. Two cases are considered: no constraints are applied on the
parameter vector and the distanced is constraint to be positive. If the distanced becomes negative for the
first case, a different model will be analyzed which places the leaf-springs above each other to avoid that
they will physically cross, see figure 6(a). The total heightof this CHF model is still the same as the model
from figure 4, halving the height of the individual leaf-springs.

t [mm] d [mm] p1 [mm] p2 [mm] θ [deg] σa [MPa] σ
chf
max [MPa] γcost [deg]

unconstraintp 0.30 -4.4 [18.2, 1.56] [38.3, 2.46] 17.4 600 596 7.4

constraintp, d > 0.4 0.26 0.4 [24.5, 2.10] [38.3, 2.50] 9.8 600 599 13.5

Table 1. Optimization results summary.

For the unconstrained parameters case, the optimal supportstiffnesses are shown in figure 5. It is clear that
for deflection angles greater than7.4◦, the CHF outperforms the leaf-spring flexure and it retains its support
stiffnesses over the full range ofγ. For the constraint case, it only starts to perform better atan deflection
angle of13.5◦, even though the height of the individual leaf-springs are twice as large compared to the
model with negative distanced. This indicates that a more complex CHF with negative distanced, is worth
investigating further from a manufacturing point of view.
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Figure 6. Computed stress distribution for optimized unconstrained parameter vector model (a). Per-
centile differences of maximum computed stresses, of the model with andwithout the second order
generalized strain expressions, compared to FEM beam and shell models (b).

3.3 Comparison with FEM

To verify the quality of the stress computation, the maximalcomputed von Mises stress as a function of the
deflection angle, is compared with results from the FEM software Ansys. The optimized CHF model corre-
sponding to the case with the unconstrained parameter vector, shown in figure 6(a), is used as a benchmark.
The stress computation is performed using the second order generalized strain expressions of equation (8),
and compared to an Ansys model with 60 beam elements (beam4) and a model with 10200 shell elements
(shell281). To show the effects of the second order generalized strain expressions on the stresses, they are
also computed without the second order generalized strain expressions. The results are shown in figure 6(b),
where the percentile errors are computed with respect to themaximal occurring stress of 596 MPa. Using
the second order generalized strain expressions, the differences with the Ansys beam element model is an
order of magnitude smaller than without the second order generalized strain expressions, although for both
cases the error remains small. There is also not much difference in computational time between the Ansys
beam and SPACAR models, which is in the order of seconds on a2.53 GHz processor. However, the stress
computation derived in this paper also includes stresses caused by shear forces and torsion, making it more



generally applicable. The effects of shear stresses are in this case very small, because the CHF is only
loaded by a bending moment.
The maximum stress computed with the Ansys shell elements, is about 4% higher at20◦ deflection. This is
most likely due to the phenomenon known as anticlastic curvature, which is the warping of the cross-section
of a leaf-spring undergoing a large deflection. This warpingis constrained at the end-points when the CHF
is modelled with shell elements, increasing the stresses slightly. The computational time is about 8 minutes,
making the model with shell elements unsuitable for optimization purposes.

4 CONCLUSIONS

Determining the distributed stress resultants along the elastic line in the local coordinate system, requires
correct interpolation and rotation of the vector of elementnodal forces. For arbitrary large deflections, per-
fect equilibrium is achieved in the nodal coordinates of thebeam element, making it possible to compute
the von Mises stresses at the element cross-section. For improved accuracy, the second order generalized
strains should be employed. When compared with a non-linear FEM model with 10200 shell elements, the
maximal error in the maximum stress is about4% due to the anticlastic curvature phenomenon.
The approach is applied to optimize the curved hinge flexure,for high support stiffnesses, low actuation
stiffness and with a constraint on the maximal allowable stress. Two optimizations are performed. One
where the parameter vector is constraint to prevent physical crossing of the flexures and one where the
parameter vector is left unconstrained. In the unconstrained case, physical crossing of the flexures is pre-
vented by placing them above each other. The unconstrained case clearly shows better performance, beating
a leaf-spring flexure at7.4◦ deflection in terms of support stiffness, versus13.5◦ for the constrained case.
This indicates that the CHF with its flexures placed above each other, is worth investigating further from a
manufacturing point of view.
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