A constitutive model for multi-phase steels
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Abstract. Mean-Field homogenization algorithms for materials involving two or more elastic-
plastic constituent phases are investigated. The Voigt, Reuss and Self consistent schemes which are
directly applicable to multi-phase systems are implemented. The shortcomings of these schemes are
accuracy for the former two and computational efficiency for the latter. A new interpolative model
is proposed which is aimed to be both computationally efficient and accurate. The results of the
models are studied on the material point level for a prescribed uniaxial tensile deformation. It is
observed that the response computed by the proposed scheme closely matches that computed by the
Self Consistent approach.
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INTRODUCTION

In the recent years, advanced materials such as Dual-Phase and TRIP steels have gained
significant attraction. Due to their complex microstructure involving multiple phases
and phase transformations, these materials possess exceptional mechanical properties.
Furthermore, with slight changes in the heat treatment process during production, the
phase distributions can be modified which results in different mechanical behavior. In
order to exploit the properties of these materials in industrial applications, there is a
need for physically based material models that take into account the relation between
the microstructure and the mechanical response.

One way of achieving this goal is to use homogenization methods in which the mi-
crostructural effects directly contribute to the macroscopic behavior. In homogenization,
generally, the microscopic (lower scale) features of the materials are considered, analy-
ses are carried out and an averaging procedure is performed in order to return the results
to the macroscale (upper scale). For the lower scale analyses usually the concept of an
RVE (representative volume element) is utilized.

In the Mean-Field method instead of the fields of the variables, only the mean values
over each subdomain are considered. The complementary problem then can be solved
using an analytical approach such as Eshelby’s solution of the inclusion problem [1].
Eshelby obtained the analytical solution for a simplified case where a single inclusion is
assumed to be embedded in an infinitely large matrix. Furthermore, the solution is only
for elastic materials.

In order to apply this solution in case of a finite-sized RVE with elastic-plastic
material properties, different homogenization schemes have been proposed. The Mori-
Tanaka scheme [2] relies on the Eshelby’s solution to find the strain concentration in the



inclusion. Another model that has been used for homogenization is the Self-Consistent
scheme, first proposed by Kroner [3] and then used by Hill [4]. Hill also proposed to use
the instantaneous elastic-plastic moduli of the phases as reference linearized comparison
moduli that can be used with Eshelby’s solution.

In modeling TRIP steels where more than two phases are involved, the Mori-Tanaka
scheme cannot be applied directly. On the other hand, in [5], with the help of some
simplifications, the applicability of this scheme has been investigated. One simplification
is that the two of the phases, namely ferrite and bainite have been assumed to have the
same mechanical properties which reduces the number of phases to three. The three
phase homogenization problem is then solved using two approaches. The first one is to
treat austenite as an inclusion within the ferrite-bainite matrix and then martensite within
the ferrite-bainite-austenite matrix. The second approach is to treat both austenite and
martensite as separate inclusions within half of the ferrite-bainite matrix and then solve
the strain concentration for both halves. The results are demonstrated to agree well with
experiments.

Here we present a different approach in which each phase can be treated as an
inclusion in the overall composite material. This makes the model more generic and
thus applicable to more variety of materials.

MEAN FIELD HOMOGENIZATION

Homogenization techniques are generally based on the concept of a representative
volume element (RVE)[6]. An RVE represents a macroscopic point in the material
(i.e. an integration point in a Finite Element model) as a finite sized inhomogeneous
volume that is representative for the microstructure of the material. The aim therefore is
to solve a complementary problem on the RVE and then use the results in macroscale.

The Mean-Field method is built on the concept of an imaginary RVE rather than
an actual one. The inhomogeneities are treated as separate homogeneous domains in
an aggregate of domains. The fields over the subdomains are represented by their
averaged values. The complementary problem then is to solve for the interaction of
the subdomains and find the new averages that satisfy the boundary conditions. This is
usually carried out by using analytical solutions to the simplified versions of the problem
[7].

The averaging operator which forms the foundation of the scale transition is defined
as:
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where g is any field defined over the domain, g is the macroscopic value and (g(x))q
is the averaged value of g over the coordinates x belonging to the volume ®. It is clear
the this formulation implies that the overall domain can be decomposed into smaller
subdomains.

The averaging of strain and stress fields requires that the averaged mechanical work
over the RVE is equal to the mechanical work that is calculated using the averaged
stress and strain. This is known as the Hill-Mandel condition. According to [6], for this



condition to be fulfilled, equilibrium and compatibility within the RVE must be satisfied.
Furthermore, the boundary conditions applied on the surface of the RVE must be of the
type that would produce uniform strain or stress within the RVE if the material were
homogeneous. Supported by the Hill-Mandel condition, scale transition relations for
stress and strain are given as:
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The equations presented so far only provide the averaging operation once the fields
are determined on the RVE. Using a Direct FE approach the fields can be computed by
applying the macroscopic stress or strain in terms of surface boundary conditions (trac-
tions and displacements, respectively) on the RVE [8, 9]. After the fields are computed
numerically, averaging is carried out and the results are transferred to the macroscale.
In the Mean-Field homogenization schemes, instead of the fields, only the averages in
different sub-domains are computed based on a number of assumptions which will be
described in the following section.

Generally in the Mean-Field methods it is assumed that each constituent phase follows
its own macroscopic material behavior [10, 11]. With this assumption, the relation
between the average stress and strain on the sub-domains on the RVE is supplied by
continuum material models:
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where C is the elastic-plastic tangent modulus tensor.

The equations given so far are not sufficient to solve the homogenization problem. The
remaining equations must supply the relation between the strains or stresses among the
different phases. These equations can be written in terms of strain or stress concentration
relations:
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where A and B are the fourth-order strain and the stress concentration tensors, respec-
tively. In the case when all the concentration tensors of one type are known, the tensors
for the other type can be determined. Mean-Field homogenization schemes differ from
each other by the selection of these tensors. In the following sections the schemes that
are studied are discussed.

HOMOGENIZATION SCHEMES

In this section the homogenization schemes that can be directly applied to multi-phase
systems are presented. The most basic schemes are the bounds, Voigt (isostrain) and
Reuss (isostress), which in the general case are not reliable in terms of accuracy. The Self
Consistent scheme also applies to more than two phases as it was originally developed
for polycrystals. However, because of its implicit nature it is computationally inefficient.

The isostrain condition, i.e. the Voigt scheme, yields an upper bound for the stiffness
of the system. The strain concentration tensor for this scheme is unity and the stiffness



of the composite is computed as the weighted sum of that of all the phases:
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In case of the isostress condition, i.e. the Reuss scheme, the stiffness of the system is
on its lower bound and the stress concentration tensor is unity:
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For the bounds, the following consistency condition is always satisfied:
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In a multiphase system when the concentration tensors are calculated separately, then
Equation (7) must be satisfied otherwise the partitioning of strain and the conservation
of energy during scale transition are violated.

In the Self Consistent scheme, each phase is treated as an inclusion in the overall
composite. The strain concentration for each phase is then calculated using Eshelby’s
theory accordingly:
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where [ is the Eshelby tensor and it is a function of the tangent modulus of the matrix

phase and the shape of the inclusions. For descriptions of the Eshelby tensor for different

geometries see for instance [12].

In this scheme the consistency condition Equation (7) is satisfied. On the other hand,
it is clear that this scheme is inherently implicit and requires an iterative solution
algorithm.

Here we introduce a new explicit scheme that is applicable for systems with more
than two phases which has been introduced by the authors previously for two phase
composites in [13]. The idea behind the model is to use an interpolation between the
upper and lower bounds in order to determine the partitioning of strain into phases. The
interpolation is defined as:
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where ¢ is the interpolation function. In order not to violate the theoretical bounds the
following constraints must be imposed: 0 < ¢* < 1,0 < (¢; +¢;) < 1. Equation (9) does
not satisfy the consistency condition given in Equation (7). This is because each phase has its
concentrated based on its own stiffness and the other phases are not taken into account directly.
On the other hand we propose that since the directions and the proportions of the strain are
computed, each strain concentration tensor can be normalized to yield a consistent partitioning
of the strain:
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RESULTS

The results of the schemes will be shown on a material point simulation. The problem is a uni-
axial tensile deformation. All the phases are elastic-plastic with isotropic power law hardening
behavior as 6/ = 6” + K (€ + )" For the Self Consistent model, each phase is assumed spher-
ical in shape. Additionally, for the calculation of the Eshelby tensor, the isotropic projection of
the tangent modulus is used (for details see [11]). These selections make the Eshelby tensor
isotropic.

Each phase is assumed to have identical isotropic elastic properties as; E = 210 (GPa) and
v = 0.3. The plasticity material properties and the phase fractions of each phase are summarized
in Table 1.

TABLE 1. Plasticity material parameters and phase fractions.
Phase fraction o (MPa) el K (MPa) m

Ferrite (o) 0.50 291 0.008 742 0.1928
Bainite 0.10 800 0.001 2000 0.3
Austenite () 0.15 400 0.01 1500 0.31

Martensite (o) 0.25 1294 0.00016 2486 0.0747

For the Bound Interpolation scheme the parameters of the interpolation function are selected
as:c1=0.7,¢,=0.3, c3=1.0.

In Figure 1, the overall response of the four phase composite is shown. As expected the
Voigt and Reuss schemes give the most stiff and the most compliant response, respectively.
The Self Consistent scheme has no adjustable parameters and the response is solely dependent
on the incremental stiffness of the phases. The Bound Interpolation scheme parameters have
been selected to yield a response close to the Self Consistent scheme. With a different set of
parameters the response can be modified.

It is clearly seen the proposed scheme can capture the stress and strain distribution to the
phases accurately. The stress development in the phases in the orthogonal direction is observed to
agree with the Self Consistent results. This is interesting to see since in the Bound Interpolation
scheme the Eshelby tensor is not used. On the other hand, the assumption of spherical inclusions
and isotropic matrix properties makes this tensor is isotropic. In the Bound Interpolation scheme,
instead of the Eshelby tensor, a fourth order spherical tensor is used which is also isotropic but
has only one value for both the deviatoric and the spherical directions (for more details see [13]).

SUMMARY AND CONCLUSIONS

The Mean Field homogenization scheme is investigated for applicability in modeling the me-
chanical response of multi-phase materials. The Self Consistent scheme can directly be used
without a limitation on the number of phases as opposed to the Mori-Tanaka model which can
only be used for two phase composites. A new scheme which was previously developed for two
phase composites is generalized for multi-phase materials. The scheme is an interpolation of the
upper and lower bound models with a scalar function. The function involves few number of pa-
rameters which determine the stiffness of the overall composite. It is shown that the partitioning
of the stress and strain into different phases can be captured accurately once the Self Consistent
model is considered as a reference. On the other hand with the proposed scheme a more detailed
analysis such as ellipsoidal inclusions or anisotropic matrix properties cannot be captured.
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FIGURE 1. Comparison of the stress-strain relations obtained with different homogenization schemes
under uniaxial tension. The overall response of the composite (top-left), the distribution of the stress and
strain into the phases (top-right) and the stress and strain that develop in the orthogonal direction in each
phase (bottom) are shown.
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