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Abstract. In this paper the quantitative influence of external vibrations on the measurement
value of a Coriolis Mass-Flow Meter for low flows is investigated, with the eventual goal to
reduce the influence of vibrations. Model results are compared with experimental results to
improve the knowledge on how external vibrations affect themeasurement error.

A Coriolis Mass-Flow Meter (CMFM) is an active device based on the Coriolis force prin-
ciple for direct mass-flow measurements, independent of fluid properties, with a high accuracy,
range-ability and repeatability. Besides the effect of themass-flow on the mode shape of the
tube, external vibrations can introduce motions that cannot be distinguished from the Coriolis
force induced motion, thus introducing a measurement error.

From a multi-axis flexible body model, the transfer functionbetween external vibrations
(e.g. floor vibrations) and the flow error, including the active filter characteristics, is derived.
The floor vibrations are characterised with a PSD. Integrating the transfer function times the
PSD over the whole frequency range results in an RMS flow errorestimate. In an experiment
predefined vibrations are applied on the casing of the CMFM (white noise spectra and VC norm
spectra) and the error is determined. The experimental results corresponds with the model
results.

The agreement between model and measurements implies firstly that the influence of any
floor vibration spectrum on the flow error, can be estimated and secondly that the performance
of different CMFM designs can be compared and optimised by shaping their respective transfer
functions.
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1 INTRODUCTION

A Coriolis Mass-Flow Meter (CMFM) is an active device based on the Coriolis force prin-
ciple for direct mass-flow measurements, independent of fluid properties, with a high accuracy,
range-ability and repeatability [1]. The basic working principle of a CMFM is as follows: a fluid
conveying tube is actuated to oscillate with a low amplitudeat a resonance frequency in order
to minimise the amount of supplied energy. A fluid flow in the vibrating tube induces Coriolis
forces, proportional to the mass-flow, which affect the tubemotion and change the mode shape.
Measuring the tube displacement, such that the change of itsmode shape is measured, allows
measuring the mass-flow.

Besides the effect of the mass-flow on the mode shape of the tube, external vibrations can
introduce motions that cannot be distinguished from the Coriolis force induced motion. The ex-
ternal vibrations create additional components in the CMFMsensor signals [2], those additional
components can introduce a measurement error. For low flows,the Coriolis force induced mo-
tion is relative small compared to external vibrations induced motions, thus CMFM’s designed
to be sensitive to low flows, are rather sensitive to externalvibrations.

The effect of mechanical vibrations on the sensor response of a CMFM is also studied by
Cheesewright [3]. The analytical study showed that external vibrations at the meter’s drive
frequency produces a measurement error, regardless of the flow measurement algorithm. There
is no attempt made to quantify the error in any particular meter, since such an error depends on
dimensions, type of actuators and sensors and the used flow measurement algorithm.

In this study the effect of floor vibrations on the measurement error is quantified using an
experimentally validated model. Therefore, first a model ofa CMFM is derived, using the multi-
body package SPACAR [4] resulting in a linear state space representation [5]. In the modelling
a tube-element [6] is used to model the interaction between flow and the tube dynamics. In
a previous case a CMFM is modelled for shape optimisation [7], using the same multi-body
package. Secondly, the model is extended to be able to predict the influence, with the eventual
goal to find and test measures that reduce the influence of floorvibrations on an erroneous
mass-flow reading.

2 MODELLING

In this section, first the system equations are derived and secondly the inputs and outputs
are defined to derive the input-output relations. The resultof the modelling is a state-space
representation of a CMFM.

2.1 System equations

For this research a functional model of the patented design [8, 9] (see Figure 1) is used. The
Finite Element (FE) model is shown in Figure 2. The model consists of a tube-window, convey-
ing the fluid flow, which is actuated by two Lorentz actuatorsact1 andact2. The displacement
of the tube-window is measured by two displacements sensorss1 ands2. On the casing a vector
a0, consisting of three translation and three rotational floormovements, is imposed.

The linearised system equations of the FE model, withn degrees of freedom of tube defor-
mationsq and the imposed casing movements(x0, v0 = ẋ0,a0 = ẍ0), can be written as [5]:
[

M 11 M 12

M 21 M 22

] [

q̈
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=
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F 0

]

(1)

The other terms are the mass matrixM , stiffness matrixK, proportional damping matrixD,
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Figure 1: Coriolis Mass Flow Meter, used as a
reference instrument in this study. Details on the
patented design are given in [8, 9]
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Figure 2: CMFM multi-body model, the flexible
tube-window is actuated by two Lorentz actuators
act1 andact2. The displacement are measured by
two displacements sensorss1 ands2. On the casing
a vectora0 with floor movements is imposed.

the velocity sensitive matrixC, the dynamic stiffness matrixN , the actuation input vector
f and the reaction forceF 0. The matricesC andN depend on the mass-floẇΦ and are
representing the forces induced by respectively the Coriolis and centrifugal acceleration of the
flow. The matricesC, D, K andN can be divided in same parts as the mass matrixM .

The matricesC12,D12,K12,N12 and their transposed matrices appears to be zero, for a
no flow condition, due to the choice of element deformations as degrees of freedom. (E.g.
K12 = 0, because there is no coupling between the movement of the casingx0 and the internal
deformationsq.)

The casing motion is prescribed and thus the only dynamic degrees of freedom are the tube
deformations, for which the equations of motion are derivedfrom the top row of Eq. 1:

M 11q̈ = f + f dis −C11q̇ −D11q̇ −K11q −N 11q (2)

including a floor disturbance force, consisting of imposed floor accelerations:

fdis = −M 12a0 (3)

The reaction forces on the floor can be derived form the lower row of Eq. 1:

F 0 = M 21q̈ (4)

To reduce the degrees of freedom, a model reduction method isapplied by solving the eigen-
value problem(K11 − ω2

iM 11)vi = 0, which results in natural frequenciesωi and the corre-
sponding eigenvectorvi, the mode shape. The equations of motion are rewritten in themodal
coordinates, defined as:

q = V z (5)

whereV = (v1, v2, ..., vn) is a matrix, normalised such thatV TM 11V = I, of the firstn
mode shapes andz the vector of modal amplitudes. Eq. 2 can now be written as:

z̈ + V TC11(Φ̇)V ż + V TD11V ż + V TK11V z + V TN 11(Φ̇
2)V z = V Tf + V Tfdis (6)
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(c) Dynamic stiffness matrix

Figure 3: Reduced system matrices with the first 12 mode shapes, describing the coupling between the mode
shapes as function of the mass-flowΦ̇
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Figure 4: CMFM mode shapes with their corresponding naturalfrequencies, when the tube is filled with air

Using the multi-body package SPACAR [4] the system matriceswith respect to the element
deformations and imposed floor movements of the model are derived.

The reduced matrices of Eq. 6 (e.g.Kred = V TK11V ) with the first 12 modes are de-
rived for the model described above. In Figure 3 the non-zeroelements of the matrices are
depicted. The modal mass and stiffness matrix are diagonal by the definition of the modal co-
ordinates. The modal damping matrix is also diagonal since proportional damping is assumed.
The velocity sensitive matrix and the dynamic stiffness matrix are dependent on the mass-flow
and describe the coupling between the modes. Those matricesare zero in the case of a zero
mass-flowΦ̇ = 0.

In Figure 4 the first four mode shapes of the tube-window are depicted. The second mode
is called an in-plane mode, because it has no displacement inthe direction of the sensors. The
third mode is the actuation mode of this instrument. When thethird mode is actuated and there
is a mass-flow also modes 1,4,8 and 11 are actuated (see Figure3(b)). Therefore these modes
are called Coriolis modes, because the coupling is due to theCoriolis effect. In Figure 5 the flow
induced mode is depicted, which is a combination of the mode shapes 1, 3 and 4 (see Figure 4),
moving at the natural frequency belonging to mode 3.
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Figure 5: The mode shape of the actuated instrument is a combination of the actuation mode (Figure 4(c)) and
mass-flowΦ̇ induced Coriolis modes (Figure 4(a) and 4(d)), whereby the flow-induced mode (b) is 90◦ out of phase
with the actuation mode (a). The sensorss1 ands2 measure the movement of the tube-window:si = Ai sin(ω3t+
φi) with ω3 the natural frequency belonging to mode 3.

2.2 Actuation

The flexible tube-window is actuated to have an oscillation around theθtwist-axis (see Fig-
ure 2), therefore in the model a moment is applied by two forces between the tube and the
casing. In model terms the actuator input is equal to:

f =
1

rM
(Γact1 − Γact2)Mact (7)

whereΓact1 is a vector with the elongation of the actuator element with respect to the coordi-
nates of the model,rM the distance between the two actuator elements andMact the actuator
moment input.

2.3 Sensing

The movement of the tube-window is measured by two sensors,s1 ands2. In Figure 5(a) the
actuation mode is shown, an oscillation around theθtwist-axis. The actuation displacement is
the differential-mode signal of the sensor signals. Accordingly the Coriolis displacement, due
to an oscillation around theθswing-axis (see Figure 5(b)), is the common-mode signal of the
sensor signals. In model terms the actuation and Coriolis displacement are equal to:

yact =
1

2
(Γs1 − Γs2)V z (8)

ycor =
1

2
(Γs1 + Γs2)V z (9)

whereΓs is a vector with the elongation of the sensor elements with respect to the coordinates
of the model.
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2.4 State space representation

Combining the equations of the previous sections, a state space representation of the CMFM
with a state vectorx =

[

z ż
]T

, input vectoru =
[

Mact a0

]T
and output vectory =

[

yact ycor
]T

is derived:

ẋ =

[

0 I

−V TKV − V TN(Φ̇2)V −V TC(Φ̇)V − V TDV

]

x +
[

0 0

V T 1

rM
(Γact1 − Γact2) −V TM 12

]

u

y =

[

1

2
(Γs1 − Γs2)V 0

1

2
(Γs1 + Γs2)V 0

]

x+
[

0
]

u

(10)

whereyact is due to an actuationMact andycor due to a mass-floẇΦ or a floor disturbancea0.
In this section a state-space representation of a CMFM is derived, which can be used to

investigate the response of the Coriolis displacement of a CMFM to an actuation moment and
floor vibrations.

3 RESULTS

In this section the modelled influence of floor vibrations on amass-flow measurement is
validated. First, the measurement value and sensitivity ofa CMFM is presented. Secondly, the
frequency dependent influence of floor vibrations is presented and validated with an experimen-
tal sweep. Thirdly the time dependent influence of floor vibrations on the measurement value is
compared with the estimated value from the model.

3.1 Measurement value

The tube-window is excited in its third eigenmode and a mass-flow induces a flow induced
vibration mode due to the Coriolis effect. This vibration mode occurs 90◦ out of phase with
the actuation mode. When a fluid flow is affecting the vibration mode of the tube-window, the
phase-difference between the sensor signalss1 ands2 is not 180◦ anymore, but is dependent on
the mass-flow. The phase-difference between the two sensor signals is expressed as:

∆φ ≈ arctan(∆φ) = 2
s1 + s2
s1 − s2

= 2
ycor
yact

(11)

where the differential-modes1 − s2 is named the actuation displacementyact and the common-
modes1+s2 the Coriolis displacementycor. The approximation is valid for small flows, because
then the Coriolis displacement is small compared to the actuation displacement.

When the model, undisturbed by floor vibrations, is actuatedwith a certain momentMact, an
actuation displacementyact and a Coriolis displacementycor, proportional to the mass-floẇΦ0

is obtained. This results in a modelled measurement sensitivity, which is the phase difference
(Eq. 11) per unit mass-flow:

S :=
∆φ(ω = ω3)a0=0,yact 6=0,Φ̇=Φ̇0

Φ̇0

[

rad·s
kg

]

(12)

whereω3 is the natural frequency belonging to mode 3, the actuation mode. The mass-flow
can be determined from the measured phase difference and themeasurement sensitivity. The
measurement sensitivityS is instrument dependent and is not given for the used instrument
(Figure 1), but the phase difference∆φ is also a valid measure for the mass-flow.

6



L. van de Ridder, W.B.J. Hakvoort, J. van Dijk, J.C. Lötters, A. de Boer

3.2 Frequency dependent influence floor vibrations

Eq. 11 shows that a Coriolis displacement results in a mass-flow measurement. As explained
before, this displacement is not only occurring due to a mass-flow, but also due to floor vibra-
tions, resulting in a measured mass-flow:

∆φmeasured = 2
ycor
yact

=
2

yact
(Ty

cor,Φ̇
Φ̇ + T ycor,a0

a0) (13)

whereTy
cor,Φ̇

andT ycor,a0
are the Coriolis displacement contribution due to respectively the

actuation and casing movements. Using the state space model(Eq. 10) the influence of floor
vibrations is:

T∆φ,a0 =
2

yact
T ycor,a0

(14)

where the actuation mode is controlled, resulting in a constantyact.
The transmissibility from a floor displacement in the dominant directionay to Coriolis dis-

placement and thus a mass-flow error is depicted in Figure 6. The dominant disturbance is a
translation disturbance of the casing in the direction of the sensors and actuating directly on
the Coriolis modes, see Figure 4(a) and 4(d). Resonance frequencies are visible at the Coriolis
modes (42, 210 Hz). The frequency axis shows the frequency value of the disturbanceay.

Input Frequency [Hz]

In
flu

en
ce
[(
ra
d
)/
(m

/s
2
)]

Transmissibilityay to∆φmeasure
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Figure 6: Transmissibility of floor disturbances in the
dominant directionay to a mass-flow measurement
(Eq. 14), with and without the phase demodulation in-
cluding a 5Hz low pass filter.

Figure 7: Shaker setup - The CMFM (Figure 1) is
mounted on a Stewart platform. Voice coil actuators
are used to apply forces on the low frequent (25Hz)
suspended platform and accelerometers are used to
measure the platform vibrationsa0.

In section 2.1 is mentioned that the tube-window is actuatedto oscillate in a mode shape
with the natural frequencyω3, where the mode shape depends on the mass-flow. To calculate
the phase difference between the sensorss1 ands2 a technique, called phase demodulation, is
used. The phase demodulation effectively results in a frequency shift and is implemented by
multiplying the sensor data with an oscillating reference signal with the actuation frequencyω3

and subsequently low pass filtering. In the frequency domain, this is similar to a bandpass filter
around frequencyω3. The frequency of measured mass-flow is the difference between the input
frequency and the actuation frequency.

Due to the phase demodulation, only disturbances around theactuation frequency have an
influence on the measurement value, as shown by the transmissibility including a 5 Hz low
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pass filter in Figure 6. The result is that a disturbance with afrequency close to the actuation
frequency has a direct impact on a mass-flow reading.

An experiment is performed with a shaker (see Figure 7) to apply a disturbance sweep with
an increasing frequency (see Eq. 15), meanwhile the mass-flow measurement and instrument
casing accelerations are recorded.

fsweep = f1

(

f2
f1

)
t
T

, f1 = 10Hz, f2 = 200Hz, T = 600s (15)

The results of two sweep experiments are given in Figure 8. The mass-flow measurement
is divided by the measured casing acceleration for each frequency of the sweep to calculate
the frequency dependent influence of floor vibrations on the flow measurement. Around the
actuation mode (88Hz) the result of sweep fits the model and a peak is visible around the
Coriolis mode (42 Hz). In the low and high frequency region the influence cannot be measured,
due to the low-pass filter and the noise level of the measurement value.
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Figure 8: Transmissibility of floor disturbances in the
dominant directionay to a mass-flow measurement, val-
idated by two experimental sweeps.
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Figure 9: Measured floor vibration PSDsΦay
of 5 ex-

periments compared to VC-curves to show the magni-
tude of the disturbance. The applied disturbances are
relatively large in comparison to real floor spectra.

3.3 Time dependent influence floor vibrations

The floor vibration can be a broadband disturbance, but the output is a single measurement
value, the mass-flow measurement. The cumulative influence is investigated by looking to the
cumulative mean square response over the whole frequency rangeν, which is given by:

σ2

∆φ =

∫ ∞

0

|T∆φ,ay(ν)|
2
Φay(ν) dν (16)

whereΦay is the Power Spectral Density (PSD) function of the disturbance andT∆φ,ay the mod-
elled transmissibility of floor vibrations resulting in a mass-flow error, as depicted in Figure 8.
In Section 3.2 the functionT∆φ,ay is explained and validated for the investigated instrument.
PSDs of several experiments, with a multi sine disturbance between 10 and 500Hz, are given
in Figure 9, including the Vibration Criterion (VC) curves [10], which are extended with a de-
creasing trend above 100Hz. The disturbances are relatively large in comparison to real floor
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Experiment Disturbance Measurement value instrument Model estimationσ∆φ

RMS [m/s2] FlowPlot RMS[mrad] (Eq. 16)[mrad]
1 0.0072 0.041 0.022
2 0.0113 0.189 0.194
3 0.0377 0.756 0.826
4 0.1492 3.184 3.525
5 0.2977 7.797 7.024

Table 1: Mass flow error due to applied disturbance (Figure 9). The disturbance RMS is the cumulative RMS value
by integrating the disturbance PSD.

spectra to magnify the effect on the flow error. The VC-curvesare meant as upper bounds for
the peaks in the floor vibration spectrum.

Using this data,σ∆φ is calculated. The results are given in Table 1. For experiment 2-4 the
estimation shows the same trend as the measured value. In experiment 5 the disturbance is so
large that non-linear effects are occurring due to the limited sensor range, resulting in a higher
measurement value. In the first experiment the measured value is comparable to the noise
floor of the measurement and the estimation shows that the noise floor is not due to external
vibrations.

To minimise the error the disturbanceΦay should be minimal, but in many applications
stringent requirements on the surroundings are not possible, soT∆φ,a0

should be minimal,
implying a good filter algorithm and mechanical design of theinstrument, which will be subject
of future research.

4 CONCLUSIONS

In this study a model of a CMFM is derived to determine the influence of floor vibrations on
the mass-flow measurement. In an experiment predefined vibrations are applied on the casing of
the CMFM and the error is determined. The results correspondwith the obtained model results.

The result is an improvement on the work of Cheesewright [3],not only the frequencies are
shown where the CMFM is sensitive for floor vibrations, but also a quantitative estimation of
the expected mass-flow error is given, based on the modelled transmissibility function.

The agreement between model and measurements implies firstly that the influence of any
floor vibration spectrum on the flow error, with some limitations due to linearity of the model,
can be estimated. Thereby, the suitability of a certain location for the placement of a CMFM
can be determined. Secondly, the insight in the relation between vibration spectra and the flow
error, the transmissibility, can be used to compare the performance of different CMFM designs
and to optimise the performance by shaping their respectivetransfer functions.
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