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ABSTRACT: Work hardening in metals is commonly described by isotropic hardening, especially for 

monotonically increasing proportional loading. The relation between different stress states in this case is 

determined by equivalent stress and strain definitions, based on equal plastic dissipation. However, 

experiments for IF steel under uniaxial and equibiaxial conditions show that this is not an accurate 

description. 

In this work, the determination of the equibiaxial stress–strain relation with 3 different tests will be 

elaborated: a stack compression test, a cruciform tensile test and a bulge test. A consistent shape of the 

hardening curve is obtained which deviates from that of a uniaxial tensile test. 

Several physical explanations based on crystal plasticity are considered, including texture evolution, strain 

inhomogeneity and glide system hardening models. Texture evolution changes the shape of the yield surface 

and hence causes differential hardening, however, the observed differences at low strains cannot be 

explained by texture evolution. Accounting for the strain heterogeneity in the polycrystal, with equilibrium 

of forces over grain boundaries, improves the prediction of differential hardening considerably, even with a 

simplified interaction model (Alamel) and simple hardening laws for the glide systems. The presentation is 

based on a recently published paper by the authors [1]. 
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1 INTRODUCTION 

Differential hardening is defined after Hill and 

Hutchinson [2] as the phenomenon that the stress-

strain behaviour of a metal in case of proportional, 

monotonic loading conditions cannot be described 

by a single hardening curve based on the dissipated 

plastic work, but rather depends on the loading 

condition. The cause for this behaviour is common-

ly accepted to be texture development and non-

isotropic hardening is thus expected to occur at 

relatively high deformations. 

Mulder and Vegter [3] recently observed that the 

hardening behaviour of steel in the first few per-

cent of deformation is highly non-isotropic. An 

observation that is generally found by the authors 

for all steel grades and which appears to be more 

apparent for strongly textured materials, e.g. like 

the IF steel grade in Fig. 1. 

The first part of the presented work demonstrates 

the accuracy of the equibiaxial hardening curve. 

The second part works towards a metallurgical 

explanation of this phenomenon. 

 

Fig. 1 Differential hardening at the onset of 
deformation for an IF steel grade 

The dotted line in Fig. 1 shows the equibiaxial 

hardening curve when isotropic hardening is as-

sumed and the stress ratio (σ/σun at equal levels of 
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plastic work) is established towards the end of 

uniform strain in the tensile test. 

 

2 EQUIBIAXIAL TENSION TESTS 

Looking at Fig. 1 the first question is how accurate 

the equibiaxial hardening curve is established, 

especially at the low strain range. Three methods 

have been used to establish the flow curve under 

equibiaxial stress conditions: 

1. The Biaxial Tensile Test (BTT). This test is 

performed at the Materials Mechanics Laboratory 

of POSTECH on a Kokusai KBAT-100 in-plane 

biaxial tensile testing machine. The design of the 

machine as well as the cruciform specimen are 

documented in a paper by Kuwabara et al. [4]. 

2. The Stack Compression Test (SCT). This test 

uses cubic specimens made from laminated sheet 

samples that are compressed in the through-

thickness direction. The equipment and the sample 

are documented in An and Vegter [5]. 

3. The Hydraulic Bulge Test (HBT). This test is 

performed at Tata Steel using a die diameter of 200 

mm and an optical measuring system. The test 

setup is described in the draft standard ISO16808. 

Data processing is documented in Mulder et al. [6]. 

2.1 FLOW STRESS RESULTS 

The flow stresses for the three tests are shown in 

Fig. 2. Presented curves are the averages of 2 or 3 

samples. 

 

 

Fig. 2 Flow stresses for equibiaxial tests 

The influence of friction on the SCT is reduced by 

using oiled teflon film between cube and tools. The 

barrel shape is negligible up to strains of 0.5. The 

accuracy of this test is further enhanced by using 

extensometers to measure the strains in rolling 

direction (RD) and tangential direction (TD) on the 

symmetry plane of the cube. The pressure in the 

symmetry plane may not be fully uniform in case 

of barreling, but there are no shear stresses. 

2.2 WORK HARDENING 

The results for the flow stress are established at 

different process conditions, in particular at differ-

ent strain rates and temperature. A model is needed 

to compensate for these dynamic effects and com-

pare the results at comparative conditions. 

Mecking and Kocks [7] have shown that contribu-

tions to the flow stress of metallic materials are in 

general additive. 

 =  + ,  (1) 

In this classical abstraction the plastic behaviour is 

divided into two mechanistic steps. The flow stress 

depends on the current structure. The current dislo-

cation structure is assumed to be represented by a 

single parameter, the dislocation density (), and 

this structure develops with strain. The threshold 

level at which dislocation multiplication (i.e. plas-

tic deformation) starts, depends on strain rate and 

temperature. 

The structure development will also be rate de-

pendent but for the common temperature range of 

cold forming that can be neglected. 

The dynamic stress component can be derived from 

the concept of thermally activated dislocation 

glide: 

,  = ∗ 1 + ∆ 




 (2) 

In this equation 0* is the maximum dynamic 

stress, usually in the order of 600 MPa, kB is 

Boltzmann’s constant (8.617.10-5 eV/K), G0 is the 

maximum Gibbs free energy (0.8 eV) and  is the 

maximum strain rate (1.108 /s). 

The temperature in a test can either be measured 

independently or be established from a calibrated 

model, e.g. as in [8] for the bulge test. Using the 

temperature and strain rate data for the individual 

tests the following comparative data is obtained. 

 

 

Fig. 3 Work hardening for equibiaxial tests 
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The curves for all three tests are indicating the 

same work hardening behaviour. The equibiaxial 

hardening curve in Fig. 1 is indeed accurate. 

2.3 YIELD POINT 

The major contribution in the transformation from 

Fig. 2 (flow stress) to Fig. 3 (work hardening) is 

due to the compensation of the stress for strain rate 

and temperature. A minor contribution is due to the 

change from total strain to plastic strain. 

Van Liempt and Sietsma [9] subdivide the pre-

yield strain in a linear elastic strain and a non-

linear anelastic strain. The anelastic behaviour is 

largely due to orientation differences between 

neighbouring grains. Dislocation multiplication 

marks the start of plastic deformation. This start of 

plasticity can be recognized using a Kocks-

Mecking analysis of the test results. 

 

 

Fig. 4 Yield point from Kocks-Mecking analysis 

The point where the two tangent lines cross indi-

cates the yield strength. 

Due to the nature of the tests the analysis results 

for the stack compression test and the hydraulic 

bulge test are debatable. It is remarkable that they 

nevertheless coincide quite well with the biaxial 

tensile test. 

The plastic strain is obtained by subtracting both 

the elastic strain and the non-linear anelastic strain 

that is found for the yield stress. 

 

3 DIFFERENTIAL HARDENING 

In the isotropic hardening assumption there is one 

curve that describes the hardening behaviour for a 

reference stress state, usually uniaxial tension. The 

yield locus describes the stress ratio at which plas-

tic deformation starts for arbitrary loading condi-

tions relative to a reference condition, the equiva-

lent stress. Hardening for stress states other than 

the reference is established based on the amount of 

plastic work. A dislocation structure with a certain 

dislocation density will have taken a fixed amount 

of energy, irrespective of the stress state for the 

deformation. 

For proportional, monotonic loading conditions 

(like the uniaxial and equibiaxial tests) the stress 

ratio, and thus the shape of the yield locus, are 

assumed to be constant. The hardening curve that 

would appear for an equibiaxial test in this assump-

tion is shown in Fig. 1 as a dotted line. The actual 

stress ratio derived from the work hardening curves 

in Fig. 3 are shown in Fig. 5. 

 

 

Fig. 5 Stress ratio for equibiaxial tests 

Fig. 5 shows much clearer than Fig. 1 how the 

material behaviour deviates from isotropic harden-

ing. The stress ratio for the uniaxial test is 1.0 as 

this is also the reference. An isotropic hardening 

material would have a constant stress ratio for the 

equibiaxial stress state, as shown by the straight 

dotted line. The strong development of the actual 

stress ratio at the start of deformation is remarkable 

because the commonly referenced cause for differ-

ential hardening is texture development. It is there-

fore expected to be fairly constant at the start of 

deformation with a gradual deviation towards 

higher deformation levels. 

Possible causes (explanations) for this differential 

hardening behaviour at the start of deformation are: 

1. A strain path change. Sheet metals have typical-

ly passed a temper mill and a stretcher-leveller as 

last deformation steps in manufacturing. Both are 

(small) plane strain deformations and uniaxial 

tension deviates from that in the opposite direction 

as equibiaxial tension. This hypothesis is easily 

disproven by a simple test: sheet metal before tem-

per rolling and stretcher-levelling shows exactly 

the same behaviour. 

2. The previously mentioned anelastic pre-yield 

behaviour [9] considers the presence of stress gra-

dients near grain boundaries due to anisotropic 

elasticity. It is yet unclear to what extent these 

stress gradients will continue to influence material 

behaviour after dislocation multiplication (yield-

ing). 

3. Texture development and slip partitioning. As 

stated before it is generally accepted that texture 

development is the root cause for differential hard-

ening when gradual changes at high deformation 
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are observed. It is unlikely that texture develop-

ment is the only explanation for the observed be-

haviour. Being dependent on the orientation, the 

partitioning of the local strain via slip over the 

different slip systems will generally evolve as a 

consequence of texture evolution. This may have 

more impact at  the start of deformation than ex-

pected. 

4. Development of strain heterogeneity. Individual 

grains will have a strain dependence on texture, 

microstructure and load case, which need not be 

identical to the macro strain. It is also known that 

intra-granular strain heterogeneities exist. These 

strain heterogeneities contribute to the anisotropic 

behaviour. If the strain heterogeneity changes with 

deformation it may contribute to differential hard-

ening. 

5. Development of the critical resolved shear stress. 

Hardening is known to depend on the number of 

dislocations. The number of dislocations is driven 

by micro strain and available slip systems, in other 

words grain (orientation) dependent. The critical 

resolved shear stress may therefore develop differ-

ently for each grain and contribute to developments 

in strain heterogeneity. 

The first possible explanation is disproven by a 

straightforward test. The second possible explana-

tion requires the addition of anisotropic elasticity to 

a crystal plasticity framework. The last three ex-

planations have been modelled in a statistical crys-

tal plasticity model. Simulations will give an indi-

cation of their individual contribution to the ob-

served phenomenon. 

 

4 CRYSTAL PLASTICITY 

Crystal plasticity models can be classified in full-

field and statistical models. 

Full-field crystal plasticity models make use of a 

Representative Volume Element (RVE) of the 

microstructure, which is sufficiently large so that 

the average response of the RVE to a particular 

loading would correspond to that of the material at 

the macroscopic level. Different numerical meth-

ods have been used to solve the non-linear plastici-

ty problem of the RVE. The most common is the 

Finite Element Method (CP-FEM). More recently 

the Fast Fourier Transform method (CP-FFT) is 

gaining in popularity because the calculation time 

is generally much shorter. 

Statistical crystal plasticity models build upon the 

knowledge of the statistical distribution of crystal-

lographic orientations of the material. A repre-

sentative set of crystals is typically derived from 

the Orientation Distribution Function (ODF). 

Compared to full-field models, statistical crystal 

plasticity models make further abstraction of the 

microstructure while attempting to capture the 

most significant effects of microstructure on the 

macroscopic behaviour. This allows them to be 

considerably faster than full-field methods. 

The classical statistical method is the one of Tay-

lor-Bishop-Hill (TBH, also called the Taylor mod-

el). The basic Taylor model assumes a homogene-

ous deformation of all crystals. In other words the 

micro strain for individual crystals is equal to the 

macro strain. As a consequence the  stress equilib-

rium along the boundaries of neighbouring grains 

is generally not satisfied. This limitation is the 

main reason why deformation textures predicted by 

the TBH theory only qualitatively agree with ex-

perimental deformation textures. Grain interaction 

models formulate certain relaxations on the strict 

Taylor assumption, thereby improving the stress 

equilibrium condition along grain boundaries. The 

Alamel model, Van Houtte et al. [10], considers a 

bicrystal, i.e. a grain boundary and two crystals at 

either side. This model is extensively validated by 

deformation texture predictions for steel. The Ala-

mel model is also known to predict a more realistic 

initial yield locus compared to the Taylor model. 

The hardening and stress ratio predictions in this 

paper compare both the Taylor and the Alamel 

model with the experimental results as shown in 

Figs. 3 and 5. 

4.1 CRITICAL RESOLVED SHEAR STRESS 

Any non-zero local plastic strain rate needs to be 

realized through plastic deformation, which is 

carried by dislocation slip on a number of slip 

systems. Dislocation slip on a slip system (s) is 

described by simple shear on the slip plane. The 

amount of slip per unit time is given by the shear 

rate  . The simultaneous slipping of a number of 

slip systems realizes the plastic strain rate inside a 

grain. 

For ferritic (BCC) steels 24 slip systems are as-

sumed to be potentially active: 12 {110}<111> and 

12 {112}<111> slip systems. The imposed strain 

rate tensor has however only 5 independent com-

ponents, considering it is symmetric and traceless 

due to plastic incompressibility. Thus an infinite 

number of solutions exist. Taylor proposed to re-

tain the solutions with minimal dissipation of plas-

tic work. The plastic work in the crystal per unit 

volume is given by 

 =


  (3) 

Here the critical resolved shear stress (CRSS) of a 

slip system, , is the scalar measure of stress that 

is work-conjugate to the respective slip rate  . In 

principle the CRSS may be different for the two 

considered slip system families due to the different 

atomic configuration in {110} and {112} planes. It 

may also be different between forward and reverse 

slip on {112} slip planes (stress differential effect). 

Moreover the development of an anisotropic cell 
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substructure with ongoing plastic deformation will 

generally lead to different values of CRSS between 

the individual slip systems and also between the 

two slip directions for a particular slip system (de-

velopment of back stress). In this paper however all 

these differences are neglected and it is assumed 

that inside each grain the CRSS is the same for all 

slip systems. Hence Eqn. 3 reduces to 

 =  


=   (4) 

in which   is the total slip rate inside the grain. The 

accumulated slip within a grain is obtained through 

time integration of the grain slip rate: 

 =  (5) 

A microscopic strain hardening relation postulates 

the evolution of the CRSS inside a grain as a Swift-

type hardening function of the accumulated slip of 

that grain. 

 =  +  (6) 

Macroscopic strain hardening assumes that the 

CRSS is identical for each constituting grain at any 

given time. An obvious choice for the strain pa-

rameter in the hardening equation is the volume-

average accumulated slip : 
 =  +  (7) 

We have defined 4 variants for the statistical crys-

tal plasticity model: (Taylor, micro), (Taylor, mac-

ro), (Alamel, micro) and (Alamel, macro), with 

which we investigate the possible causes for differ-

ential hardening as mentioned in chapter 3. 

4.2 SIMULATION RESULTS 

 

 

Fig. 6 Taylor model simulation results 

The hardening parameters 0, 0 and n are tuned 

separately for each of the 4 model variants to fit the 

uniaxial tension hardening curve in Fig. 3. The 

simulation of equibiaxial tension is performed with 

the fitted hardening parameters. The experimental 

stack compression results are included in Figs. 6 

and 7 for reference as a continuous black line. 

 

 

Fig. 7 Alamel model simulation tests 

The stress ratio that result from the simulations are 

shown in the following figure. 

 

 

Fig. 8 Stress ratio from simulation tests 

4.3 DISCUSSION 

On first observation the Alamel model is much 

better at predicting equibiaxial hardening than the 

Taylor model, but there is still a significant differ-

ence with experimental results. And despite the 

fact that microscopic hardening reflects the physi-

cal process of strain hardening through dislocation 

multiplication much better, there is hardly a differ-

ence with macroscopic strain hardening simula-

tions. Possible explanation 5 in chapter 3 is there-

fore unlikely. 

In a recently published paper by the authors [1] two 

other steel grades were included in the research. 

The Alamel model was much more accurate in 

predicting equibiaxial hardening and the corre-
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sponding stress ratio for these steel grades. The 

stress equilibrium condition at grain boundaries is 

apparently very important for hardening predic-

tions in different load cases. The deformation re-

laxation of the Alamel model (compared to the 

Taylor model) is probably a good average approx-

imation, however it might be insufficient for 

strongly textured grades. Full-field crystal plastici-

ty models have an inherent advantage in this re-

spect. Comparing the Taylor simulation results 

with the Alamel results it is likely that a better 

simulation of the strain heterogeneity, considering 

the stress equilibrium condition at grain bounda-

ries, will improve the average level of the stress 

ratio (Fig. 8) but it will not explain the steep incli-

nation of the stress ratio between 0 and 30 MPa 

plastic work. 

The Alamel model is good at predicting defor-

mation textures. The gradual increase of the stress 

ratio between 30 and 90 MPa in Fig. 8 is predicted 

by the Alamel model whereas the Taylor model 

shows a flat line. Texture development is con-

firmed as a root cause for differential hardening 

when a gradual change at higher deformations is 

considered. Possible explanation 2 remains as the 

most likely cause for the steep change in stress 

ratio at the start of deformation. 

 

5 CONCLUSIONS 

1. The stress equilibrium condition at grain bound-

aries and the corresponding impact on strain heter-

ogeneity at the grain size level plays a key role in 

the accurate prediction of hardening for textured 

single phase steels. The Alamel model doesn’t 

capture this phenomenon in full for the steel grade 

in this paper, but it did for two other grades in [1]. 

2. Texture development plays an important role in 

the prediction of differential hardening. Texture 

evolution changes the shape of the yield locus. The 

Alamel model has been developed and is validated 

for the prediction of deformation texture. 

3. Prescribing the evolution of the CRSS at the 

individual grain level (microscopic hardening) 

leads to very similar results as prescribing one 

CRSS for the polycrystal (macroscopic hardening). 

4. The remarkable steep increase of the stress ratio 

at the start of deformation is not explained by the 

current simulations. Possible explanations that 

remain are loading dependent dislocation substruc-

tures and the local stresses near grain boundaries as 

a result of anisotropic elasticity. 
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