
Implementing an Adaptive Viterbi Algorithm in
Coarse-Grained Reconfigurable Hardware

Gerard K. Rauwerda, Gerard J.M. Smit
University of Twente, department EEMCS

P.O. Box 217, 7500 AE Enschede, the Netherlands
g.k.rauwerda@utwente.nl

Werner Brugger
Atmel Germany GmbH, Design Center Ulm
Lise-Meitner-Str. 15, 89081 Ulm, Germany

Abstract— Future mobile terminals become multi-mode
communication systems. In order to handle different
standards, we propose to perform baseband processing
in heterogeneous reconfigurable hardware. Not only the
baseband processing but also error decoding differs for ev-
ery communication system. Therefore we implemented an
adaptive Viterbi decoder in the coarse-grained MONTIUM

architecture. The rate, constraint length and decision depth
of the decoder can be adjusted to different communication
systems. We showed that the flexibility in the coarse-
grained reconfigurable architecture has an estimated cost
of 24 times more energy consumption compared to a
dedicated solution.

Index Terms— Coarse-grained reconfigurable hardware,
System-on-Chip, MONTIUM , Viterbi

I. INTRODUCTION

A complete hardware based radio system has lim-
ited utility since parameters for each of the functional
modules are fixed. A radio system built using Software
Defined Radio (SDR) technology extends the utility of
the system to a wide range of applications using different
link-layer protocols and modulation/demodulation tech-
niques. SDR provides an efficient and relatively inexpen-
sive solution to the design of multi-mode, multi-band,
multi-functional wireless devices that can be enhanced
using software upgrades only.

Another advantage of the SDR template is the pos-
sibility to implement real adaptive systems. Traditional
algorithms in wireless communications are rather static.
The recent emergence of new applications that require
sophisticated adaptive algorithms based on signal and
channel statistics to achieve optimum performance has
drawn renewed attention to run-time reconfigurabil-
ity [1].

Implementation of SDR requires a flexible hardware
architecture. Since baseband processing in the wireless
receiver is computationally intensive, the processing

power of the terminal’s hardware architecture has to
satisfy these demands. Moreover, wireless terminals are
battery-powered, which emphasizes the importance of
energy-efficiency in wireless receivers. Heterogeneous
reconfigurable hardware, consisting of processing el-
ements with different granularities, is designed with
these constraints – flexibility, performance and energy-
efficiency – in mind.

In this paper we will use reconfigurable hardware to
implement the Viterbi decoder that is used in wireless
communication receivers. Figures presented in [2], [3]
show that error decoding in a wireless receiver is as
computationally intensive as baseband processing. This
means that one should consider optimized implementa-
tion of both baseband processing and error correction
algorithms for multi-mode communication systems in
heterogeneous reconfigurable hardware. We already re-
ported the implementation of baseband processing for
different wireless communication systems in the same
reconfigurable hardware [4], [5].

In Section II we discuss issues related to our research.
The proprosed heterogeneous reconfigurable architecture
is shortly described in Section III. Section IV introduces
the main aspects of channel coding, while the Viterbi
decoder is discussed in Section V. The implementation
of the Viterbi algorithm in coarse-grained reconfigurable
hardware is given in Section VI. Results on the imple-
mentation are discussed in Section VII. In Section VIII
conclusions are drawn.

II. BACKGROUND

Conventional reconfigurable processors are bit-level
reconfigurable and are far from energy-efficient.Pleiades
at the University of California, Berkeley, is explor-
ing reconfiguration of coarser-grain application-specific
building blocks with an emphasis on low-power compu-
tations [6]. Furthermore, PACT [7] proposes anextreme

processor platform (XPP)based on clusters of coarse-
grained processing array elements. Silicon Hive [8] of-
fers coarse-grained reconfigurable block accelerators and
stream accelerators for high performance and low-power
applications.

Coarse-grained building blocks are considered in het-
erogeneous reconfigurable SoCs. These SoCs consist
of mixed-grained reconfigurable blocks, suitable for
implementation of multi-mode communication systems.
The Smart chipS for Smart Surroundings[9] and AM-
DREL [10] projects anticipate these objectives.

In [3] it has been reported that 50% or more of
the computational complexity in the wireless receiver is
due to error coding algorithms, like Viterbi decoding.
This complexity counts for about 60% of the energy
consumption in the digital processing part of a typical
wireless receiver [2]. Consequently, one realizes that
power reduction should be achieved in the error coding
part of the receiver. So, new physically oriented design
methodologies are proposed in ASIC design for Viterbi
decoders [11]. But, one also focusses on power reduction
by exploiting variations in system characteristics due
to changing noise conditions [12]. These measures can
be achieved using dynamic reconfiguration in reconfig-
urable hardware [13]. However, applying these measures
in coarse-grained reconfigurable hardware have not been
reported yet.

III. H ETEROGENEOUS RECONFIGURABLE HARDWARE

The idea of heterogeneous reconfigurable hardware
is that one can match the granularity of the algorithms
with the granularity of the hardware. We distinguish four
processor types:general-purposeprocessor,fine-grained
reconfigurablehardware,coarse-grained reconfigurable
hardware anddedicatedhardware.

GPP

GPP

FPGA

FPGA

FPGA

FPGA

ASIC

ASIC

Montium

DSP

DSP

Montium

Montium

Montium

Montium

Montium

Fig. 1. The Chameleon SoC.

We propose a tiled System-on-Chip (SoC), called
Chameleon [14], which consists of the above mentioned

processor types (Figure 1). The coarse-grained recon-
figurable tiles in the Chameleon SoC will be MONTIUM

tile processors [14], as depicted in Figure 2. The tiles are
interconnected by a Network-on-Chip (NoC). Both SoC
and NoC are dynamically reconfigurable, which means
that the programs (running on the reconfigurable tiles)
as well as the communication channels are defined at
run-time.

M01 M02

Communication and Configuration Unit

M03 M04 M05 M06 M07 M08 M09 M10

ALU5

A C DB

W

OUT2 OUT1

ALU4 E

A C DB

W

OUT2 OUT1

ALU3 E

A C DB

W

OUT2 OUT1

ALU2 E

A C DB

W

OUT2 OUT1

ALU1 E

A C DB

OUT2 OUT1

Sequencer

Memory

decoder

Crossbar

decoder

Register

decoder

ALU

decoder

Fig. 2. The MONTIUM tile processor.

A. TheMONTIUM tile processor

The MONTIUM is an example of a coarse-grained
reconfigurable processor. It targets the 16-bit digital sig-
nal processing (DSP) algorithm domain. At first glance
the MONTIUM architecture bears a resemblance to a
VLIW processor. However, the control structure of the
MONTIUM is very different. For (energy-) efficiency it
is imperative to minimize the control overhead. This can
be accomplished by statically scheduling instructions as
much as possible at compile time.

The lower part of Figure 2 shows the Communica-
tion and Configuration Unit (CCU) and the upper part
shows the reconfigurable Tile Processor (TP). The CCU
implements the interface for off-tile communication.

The TP is the computing part that can be configured
to implement a particular algorithm. Figure 2 reveals
that the hardware organization of the tile processor is
very regular. The five identical ALUs (ALU1· · · ALU5)
in a tile can exploit spatial concurrency to enhance
performance. This parallelism demands a very high
memory bandwidth, which is obtained by having 10

local memories (M01· · · M10) in parallel. The small
local memories are also motivated by the locality of
reference principle. The data path has a width of 16-bits
and the ALUs support both signed integer and signed
fixed-point arithmetic. The ALU input registers provide
an even more local level of storage. Locality of reference
is one of the guiding principles applied to obtain energy-
efficiency in the MONTIUM. A vertical segment that
contains one ALU together with its associated input
register files, a part of the interconnect and two local
memories is called a Processing Part (PP). The five
Processing Parts together are called the Processing Part
Array (PPA). A relatively simple sequencer controls
the entire PPA. The sequencer selects configurable PPA
instructions that are stored in the decoders of Figure 2.

Each local SRAM is 16-bit wide and has a depth
of 512 positions, which adds up to a storage capacity
of 8 Kbit per local memory. A reconfigurable Address
Generation Unit (AGU) accompanies each memory. It is
also possible to use the memory as a look-up table for
complicated functions that cannot be calculated using an
ALU, such as sine or division (with one constant).

A single ALU has four 16-bit inputs. Each input has
a private input register file that can store up to four
operands. The input register file cannot be bypassed,
i.e. an operand is always read from an input register.
Input registers can be written by various sources via a
flexible interconnect. An ALU has two 16-bit outputs,
which are connected to the interconnect. The ALU is
entirely combinational and consequentially there are no
pipeline registers within the ALU. Neighbouring ALUs
can also communicate directly on level 2. The West-
output of an ALU connects to the East-input of the ALU
neighbouring on the left. The East-West connection does
not introduce a delay or pipeline, as it is not registered.

IV. CHANNEL CODING

Convolutional codes are widely used in communi-
cation systems as error-correction codes. These error-
correction codes enable reliable communication of in-
formation over a noisy, distorted communication channel
by adding redundant information.

A convolutional code is generated by passing the data
through a finite state shift register. The contents of the
shift register (i.e. the state of the shift register) and the
input data determines the output code. So, the encoding
of information can be represented with a mealy state
machine. As an example, Figure 3 shows a possible
convolutional encoder and its state diagram. Therate
of this encoder isR = 1/2. Three different bit-values –

the current value and two old values – are used in this
encoder to create the code. Hence, theconstraint length
of the encoder isK = 3.

Fig. 3. Convolutional encoder and its state diagram.

A trellis diagram simply shows the progression of the
state of the encoder for different symbol times. Figure 4
shows a small trellis diagram, which can be generated
from the state diagram of Figure 3. At each time instant 4
states are shown, which correspond to the encoder states.

Fig. 4. Trellis diagram with 4 states.

V. V ITERBI ALGORITHM

Convolutional code decoding algorithms are used to
estimate the encoded input information, using a method
that results in the minimum possible number of er-
rors. In [15] Viterbi originally described his maximum-
likelihood sequence estimation algorithm, commonly
known as the Viterbi algorithm. The job of the decoder is
to estimate the path through the trellis that was followed
by the encoder.

Notice that transitions from state ’00’ to ’00’ and ’10’
are possible as well as from state ’01’ to ’00’ and ’10’.
These four transitions form a so-called Viterbi butterfly.
A generalized description of the Viterbi butterflies is
given in Figure 5. The Viterbi algorithm performs all
operations on these butterflies.

The Viterbi algorithm can be divided in three parts:
thebranch metric unit, which performs the branch metric

calculation, theadd-compare-select unit, which performs
the path metric updating, and thesurvivor memory unit,
which updates the survivor sequence.

A. Branch metric calculation

The branch metric unitdetermines all branch metrics
in the trellis. Branch metric calculation will be performed
on Viterbi butterflies. Figure 5 shows the butterflies,
which exist in a trellis. The branches connecting to state
Si/2 correspond always to a decoded ’0’ as output. The
branches connecting to stateS(i+N)/2 correspond always
to a decoded ’1’ as output.

i

i+1

i/2

(i+N)/2

m m+1

Fig. 5. Viterbi butterfly.

All four branches in the butterfly have a particular
codeword assigned. The Euclidean distance is calculated
between the received codeword and the codeword, which
is assigned to the branch. The codeword length of a
rate R = 1/4 decoder is 4, resulting in the Euclidean
distance,

γ = |y0 − c0|
2
+ |y1 − c1|

2
+ |y2 − c2|

2
+ |y3 − c3|

2

with yx the xth bit of the received codeword andcx

the xth bit of the assigned codeword.

B. Path metric updating

The path metrics at the output state are calculated
by adding the path metric at the input state and the
corresponding branch metric. The path with the min-
imum path metric is selected as the survivor and the
corresponding path metric is assigned to the output state.
The example in Figure 6 shows that the branch metrics
of the branches have been determined (left picture). In
the middle picture the path metrics are determined using
the path metrics of the input states and the calculated
branch metrics. In the picture is seen that for both output
states the survivor origins from the second input state.
The path metrics of the survivors for both output states
are3 + 1 = 4 and3 + 2 = 5, respectively.

This operation requires typically amin() operation,
selecting the minimum of two values. Moreover the
originating state (Si or Si+1) has to be determined, since
this information is used in thesurvivor memory unit.
The operation is known asadd-compare-select(ACS);

the path metrics and the branch metrics are added, the
results are compared and the survivor is selected.

C. Survivor sequence updating

Two approaches are often used to record sur-
vivor branches:traceback(TB) and register exchange
(RE) [16]. Basically, the difference between the two
approaches is the manner in which information about
the survivors is stored during the intermediate steps.

1) Traceback:The TB approach stores the survivor
branch of each state. So, the decoded output bit of
the corresponding state is stored in every stage. When
the survivor branch of each state is known, then the
survivor path through the trellis can be reconstructed.
Concatenation of decoded output bits in every stage
in reversed order of time generates the decoded output
sequence of the survivor path through the trellis.

2) Register exchange:The RE approach stores the
entire decoded output sequence for each state during path
metric updating. Therefore, in each stage of the trellis the
decoded output sequence is known and there is no need
to traceback.

The right picture of Figure 6 shows the RE approach.
The decision bit (’0’ or ’1’) at the output of the butterfly
is appended to the bit sequence of the survivor (’10111’).

Fig. 6. Example explaining the three parts of the algorithm.

VI. I MPLEMENTATION

We implemented the Viterbi algorithm in the coarse-
grained reconfigurable MONTIUM. The mapping of the
Viterbi algorithm is highly influenced by the specifica-
tions of the reconfigurable hardware:

• survivor sequence updating will be performed with
the RE approach, because bit sequences can be
stored more efficiently than individual bits.

• due to limited (configurable) instructions, separate
memories for input and output states of the Viterbi
butterfly are defined and no in-place computa-
tion [16] is done.

The bit sequence estimation is performed in a regular
pattern. A piece of pseudo-code of the implementation
is depicted in Figure 7.

Fig. 7. Pseudo-code of the Viterbi decoder.

A. Branch metric unit

The rate, R, of the convolutional code has its im-
pact on the branch metric calculation. Therate of the
Viterbi decoder can easily be adapted by changing the
instructions of thebranch metric unitin the MONTIUM.
Because of the flexibility inside the MONTIUM, one can
easily compute a branch metric based on 2, 3 or 4 code
bits in parallel. Once the branch metrics are calculated,
the values are stored in the local registers of the ALUs
and they can be used for theadd-compare-selecttask.

B. Add-compare-select unit

The number of Viterbi butterflies is always equal to
1
2 ∗ 2k−1. Hence, the Viterbi decoder in a DAB system
with constraint lengthk = 7 has to handle 32 butterflies
per stage of the trellis.

The add-compareoperation that has to be performed
in the Viterbi butterflies can be easily implemented in the
MONTIUM. This requires only an addition and amin()
operation, selecting the minimum of two values. The
path metrics are not only updated in theadd-compare-
select unit, but the decoded bits at the output states
are also generated. For every upper state,Si/2, of the
Viterbi butterfly a ’0’ is generated as output bit and for
every lower state,S(i+N)/2, of the Viterbi butterfly a ’1’
is generated. Moreover, the Viterbi decoder also has to
know what the surviving path in the butterfly is. In other
words, the originating state of the surviving path through
the Viterbi butterfly has to be determined. This is a task
of the selectpart in theadd-compare-selectunit.

In the current MONTIUM architecture, described
in [14], the compare-selectoperation can be performed
by using conditional calls in the sequencer program of

the MONTIUM. Drawback of this approach is that only
oneselectoperation can be performed at a time. In the
Viterbi butterfly, however, twocompare-selectoperations
have to be done; one for each output state of the Viterbi
butterfly.

The problem, which arises with thecompare-select
operation, is that the operation merges the data and
control path. Control-oriented functions are actually not
part of the MONTIUM algorithm domain. Since the
compare-selectoperation is very important in the Viterbi
algorithm, we propose to add thecompare-selectoper-
ation to the ALUs of the MONTIUM. This enables the
compare-selectoperation to run independently from the
sequencer instructions.

The compare-selectfunctionality can be added to
the MONTIUM with minor changes in the existing ar-
chitecture. This enables thecompare-selectoperation
to run independently from the sequencer instructions.
As a result of this minor change in the architecture a
larger coverage of the wireless communication domain
is obtained. Baseband and channel coding algorithms
of different wireless communication standards can now
be performed in the same coarse-grained reconfigurable
MONTIUM architecture.

C. Memory unit

The Viterbi algorithm comes together with storing two
kinds of information. Firstly, the path metric of each state
in the trellis has to be stored. Secondly, the decoded bit
sequence for each state in the trellis has to be stored.
In [16] these kinds of information are referred to scores
and hypotheses, respectively.

1) Path metrics: Since many values have to be
read and written instantaneously, we chose to read the
input information from two memories and to write the
results back to two (different) memories. The functions
of the memory pairs are interchanged in the consecutive
stages of the trellis. The Viterbi implementation in the
MONTIUM uses in total four local memories in order to
store all path metrics. This implementation with separate
input and output memories strikes with the ideas in [16],
where in-place computation is proposed.

The in-place computation minimizes the required
memory size, but the organization of the memory ad-
dressing is irregular for different stages in the trellis.
Consequently, many memory addressing instructions are
required to implement the in-place computation in the
MONTIUM. Furthermore, many (small) local memories
are already available in the MONTIUM, which eliminates
the need for in-place computation.

2) Survivor sequences:The RE approach for stor-
ing the survivor sequences is applied, because bit se-
quences can be stored more efficiently than separate bits,
since the data path of the MONTIUM is 16-bits wide.

The length of the survivor sequence depends on the
decision depthused in the Viterbi decoder. As a rule
of thumb, adecision depthof five times theconstraint
length is in practice sufficient. When puncturing is
applied to the convolutional code, thedecision depthwill
become larger [17]. Since the survivor sequences can
only be stored in sequences of 16 bits in the MONTIUM,
the entire survivor sequence should be stored in multiple
memory addresses when thedecision depthof the Viterbi
decoder is larger than 16. The advantage of such an
approach is that we do not need to handle all the bits
of the survivor sequence. By using memory pointers –
a method that is frequently used in computer science –
only the last part of the survivor sequence has to be dealt
with.

VII. R ESULTS

We implemented a fully flexible Viterbi decoder. The
rate, R, as well as theconstraint length, k, and the
decision depth, d, of the decoder can be adapted. The
results in this paper are based on the DAB system [18],
R = 1/4 andk = 7 with a decision depthd = 50.

A. Throughput

The implementation of the Viterbi algorithm in the
MONTIUM results in a decoder that processes one stage
of the trellis in 42 clock cycles. The data processing of
one stage consists of branch metric calculation and path
metric updating.

The survivor sequences are stored using the RE ap-
proach, combined with using memory pointers. Fig-
ure 8 depicts the memory organization of the Register
Exchange contents. For the DAB system the memory
pointers are 6 bits wide, so 10 bits in the memory are
available to store the decision bits. Each pointer is a
handle to the memory address of the previous stage.
In this way the complete survivor sequence can be
constructed.

Whenever 10 stages of the trellis have been processed,
the Viterbi decoder decides on the decoded bit sequences
of the foregoing stages. Hence, after processing 10 stages
of the trellis, the Viterbi decoder has to look-up the bit
sequence of the path with the minimum path metric. This
procedure requires a search operation through the 64 path
metrics and costs 35 additional clock cycles. The look-up
operation requires 15 additional clock cycles.

Fig. 8. Register Exchange memory organization with pointers.

In the implemented DAB decoder, always 10 bits are
generated during the survivor decision phase. So, 10
bits are generated in10 × 42 + 50 = 470 clock cycles.
On average 47 clock cycles are required to decode one
output bit. The output rate of the Viterbi decoder in
the MONTIUM is 2.1 Mbit/s using a clock frequency
of 100 MHz. This is sufficient for DAB, which requires
an output rate of 1.8 Mbit/s.

B. MONTIUM configuration

The total configuration size of the MONTIUM Viterbi
implementation is 1356 bytes. This configuration can
be loaded in the MONTIUM’s configuration memory in
6.78µs when the clock frequency is 100 MHz.

Only partial reconfiguration has to be performed in
order to adjust theconstraint length, decision depthor
rate. Especially thedecision depthdepends heavily on
the conditions of the wireless channel.

C. Energy consumption

Although energy figures for the MONTIUM are avail-
able [14], no exact figures can be given for the im-
plemented Viterbi decoder. We know that the normal-
ized power consumption of the MONTIUM is about
0.5 mW/MHz during Multiply-Accumulate (MAC) oper-
ations. However, MAC operations are hardly performed
in the Viterbi decoder, thus these will be worst-case num-
bers. The DAB Viterbi decoder uses on average 47 clock

cycles per bit decision. Hence, the energy consumption
of the implemented Viterbi decoder is 23.5 nJ/bit.

Furthermore we estimated that the energy consump-
tion of the Viterbi decoder implemented in the ARM9 is
about 5µJ/bit [19]. However, the ARM9 does not have
enough processing power to deliver an output rate of 1.8
Mbit/s for DAB.

A hardwired Viterbi decoder for DAB was imple-
mented in ASIC by Atmel. From discussions with de-
velopers from Atmel we know that their implementation
of the Viterbi decoder uses about 2 mW in 0.13µm
technology with an output rate of 1.8 Mbit/s. Hence, the
average energy consumption is about 1 nJ/bit.

TABLE I

ENERGY/TECHNOLOGY COMPARISON.

Energy [nJ/bit] Technology [µm]

ASIC 1 0.13
MONTIUM 24 0.13
ARM9 5000 0.13

VIII. C ONCLUSION

We implemented an adaptive Viterbi decoder in the
coarse-grained MONTIUM processor. The implemented
Viterbi decoder is adaptive in many ways. Depending
on the used communication system, one can configure
the flexible hardware with the right parameters like
constraint lengthand rate. Furthermore, thedecision
depth of the Viterbi decoder can be configured. Via
dynamic reconfiguration one can change the decision
length during operation of the Viterbi algorithm.

We estimated the worst-case energy consumption of
the DAB Viterbi decoder in the MONTIUM at 24 nJ/bit.
Compared to an ASIC implementation of the DAB
Viterbi decoder, flexibility costs about 24 times more
energy. Implementing the same decoder in a general pur-
pose processor requires about 5000 times more energy
than an ASIC implementation.

ACKNOWLEDGEMENT

This research is supported by the EU FP6 project
”Smart chipS for Smart Surroundings” and the Freeband
Knowledge Impulse programme, a joint initiative of
the Dutch Ministry of Economic Affairs, knowledge
institutions and industry.

REFERENCES

[1] Jordy Potman, Fokke Hoeksema, and Kees Slump. Tradeoffs
between Spreading Factor, Symbol Constellation Size and Rake
Fingers in UMTS. InProceedings of PRORISC 2003, pages
543–548, Veldhoven, the Netherlands, November 2003.

[2] B. Bougard, S. Pollin, G. Lenoir, W. Eberle, L. Van der Perre,
F. Catthoor, and W. Dehaene. Energy-Scalability Enhancement
of Wireless Local Area Network Transceivers. InProceedings
of the Fifth IEEE Workshop on Signal Processing Advances in
Wireless Communication, Lisboa, Portugal, July 2004.

[3] K. Masselos, S. Blionas, and T. Rautio. Reconfigurability
requirements of wireless communication systems. InProceed-
ings of the IEEE Workshop on Heterogeneous Reconfigurable
Systems on Chip, Hamburg, Germany, April 2002.

[4] Paul M. Heysters, Gerard K. Rauwerda, and Gerard J. M.
Smit. Implementation of a HiperLAN/2 Receiver on the
Reconfigurable Montium Architecture. InProceedings of the
11th Reconfigurable Architectures Workshop (RAW 2004), Santa
Fé, New Mexico, USA, April 2004.

[5] Gerard K. Rauwerda and Gerard J. M. Smit. Implementation
of a Flexible RAKE Receiver in Heterogeneous Reconfigurable
Hardware. InProceedings of the 2004 IEEE International
Conference on Field-Programmable Technology, pages 437–
440, Brisbane, Australia, December 2004.

[6] Pleiades project. http://bwrc.eecs.berkeley.edu/
Research/Configurable_Architectures/.

[7] PACT XPP Technologies .http://www.pactcorp.com.
[8] Silicon Hive. http://www.siliconhive.com.
[9] Smart chipS for Smart Surroundings project.http://www.

smart-chips.net.
[10] AMDREL project. http://vlsi.ee.duth.gr/

amdrel/.
[11] Tobias Gemmeke, Michael Gansen, and Tobias G. Noll. Im-

plementation of Scalable Power and Area Efficient High-
Throughput Viterbi Decoders. IEEE Journal of Solid-State
Circuits, 37(7):941–948, July 2002.

[12] Russell Henning and Chaitali Chakrabarti. An Approachfor
Adaptively Approximating the Viterbi Algorithm to Reduce
Power Consumption While Decoding Convolutional Codes.
IEEE Transactions on Signal Processing, 52(5):1443–1451,
May 2004.

[13] Sriram Swaminathan, Russell Tessier, Dennis Goeckel,and
Wayne Burleson. A Dynamically Reconfigurable Adaptive
Viterbi Decoder. InProceedings of the 2002 ACM/SIGDA 10th
International Symposium on Field-Programmable Gate Arrays,
pages 227–236, Monterey, California, USA, February 2002.

[14] Paul M. Heysters.Coarse-Grained Reconfigurable Processors
– Flexibility meets Efficiency. PhD thesis, University of Twente,
Enschede, the Netherlands, September 2004.

[15] Andrew J. Viterbi. Error Bounds for Convolutional Codes and
an Asymptotically Optimum Decoding Algorithm.IEEE Trans-
actions on Information Theory, 13(2):260–269, April 1967.

[16] Charles M. Rader. Memory Management in a Viterbi De-
coder. IEEE Transactions on Communications, 29(9):1399–
1401, September 1981.

[17] Richard D. Wesel, Xuething Liu, and Wei Shi. Trellis Codes
for Periodic Erasures.IEEE Transactions on Communications,
48(6):938–947, June 2000.

[18] ETSI. Radio Broadcasting Systems; Digital Audio Broadcasting
(DAB) to mobile, portable and fixed receivers. ETSI EN 300
401 v1.3.3 (2001-05), May 2001.

[19] Michiel Horsman, Thijs Mutter, Marcel van der Veen, Maarten
Witteman, and Karel Walters. Energy comparison of Viterbi
algorithm on ARM and XScale architecture. University of
Twente, Enschede, the Netherlands, 2004. Internal report.

