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Abstract

To gain insight into gaze behavior in meet-
ings, this paper compares the results from a
Naive Bayes classifier, Neural Networks and
humans on speaker prediction in four-person
meetings given solely the azimuth head an-
gles. The Naive Bayes classifier scored 69.4%
correctly, Neural Networks 62.3% and hu-
mans only 37.7%. None of the classifiers was
able to generalize over meetings. We show
that there are strong indications that human
specific gaze behavior influences the fact that
the models do not generalize. Additionally,
we show that for all classifiers the perfor-
mance of the prediction in the beginning and
at the end of a speaker turn is worse than
halfway through the speaker turn.

1. Introduction

Nowadays a lot of research is being done on machine
processing and interpretation of signals from people
or other elements present in an observed environment.
Smart rooms are widely used as test environments for
research in this area. Sensors in the room can cap-
ture information which can be fused, manipulated and
augmented in order to achieve interpretation at desired
levels (Reidsma et al., 2004).

Currently smart meeting rooms are being used for all
kinds of research purposes in e.g. the AMI project,
the CMU meeting Room Project and the NIST Meet-
ing Room project. One can think of a smart meet-
ing room with a system that creates notes by under-
standing speech, creates summaries (Mani & Maybury,
1999), or automatically switches microphones on and
off. EasyMeeting (Chen & Perich, 2004) is an exam-
ple of a system that can provide relevant services and
information to meeting participants.

State of the art in computer graphics and animation
of embodied agents allows us to build quite realistic
3D virtual environments in which real humans can
meet virtual human-like avatars (Vilhjalmsson & Cas-
sell, 1998; Nijholt, 2004). These virtual environments
can be used as a test bed for data visualization and
for studying human perception and interpretation of
meeting situations.

In this paper we examine the performance of humans
and machine learning techniques on the task of speaker
prediction from horizontal head orientation angles (az-
imuth). Gaze is not solely determined by the head ori-
entation but also by the direction of eye gaze. It has,
however, been shown that there is a high correlation
between gaze and head orientation (more than 85%)
(Stiefelhagen, 2002).

2. Research aim

Within a meeting context, our aim is to gain insight
into the nature of human gaze behavior. We can use
this knowledge for both generation of gaze behavior
in virtual meetings and the extraction of useful infor-
mation from gaze behavior such as the speaker, the
addressee and the focus of attention.

Imagine a virtual chairman who understands the meet-
ing sufficiently to be able to structure the meeting ac-
cording to an agenda by giving appropriate turns, in-
terrupting if someone speaks for too long and keeping
participants focused when they seem distracted. This
might sound far-fetched, but when a machine under-
stands where someone is looking during a meeting, it
might conclude based on its models that the person
is focused on the object in line with the head orienta-
tion. If a non-speaker is always looking at the ceiling
instead of at the speaker, this might reveal something
about his attention level or even about the personality
of that person.



Autonomous agents can use the derived gaze behav-
ior models in combination with their own beliefs, de-
sires, intentions and emotions (Wright, 1997) to be-
come ‘aware’ of the perceived situation and even to act
according to the models. Current applications of such
models lead to increased appreciation of such agents
(van Es et al., 2002), since they become more lively.
This directly improves remote communication (Garau
et al., 2001).

2.1. Gaze behavior

In general it is believed that gaze can bear a conver-
sational function. When someone is looked at, the
person who is looking might expect a reaction from
the other, either visual or vocal. According to Kendon
(Kendon, 1967) gaze serves four functions: visual feed-
back, regulation of conversation flow, communication
of emotions and relationships, and improvement of
concentration by restricting visual input.

Argyle et al. (Argyle et al., 1973) define six almost
similar categories: information seeking, signaling, con-
trolling the synchronization of speech, mutual gaze
and intimacy, avoiding undue intimacy, and avoiding
excess input of information. We are especially inter-
ested in examining the information seeking and the
conversational flow regulation. While speaking a per-
son emits information so we expect the listeners to
look at the speaker, seeking for information.

Research showed that people gaze nearly twice as much
at others while listening (75%) than while speaking
(41%) (Argyle & Cook, 1976). In the case of a single
speaker, all listeners would be focussing more in the
direction of the speaker than the speaker is focussing at
all of them. In accordance with this, Vertegaal found
that, in a setting with three persons, people gaze much
more at the speaker (62.4%) than at others (8.5%)
(Vertegaal, 1998).

Assuming this, we expect head orientations of persons
in a meeting to be good indicators for speaker iden-
tification. The remainder of this paper addresses this
issue. First we describe the data collection. Then we
show how well machine learning techniques are able to
predict the speaker amongst four meeting participants,
followed by a discussion how humans performed on
this task. Finally, we compare the results for both ap-
proaches and elaborate on these results revealing more
insight in gaze behavior.

3. Data collection

We used three four-person meetings with a total du-
ration of 21 minutes that were recorded in the IDIAP

Figure 1. The setting of meeting 6, with close-ups of par-
ticipants

smart room. Apart from the video and audio record-
ings, we recorded head position and orientation for all
meeting participants. Flock of Bird sensors were used
to accurately measure position and orientation at a
rate of 50 Hz. The sensor is a small box and when
mounted on top of a participant’s head is not obtru-
sive and does not cause any distraction, as can be seen
in close-ups in Fig. 1.

The non-scripted meetings contain lively discussions
about pre-formulated statements. To make the experi-
ment more realistic we also incorporated a whiteboard,
where statements were shown.

After recording, we analyzed both video and orienta-
tion data to discover possible biases due to incorrect
mounting of the Flock sensor on the head. We cor-
rected the orientation data for these biases. For sim-
plicity reasons, we only used azimuth data, see Fig. 2.
Since all participants reside in the same plane, parallel
to the table surface, we expect that azimuth orienta-
tion contains the most relevant information.

Figure 2. Azimuth, elevation and roll angles for heads



Furthermore, all occurrences with non-speech (laugh-
ter, silence, etc.) or with speech overlap were removed
from the data set. The number of frames for each
meeting, including a priori probabilities for each meet-
ing and for all meetings, can be found in Table 1.

M1 M2 M3 Total
Samples 11333 13078 28148 52559
A priori SP1 40.4% 26.9% 24.8% 28.7%
A priori SP2 27.3% 23.4% 9.8% 16.9%
A priori SP3 7.7% 8.6% 29.4% 19.5%
A priori SP4 24.7% 41.2% 36.0% 34.9%

Table 1. Number of samples and a priori probabilities of
speakers in each meeting and all meetings. M1 is meeting
1, SP1 corresponds to speaker 1.

4. Machine learning performance

In this section we compare the prediction results of
Naive Bayes classifiers and Neural Networks for the
task of speaker identification.

4.1. Data representation

For our machine learning experiment, we used input
vectors vt = (α(1)t, α(2)t, α(3)t, α(4)t), sampled at
time t. Each α(i)t corresponds to the azimuth angle
of person i at time t. We used batch training, dur-
ing which we also presented the speaker SPt at time
t, where SPt ∈ {1, 2, 3, 4}.

In both experiments four series of tests were per-
formed, each test having a different composition of
training and test sets. In a first series both training
and test set were obtained from a single meeting. In
series two, both training and testing were performed
on samples from all three meetings. In the third series,
we trained on two meetings and tested on the third.
Finally, we trained on a single meeting and tested on
the other two. We discuss the results for the two ma-
chine learning techniques below.

4.2. Naive Bayes classifier

We trained a Naive Bayes classifier with and with-
out supervised discretisation (Yang & Webb, 2003;
Dougherty et al., 1995) using gaze vectors. We con-
ducted the test for three different meetings using ten-
fold cross validation. The results for the four series are
shown in Table 2. The discretized data is shown in the
column D, the original not discretized data is shown
in the column ND.

From the table it can be seen that within a single
meeting the classifier performs quite well. However

Trained Test ND D
M1 M1 63.0% 82.8 %
M2 M2 51.3% 90.0 %
M3 M3 54.5% 76.6 %
M1, M2 & M3 M1, M2 & M3 50.0% 69.4 %
M1 & M2 M3 39.5% 35.4%
M1 & M3 M2 38.8% 33.5%
M2 & M3 M1 45.6% 40.4%
M1 M2 & M3 34.5% 36.5%
M2 M1 & M3 37.5% 32.7%
M3 M1 & M2 42.5% 32.3%

Table 2. Classification results for the Naive Bayes classifier
without (ND) and with (D) discretization

when our training and test sets are taken from dif-
ferent meetings the performance drops significantly.
Discretization improves our results when we test on
samples from the meeting on which we trained and it
decreases our results when we test on samples from
other meetings than those trained on. Since the dis-
cretization algorithm is supervised, the bins created by
the algorithm when trained on a particular meeting do
not apply for samples from a different meeting. This
results in a worse instead of an increased performance.

4.3. Neural Networks

We also used Neural Networks to estimate the speaker
from the azimuth angle data. The Levenberg-
Marquardt algorithm (Moré, 1978) was used for train-
ing. We performed the same four series of tests used
for the Naive Bayes classifier.

In each series, we experimented with different numbers
of neurons in the hidden layer. In the first two series,
25 neurons were found to yield best results, in the
third series we used 15 neurons and in the last series
only 5 neurons were used. In the first two series, the
data was divided into a training set (60%), a test set
(20%) and a validation set (20%). In the last two
series, the training set contained all samples from the
training meeting. The validation set contained 20% of
the test meeting samples. The test set contained the
other 80%. In each test, 5 runs were performed and
the Neural Network with the best performance on the
validation set was used to obtain the test performance.
In Table 3, these results are summarized.

Again, we see that when training and test sets are sam-
pled from the same meetings, the performance is high.
The results however, do not generalize over meetings.



Training Test Result
M1 M1 82.6%
M2 M2 81.3%
M3 M3 72.3%
M1, M2 and M3 M1, M2 and M3 62.9%
M1 and M2 M3 44.2%
M1 and M3 M2 43.7%
M2 and M3 M1 48.1%
M1 M2 and M3 38.2%
M2 M1 and M3 40.2%
M3 M1 and M2 42.4%

Table 3. Classification results for Neural Networks

5. Human performance

In this section we describe how we tested the human
performance on predicting speaker turns based only
on head orientations. The main problem is that in-
terpreting the numerical vt vector is hard for humans.
However, presenting the video data gives more infor-
mation than just vt, such as possible facial expressions
and gestures. But there are other problems such as the
fact that humans have background knowledge. This
information enables them to reason about gaze behav-
ior and use their prior knowledge about meetings.

5.1. Experiment setup

To overcome the fact that we cannot present a num-
ber of numerical vectors to humans we exploited the
fact that humans have background knowledge about
meetings. We created a virtual meeting room (VMR,
Fig. 3), allowing precise control over the delivered
stimuli. In this VMR the setting is visualized, in-
cluding the locations of the participants and the white
board.

One problem with this kind of controlled virtual envi-
ronment is the trade-off between the ecological validity
and the experimental control, resulting in sterile arti-
ficial environments (Loomis et al., 1999). However,
since we are only interested in head orientations we
actually want to neglect other influences. By replac-
ing the real setting (Fig. 1) with a virtual setting we
are not only able to display the necessary information
but also to remove all other possibly distorting infor-
mation. This makes it possible, to a minimal extent,
for the humans to interpret the gaze vectors and for
other possible variables to be controlled.

Participants in the experiment were shown the meeting
room with the participants as well as an option panel
where they were able to choose among the four speak-
ers, being either confident or very confident. Also there

Figure 3. The virtual meeting room setting

was a ‘no idea’ button to prevent biased unfounded
choices.

Each experiment consisted of a session with four parts,
each containing 20 samples. There were two types
of sessions. Type 1 contained feedback only on the
first part whereas in type 2 the feedback was omit-
ted completely. For the first two parts of both session
types two times 20 samples were randomly chosen from
meeting 3, the third part contained 20 randomly cho-
sen samples from meeting 2 and the last part contained
20 randomly chosen samples from meeting 1.

The idea behind this was twofold. In the first place
it enabled us to see if the feedback was helpful to the
participants. Secondly, we were able to see whether
feedback on samples from one meeting influenced the
results on samples from different meetings. The feed-
back was given by showing a red arrow above the head
of the correct speaker directly after the participants
had judged the sample. We asked students and em-
ployees of our department to do the test.

5.2. Results

Both session types were completed 20 times, resulting
in a total of 3200 answered samples. The results are
shown in Table 4

The table shows that the human performance is ap-
proximately 38%, which is lower than we expected.
An interesting thing to note here is that there are sig-



Type Part 1 Part 2 Part 3 Part 4 Total
1 47.8% 49.3% 29.8% 24.8% 37.9%
2 39.3% 42.0% 33.3% 35.3% 37.4%

Table 4. Classification results for humans per session type

nificant (p < 0.05 using a paired T-test) differences
between the two session types. In the first place the re-
sults on the first two session parts are better with feed-
back than without feedback and for the last two session
parts we see a significantly worse performance. Fur-
thermore it appeared that when no feedback was given
the performance remained much more stable over the
different session parts.

We expect that if feedback is given humans create
rules or models that work better for the meeting on
which they received feedback. These could be a priori
models that are applied when there is doubt about a
possible outcome. When these models were tested on
samples from different meetings they did not general-
ize. This seems to be in accordance with our machine
learning findings.

6. Evaluation

From the results of both the machine learning tech-
niques and the experiment with humans, it appears
that the models do not generalize over all meetings.
Apparently in the meetings different gaze behavior is
displayed. This could be caused by different meeting
topics, more or less frequent use of the whiteboard and
differences in individual gaze behavior.

To gain more insight into differences between and
within meetings, we examine two factors more closely
in this section. First we investigate if there is a relation
between the predicted speaker and the actual speaker
in terms of location in the meeting. The second topic
we investigate is the performance of the speaker pre-
diction on different moments in a speaker turn.

6.1. Location effect on performance

We expect that different persons display different gaze
behavior. Because we do not have sufficient meeting
data in which the same persons participate, we try
to find indications that there are differences between
participants. We examine this by looking at differences
in prediction performance for all speakers given the
confusion matrices for all classifiers. Then we look at
the person specific performance for neural networks on
all meetings. Finally we examine whether the position
with respect to other participants is of any influence.

In Table 5, 6, 7 and 8 the confusion matrices for the
prediction results are shown for all classifiers. For the
machine learning algorithms, training and testing is
performed on samples from all three meetings (series
2 of Table 2 and 3) to obtain the most reliable model.

Actual Estimated speaker
speaker SP1 SP2 SP3 SP4
SP1 26.2% 12.9% 9.9% 51.1%
SP2 9.6% 60.1% 6.0% 24.3%
SP3 8.7% 12.4% 42.5% 36.4%
SP4 11.8% 11.6% 7.6% 69.0%

Table 5. Confusion matrix for actual speakers (row) and
predicted speakers (column) for Bayes classifier without
discretization. Performance is 50.0%

Actual Estimated speaker
speaker SP1 SP2 SP3 SP4
SP1 65.5% 8.0% 7.7% 18.9%
SP2 9.5% 71.6% 6.2% 12.7%
SP3 11.5% 7.0% 67.0% 14.5%
SP4 15.9% 4.7% 6.3% 73.2%

Table 6. Confusion matrix for actual speakers (row) and
predicted speakers (column) for Bayes classifier with dis-
cretization. Performance is 69.4%

Actual Estimated speaker
speaker SP1 SP2 SP3 SP4
SP1 50.6% 9.7% 11.3% 28.4%
SP2 10.1% 61.4% 8.0% 20.5%
SP3 9.8% 8.3% 60.1% 21.2%
SP4 12.3% 6.1% 6.6% 75.0%

Table 7. Confusion matrix for actual speakers (row) and
predicted speakers (column) for the experiment with Neu-
ral Networks. Performance is 62.9%

Actual Estimated speaker
speaker SP1 SP2 SP3 SP4
SP1 31.8% 15.4% 24.0% 28.8%
SP2 15.3% 42.8% 24.0% 17.9%
SP3 14.3% 14.7% 51.1% 20.0%
SP4 21.7% 12.7% 22.0% 43.7%

Table 8. Confusion matrix for actual speakers (row) and
predicted speakers (column) for the experiment with hu-
mans. Performance is 42.3%

It appears that there are differences in prediction re-
sults for a certain location. For example, for the Naive
Bayes classifier without discretization (Table 5) correct



performance for speaker 1 is 26.2% whereas the per-
formance for speaker 4 is 69.0%. The results from the
above tables are summarized over the three meetings.
To find out whether different persons display differ-
ent gaze behavior we examine the differences between
meetings. In Table 9, the Neural Network prediction
results for each meeting are summarized.

Location M1 M2 M3 Total
1 51.4% 47.8% 51.6% 59.0%
2 67.8% 57.4% 58.7% 59.0%
3 88.7% 45.1% 59.8% 62.2%
4 73.8% 70.2% 77.8% 73.0%

Table 9. Correct Neural Network predictions for each loca-
tion per meeting

Given the results of the Neural Network it appears that
the differences in speaker prediction performance are
also present between meetings. This shows that there
are differences in performance for each person in each
meeting, which is a strong indication that there are
differences in gaze behavior for different persons. This
might be an explanation for the fact that our models
do not generalize.

If we look at the origin of the prediction errors, we can
tell what mistakes are made with respect to the rela-
tive position. In Fig. 3 we see that participants 1 and
4 are sitting next to each other, whereas participants 1
and 2 are sitting opposite to each other. Finally, par-
ticipants 1 and 3 are sitting diagonally to each other.
Table 10 summarizes the errors in these directions.

Next to Opposite Diagonal
Naive Bayes 36.0% 32.4% 31.7%classifier (ND)
Naive Bayes 39.2% 31.1% 29.8%classifier (D)
Neural 37.1% 31.6% 31.4%Network
Humans 38.2% 32.3% 29.5%

Table 10. Estimation errors in different directions for ma-
chine learning techniques and humans for all meetings

We see that there is more confusion between two per-
sons who are sitting next to each other than between
two people who are in opposite corners of the table.
The results are similar for all four classifiers. We ex-
pect a relation between physical participant distance
and the prediction error. The distance between par-
ticipants at one side of the table is smaller than the
distance between two participants on opposite sides of
the table. Changing the meeting setting from a square
table with participants sitting opposite to each other

to a round table as is used in (Stiefelhagen, 2002) could
eliminate those biases but cannot explain the differ-
ences from Table 9.

6.2. Performance within a speaker turn

We can take a closer look at the data and determine
how our classifiers perform during a speaker turn. Can
the speaker be determined better in the beginning, in
the middle or at the end of a speaker turn? If we
look at the speaker prediction scores within speaker
turns longer than 1 second (92.4% of all samples), we
obtain the results from Fig. 4. We ignored speaker
turns shorter than 1 second, containing short utter-
ances. Ten equally sized bins were used to assure that
for each interval sufficient samples (over 300 per bins)
remained.
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Figure 4. Speaker prediction performance during a speaker
turn using 10 bins

We see a trend in the graph for all four classifiers. In
the beginning and at the end of a speaker turn, the
speaker is harder to determine than halfway the turn.
This could be explained by assuming that participants
switch from speaking to listening, from listening to
speaking or start gazing at the new speaker. A similar
explanation could be found for the lower identification
performance at the end of a speaker turn. Participants
might start gazing at the person who they expect will
reply to the current speaker.

7. Conclusions

To gain insight into gaze behavior in meetings, a
comparison of classification results for a Naive Bayes
classifier, Neural Networks and humans was made on
the task of speaker prediction from azimuth head an-
gles. In four-person meetings, a Naive Bayes classi-



fier was able to predict 69.4% correctly, Neural Net-
works scored 63.2%, and humans only 37.7%. The
machine learning classification results do not general-
ize over meetings. In the experiment with humans we
see similar results. The model that was learned using
the feedback increased the outcome for the meeting
where the feedback was given, but decreased the re-
sult for the other meetings. We showed that there are
strong indications that human specific gaze behavior
influences the fact that the models do not generalize.
Additionally, we showed that for all classifiers the per-
formance in the beginning and at the end of a speaker
turn is worse than halfway through the speaker turn.

8. Future work

To improve insight into gaze behavior we plan to in-
vestigate whether adding more information, such as
body orientation will increase the classification perfor-
mance. Experiments have started where we analyze
head orientations of complete speaker turns. Also, we
plan to verify simple protocols possibly applied by hu-
mans when predicting the speaker.

With respect to the fact that our models do not gener-
alize over meetings, we intend to do more research on
person specific gaze behavior. Information such as the
typical duration of personal speaker turns, the average
head movement during a turn might reveal more cues
along our path to addressee detection and focus of at-
tention estimation. Also, more research needs to be
done on the effect of meeting topics and their context
on the prediction of gaze behavior.
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