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Abstract. Virtual channel reservation is a simple approach for provid-
ing guaranteed throughput services in a virtual channel network-on-chip.
However, its performance is limited by the number of virtual channels
per physical channels. In this paper we explore the limits of the approach
and investigate how these limits depend on the routing algorithm, the
traffic locality, the network topology and the network size. The results
show the the approach can be applied in a network of size 10-by-10 nodes
with four virtual channels per physical channel. The traffic locality has
strong influence on the performance limits of the approach and can also
help in reducing the communication energy cost by 50% to 70%. The type
of the routing algorithm does not practically influence the performance
limits.

1 Introduction

Multiprocessor System-on-Chip (MPSoC) is an emerging platform for the future
mobile devices, e.g. PDAs, media players, mobile phones etc. To meet the func-
tional requirements of these devices, such a platform should provide flexibility
together with high performance and low power consumption. A promising ap-
proach for satisfying these contradicting requirements is though reconfigurable
domain-specific computing. The work presented in this paper is performed as
a part of the Gecko project which addresses architectural and design issues in
low-power dynamically reconfigurable multimedia systems. The platform we en-
vision for these devices is a MPSoC consisting of a large array of coarse grain
reconfigurable processing elements (PEs) and distributed memories. The PEs
are heterogeneous and domain specific, performing efficient high performance
computation for specific application domains. One of the major issues in such a
system is the communication between the PEs. The traditional system bus is not
a solution because it is not scalable and cannot sustain the increasing bandwidth
demands. The bus easy becomes a bottleneck and hence in the future MPSoC it
is replaced by a light weighted communication network built on-chip, also known
as Network-on-Chip (NoC) [1]. In this paper we discuss the NoC we propose for
our MPSoC.

The network we consider is constructed in the following way. The PEs in our
system are arranger in a two-dimensional array. Each PE is equipped with a net-
work router it uses for inter processor communication. The network routers are
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connected in a grid by full-duplex channels build by two unidirectional channels
- one in each direction. The unidirectional channels are referred to as physical
channels. In our system we use a virtual channel network [2]. In a virtual channel
network, on each physical channel there are several virtual channels (VCs). Data
in the network is transported over the VCs.

The system we envision is dynamic and reconfigurable at run-time. The ap-
plications that will run in the system are not known in advance, but are decided
at run-time. A central system authority starts and terminates applications at
run-time. When an application is started, the central authority allocates and
configures PEs for the application and reserves communication channels in the
NoC to carry the data streams between the PEs. When the application is ter-
minated the resources it uses are freed.

Since many of the applications in mobile multimedia devices are real-time,
predictable system communications are important. Predictable communications
in our network are provided by means of guaranteed throughput (GT) services.
The network can provide connections with a guaranteed minimal throughput
bound. To guarantee the bound we use a virtual channel reservation - the VCs
traversed by a connection are reserved and not used by other communications.
Such approach is simple, but its potential is limited by the number of VCs in
the network. Since there are finite number of VCs on each physical channel, the
number of connections that can traverse a physical channel is limited and thus
is limited the number of connections that can be opened simultaneously in the
network. The number of VCs cannot be increased arbitrary, because it has a
strong impact on the router area.

In this paper we explore the limits of the virtual channel reservation approach
in a network of size 10-by-10 PEs with four VCs per physical channel. Consider-
ing the available chip area and the size of the processing elements this network
size is feasible for the today and near future systems. The number of VCs is
chosen such that the routers have reasonable size. We also investigate how the
limits of the virtual channel reservation approach depend on the network routing
algorithm, the network traffic locality and the network topology.

The paper is organized as follows. Section 2 discusses related work. The
network is presented in Section 3. Section 4 discusses how the GT traffic is
routed in the network and what algorithms are used for that. In Section 5 a
model of the GT traffic in the network is constructed. Section 6 describes the
performed experiments and Section 7 discussed the simulation results.

2 Related Work

In this section we briefly review the QoS solutions in NoCs. In the Ethereal
network-on-chip [3] guaranteed services are based on time-division multiplexing
(TDM). The communications on the physical channels are globally scheduled in
time slots. A TDM approach is used also in the Nostrum network [4]. Although
simple from implementation point of view, the TDM approach is static and not
flexible enough for a dynamic system. Small changes in the network configuration
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may require complete recomputation of the schedule. The distribution of the
new schedule requires reconfiguration of all the routers along the changed paths.
Furthermore, the global schedule requires a global notion of time in the system
which may become a disadvantage in the near future when systems are expected
to be Globally Asynchronous Locally Synchronous (GALS) [5].

A circuit switching NoC is another solution for providing guaranteed services.
It benefits from small size and low energy consumption but is restrictive in the
number of circuits that can be established. Wolkotte et al [6] overcome the
problem by providing more than one physical channel between the neighbour
routers. However, an additional network is needed for handling the best effort
traffic in the system and for network configuration. The time for establishing a
circuit cannot be neglected because all the switches along the circuit have to be
reconfigured.

Another approach for providing guaranteed services in a network-on-chip is
by introducing priorities. Such an approach is used by Felicijan et al [7] to pro-
vide guarantees in a virtual channel network. The VCs over a physical channel
have statically assigned priorities. The high priority VCs are used for guaran-
teed traffic and the low priority VCs are used for best effort traffic. While this
approach can guarantee better services for the traffic using higher priority VCs
it cannot give exact bound on the provided services.

3 Network Operation

Here we briefly present the on-chip network we propose for interconnecting the
PEs in the system. It is a packet switching virtual channel network that provides
GT as well as Best Effort (BE) services [8]. The network consists of a grid of
routers interconnected by physical channels. Each router is connected to a PE
which serves as a source and sink of data. On each physical channel there are 4
VCs , this number being motivated by the trade-off between performance and
area of a virtual channel router studied by Dally [2]. The VCs time-share the
physical channel but are separately buffered at the router input. The physical
channel is shared on a cycle-by-cycle basis in a round-robin fashion, but cycles are
only used by the VCs that transmit data; the idle VCs do not use cycles. Since
sharing is done in a round-robin fashion, the VCs equally share the physical
channel bandwidth. If on a physical channel of bandwidth b there are v VCs
currently transmitting data, then each of these v VCs is guaranteed a throughput
of

THmin =
b

v
(1)

This is the worst case throughput the traffic on the v VCs can experience.
Whatever traffic load is applied to the v VCs their throughput will never go
below THmin. Therefore, guarantees on the throughput bound of a VC can be
given by restricting the number of VCs used on the same physical channel. If a
minimal throughput bound THR is requested for a VC, then according to Eq. (1)
the number v of VCs used on the same physical channel should be
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v ≤
⌊

b

THmin

⌋
(2)

With four VCs per physical channel in our network we can guarantee through-
put of b, b/2, b/3 or b/4.

In traditional virtual channel networks VCs are allocated to packets dynam-
ically by the routers [2]. In such a network the number of currently occupied
VCs depends on the current traffic and cannot be determined. Therefore no
throughput guarantees can be given for a VC. In contrast, in our network VCs
are statically allocated. We use a source routing, which is a technique where
the packet destination address describes the exact route in terms of VCs that
the packet takes to the destination. The addresses are generated by the cen-
tral authority and given to the PEs during their configuration. Knowing the
routes already in use, the central authority can determine which VCs are used.
Therefor, it can predict their throughput and give guarantees.

In our network GT services are provides on a connection basis. A route
is found between the source and the destination node and the VCs the route
traverses are reserved and not used for other communications. Such a route is
called connection. The throughput of the connection is determined by the VC
with minimal throughput among the traversed. If Eq. (2) holds for all VCs the
connection traverses then it guarantees minimal throughput bound of THR.

Routes for connections are provided by the central authority using a routing
function. The routing function searches for a route traversing only VCs that can
satisfy the connection throughput request THR according to Eq. (2). Thus, the
routing function is in charge of providing GT connections for the application.

4 Routing Function

The task of the routing function is to find routes for the GT connections in
the network. The function has the form R(S,D,THR). It takes as input a of a
connection description and returns as a result a description of network route.
The connection description consists of a source node S, a destination node D
and a requested throughput THR. The route description is an ordered sequence
<vc1, vc2, , vcn> of the virtual channels vci traversed by the route. The re-
quested throughput can be a real number but according to Eq. (2) the guar-
anteed throughput bound is always discrete and takes values b, b/2, b/3 and
b/4.

To guarantee the specified throughput the routing function looks for a route
traversing only VCs for which Eq. (2) holds. To find such a route, the routing
function needs to know the current state of all VCs in the network. The state of
a VC is represented by one integer set to 0 when the VC is not used or indicating
the throughput that is guaranteed when the VC is used. The states of all VCs
form the network state. When searching for a route, the routing function checks
the network state and uses only free VCs that satisfy the following two GT
routing criteria: i) the VC can guarantee the requested throughput according
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Eq. (2), ii) the use of the VC will not violate the throughput guarantees already
given (if any) by the other VCs on the same physical channel (Eq. (2) will
still hold for them). After the route has been constructed, the routing function
updates the state of the used VCs. When the route is not needed anymore, e.g.
the application using it has terminated, the VCs constructing the route are freed
and their state is updated.

Finding a route in a network is equivalent to finding a path between two
nodes in a graph - the network topology is represented as a graph and a path
searching algorithm is run on it. Among all possible paths the shortest is prefer-
able, because shorter network routes result in less network traffic and less energy
for communication. Therefore, the routing function is based on an algorithm for
the shortest path search in graphs. However, our routing function runs on a sub-
graph I=(N,C) of the full network graph, derived by deleting all channels that
do not satisfy the two GT routing criteria. Here N represent the set of network
nodes and C represent the set on channels.

The routing function is used at run-time and therefore has to be as fast and
simple as possible. But a simple algorithm may lead to poor network utiliza-
tion generating congestions at some parts of the network while other parts stay
unutilized. To examine the influence of the routing algorithm, we experiment
with two shortest path search algorithms [9]: Breadth-first search and Dijkstra’s
algorithm.

Breadth-first search (BFS) is the simplest possible shortest path search al-
gorithm. It works on non-weighted graphs and finds a shortest path in terms
of the number of edges. It routes without taking into account the network con-
dition - weakly and heavy loaded physical channels are equally preferred. The
computational complexity of the algorithm is O(N). The memory complexity of
the algorithm is also linear in the number of network nodes.

Dijkstra’s algorithm (DA) is more complex and allows the routing decision
to adapt according the current network conditions. The algorithm works on
weighted, directed graphs, where all edge weights are nonnegative. It finds short-
est paths in terms of the minimal weighted sum. In our network, the weight
assigned to an edge is proportional to the load of the corresponding physical
channel. The weight equals the number of occupied VCs on the corresponding
physical channel plus one, as one stands for a unit physical distance. Thus, if no
virtual channel is occupied the weight is one and if all four VCs are occupied
the weight is 5. One is added to avoid zero weight and thus to provide that the
algorithm always prefers shorter paths. Every time a connection is routed the
state of the reserved VCs is changed which increases the weights of the physi-
cal channels traversed by the connection. When the connection is deleted, the
VCs are released and the weights are reduced. Hence, the weights reflect the
current network state and the routing algorithm adapt its decision according to
this state. The computational complexity of Dijkstra’s algorithm is O(N2). The
memory complexity of the algorithm is linear in the number of vertices.

BFS and DA have the same memory complexity but DA has a higher compu-
tational complexity than BFS. We examine how the routing algorithm influences
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the performance of the routing function and whether it is profitable to use DA
instead of the simpler BFS.

5 Traffic Model

In this section we construct a model of the GT traffic in the network. The model
is later used for evaluation of the routing function. We model only the spatial
aspects of the traffic, like communication pattern and communication distances,
and not the timing aspects. The timing aspects, like data generation rate or
data inter arrival time are entirely hidden behind the requested throughput
THR. The traffic spatial characteristics are determined by two factors - topology
of the application graphs and strategy for mapping of the application graphs
on the multiprocessor architecture. The application is represented as a graph
GA = (VA, EA). The graph vertices VA represent processes to run on the PEs
and the graph edges EA represent the communication between the processes.
To run an application, the vertices of the application graph are mapped on PEs
in the system. After the mapping the edges between the processes define the
communications between the PEs to be handled by the network.

GT traffic in the system is generated by streaming applications which typi-
cally have application graphs with simple pipeline structure [10][11]. At a certain
moment in time a number of streaming applications are running simultaneously
in the system, hence there are number of pipeline graphs scattered over the PEs.
To model such traffic conditions we use a large graph of ring topology which
nodes are scatter over the PEs. A large ring graph can be seen as a serial con-
nection of many short pipeline graphs. The number of nodes in the ring graph
is equal to the number of PEs in the system and every node is mapped on a
separate PE. Thus, we model a system where every PE generates and consumes
a data stream.

The mapping decides the actual PEs where the application processes will run
and therefore it has a strong influence on the communication locality. To model
the effect of traffic locality we use three different strategies for mapping the
ring topology graph. The three strategies produce mappings that approximate
respectively the best, the average and the worst case of traffic locality. The three
mapping strategies use the same algorithm for choosing the PEs, but differ in a
parameter given to the algorithm. The algorithm operates on the ring graph as
follows. The graph nodes are mapped sequentially in the order they appear in
the graph. For every next node a PE is chosen randomly among those which are
at distance less than or equal d hops from the PE where the previous graph node
was mapped. Here d is a parameter of the algorithm that sets a diameter for the
preferred network distance. If there is no free PE within that distance, then a PE
is chosen randomly among all free PEs. The three mappings strategies differ only
in the value they set the parameter d to. The first strategy tries to maximize the
traffic locality; it sets the parameter d to 1 and approximates best case locality.
The second strategy sets d to 4 and approximates some average case locality.
The third strategy approximates worst case locality. It sets the parameter d to
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the diameter of the network (the longest network distance). Hence, the mapping
algorithm uniformly scatters the vertices of the ring graph over the PEs and no
locality should be expected.

6 Simulation Experiments

To explore the performance limits of the routing function and hence of the virtual
channel reservation approach, we perform a number of simulation experiments
using the traffic model from Section 5. In an simulation experiment a ring graph
of 100 nodes is mapped on a network of size 10-by-10 nodes. The mapping is
randomized but generated with specific locality characteristics (worst, average,
best case locality). After the mapping, a routing function provides GT connec-
tions for the communication channels defined by the edges of the ring graph,
all with the same requested throughput THR. Thus, 100 GT connections fol-
lowing a ring communication pattern are routed. The routing is considered to
be successful when all the 100 GT connections are routed. When routes cannot
be found for all connections, the routing is considered to fail. If a routing is
successful, information is collected about the network distances of the routed
GT connections and the utilization of the VCs in the network. Experiments are
performed for the three traffic locality conditions (worst, average, best case local-
ity), with two network topologies (mesh and torus), with two routing functions
based respectively on the BFS and DA algorithms and with four values for the
requested throughput THR (b, b/2, b/3 and b/4). All 24 combinations of these
factors are explored. To asses the average performance of the routing function,
for each of the 24 combinations we perform 1000 experiments, each experiment
setting a sample in the space of the possible traffic patterns. The number 1000
was chosen empirically such that to provide enough samples for representative
average results in acceptable simulation time. Thus in total 24x1000 samples are
collected.

7 Simulation Results

In this section we present and discuss the results of the conducted experiments.
We compare how the different factors influence the performance of the virtual
channel reservation approach in order to decide which of them are of importance
and can be used to improve the performance of the approach and which can be
neglected.

7.1 Number of successful samples

Figure 1 shows how many of the 1000 samples taken in each of the 24 combination
of factors are successful . The three graphs correspond to the three cases of
traffic locality, each graph presenting the results for mesh and torus topology.
Of interest for us are the cases for which all 1000 samples are successful. We



8

assume that in these cases the requested GT connections can always be provided;
therefore, the virtual channel reservation approach can be safely applied. In the
cases when not all samples are successful the routing function cannot always
provide all the requested GT connections and the virtual channel reservation
approach performs insufficiently for these requirements.
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Fig. 1. Number of successfully routed mappings

Figure 1 we see that for worst case traffic locality the virtual channel reserva-
tion approach can be safely applied if the requested throughput THR is restricted
to b/4 for mesh topology and up to b/3 for torus topology. The torus topology
helps improving the performance in such traffic conditions by increasing the
throughput limit from b/4 to b/3. When locality is introduced the performance
is improved by increasing the limits on the THR to b/2 and b. But for local
traffic the improvement achieved by replacing mesh with torus topology is not
significant. The routing algorithms do not change the performance of the ap-
proach for any traffic conditions. Among the three factors - locality, topology
and routing function - the traffic locality has the strongest influence on the per-
formance limits of the virtual channel reservation approach while the routing
algorithm does not influence it significantly. The results show also that four VCs
per physical channel provide enough network resource for applying the virtual
channel reservation in a 10-by-10 network; in all the cases, if THR is restricted,
the approach can be applied . Restriction on THR restricts the maximal through-
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put guaranteed to a connection to some fraction of the capacity b of the physical
channel. Thus, at network design time an appropriate b has to be chosen (e.g. by
choosing the operation frequency of the network and the width of the physical
channel).

7.2 Detour cost

The routing function tries to route the requested connections using minimal
distance routes, but this is not always possible because some VCs along the
minimal distance routes might be occupied. In such a case the routing function
takes a detour - a route which is not minimal. Detour cost is defined as the
difference between the real route distance and the minimal distance. The real
distances are the result of the routing, while the minimal distances are idealistic,
assuming there is no other traffic in the network. The better routing algorithms
manage to route the traffic using shorter paths and therefore with less detour
cost.
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Fig. 2. Average detour cost (sum over 100 connections)

The detour cost is shown in Figure 2. The presented figures give the sum of
the detour cost of all 100 connections in the ring graph. In most of the cases
the sum detour cost is less than ten hops, which is negligible compared to the
sum distances of the 100 connection (at least 100 hops). The detour cost exceeds
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10 hops only when the requested GT connection cannot always be provided,
therefore the approach cannot be used.

7.3 Communication energy cost

Wolkotte et al [12] performs power analysis of our virtual channel router and
derives a energy model of the network. An energy model of a circuit switching
network is also derived. We use the two energy models to estimate and compare
the average communication energy cost in the proposed virtual channel network
and in the circuit switching network proposed by Wolkotte. The energy models
estimate the energy cost in [pJ/bit] for transporting a bit in the network

Eps = ER(Nhop + 1) + (0.39 + 0.12lwire)Nhop (3)

Here lwire is the length of a physical channel in mm. Nhop is the network dis-
tance in number of hops. ER stands for the energy cost for traversing a router; for
the packet-switching and the circuit-switching network ER takes values ER PS

= 0.98 and ER CS = 0.37. The second term in the energy model estimates the
energy for traversing the wires between two routers (a physical channel). The
model captures only the dynamic energy cost for transporting a bit.
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Fig. 3. Average communication energy cost in a packet switching and in a circuit
switching network

The energy cost is estimated for three topologies - mesh, torus, and folded
torus. A folded torus has the same graph structure as torus, but its nodes are
reshuffled in the plane such that the torus wraparound channels are avoided in
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expense of regular channels with doubled length [13]. We assume that the size of
a PE is 1.5x1.5 mm or 2.25 mm2 [14]. Thus, the length of the physical channels
and therefore of lwire in mesh is 1.5 mm. In the torus topology the wraparound
channels cross the entire array of 10-by-10 PEs and hence are 15 mm long. In
the folded torus the channels in the middle of the network cross two PEs and
are 3 mm long. The network distance Nhop in Eq. (3) is substituted with the
mean communication distances calculated from the simulation results. To take
into account that the wraparound channels in torus has different length, Eq. (3)
is modified to contain two terms that capture the wires energy contribution -
one term for the regular channels and one for the wraparound channels. During
the experiments information is collected about the utilization of the single hop
channels and the wraparound channels. This information is used to weight the
number of hops Nhop in the two terms.

Figure 3 presents the results for the communication energy cost in our vir-
tual channel network (packet switching) and in the circuit switching network
proposed by Wolkotte. The results show that by exploiting the communication
locality the average communication energy cost can be reduced by 50% to 70%
for the different topologies. For worst case locality traffic, the torus topology
reduces the communication energy cost compared to mesh because of its smaller
network diameter. But since the traffic locality reduces the communication dis-
tances, for local traffic the smaller diameter of the torus is not advantageous. The
routing algorithm can influence the communication energy cost by the detour
cost - higher detour cost entails more energy for communication. But as we saw,
the detour cost is negligibly small, which explains the insignificant influence of
the routing algorithm on the communication energy.

The energy cost results for the circuit switching network is reduced compared
to the results for the packet switching network. This is due to the smaller energy
cost for traversing a router in the circuit-switching network - a clear advantage
of this approach. Unfortunately, the circuit switching solution is less flexible - it
requires external configuration, cannot handle best effort traffic.

8 Conclusion

In this paper we explored the possibility to provide guaranteed throughput ser-
vices in a virtual channel network by virtual channel reservation. We test the
limits of the virtual channel reservation approach for variety of traffic conditions.
The results show that the approach is feasible and can be used for providing
throughput guarantees in a 10-by-10 network in worst case traffic conditions.
For this network size a mesh topology and four virtual channels per physical
channel provide enough connectivity for predictable system operation. Amongst
the considered factors that influence the performance limits of the approach, the
communication locality has the strongest influence. By exploiting communica-
tion locality the network performance is improved and, at a certain extend, made
independent of the network size. Furthermore, exploiting the locality the com-
munication energy cost can be reduced by 50% to 70%. The routing algorithms,
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based respectively on the simple Breath-first search algorithm and the more
complex Dijkstra’s algorithm, do not show noticeable performance difference.
Therefore the Breath-first search is preferred because of its lower computational
complexity.
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