IMPRESS Database Design Tool - a high-level design toolset based on
formal theory

dJ. Flokstra, M. van Keulen and J. Skowronek
Informatics Faculty, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
e-mail: {flokstra, keulen, skow}@cs.utwente.nl

Abstract

This document presents the Database Design Tool
prototype, developed at the University of Twente. The
Tool is used to specify databases in a graphical way,
and is based on a formal specification language TM
(described in ECOOP’93 article [2]). TM and the Data-
base Design Tool support object-oriented concepts such
as classes, object, methods and inheritance. The main
point we want to state is that software engineering
based on a sound formal basis does not have to sacri-
fice ease-of -use and flexibility; we state that, on the
contrary, it is this formal basis which proves to be ben-
eficial and profitable for the user - enabling faster and
error-free software development.

I. FORMAL BASIS OF SOFTWARE ENGINEERING

In recent years, there has been a growing interest
in the area of formal founding of the software engi-
neering process. The sizes of applications, the com-
plexity of the defined schemas, the variety and
complexity of planned actions have proved to be pro-
hibiting for traditional and intuitive methods of soft-
ware engineering. It is this complexity which makes it
more and more difficult for humans to perform all of
the software engineering activities. That is why there
is an urgent need for tools which can enable modeling
and design on much a higher level, supporting auto-
matic translation into low-level design or program.
However, high-level design and modeling will be
accepted and used in real-world situations, if it will
provide (among others) two important (but often per-
ceived as mutually exclusive) features:

* easy-to-use, intuitive design tools
¢ foundation on a formal theory, enabling various
type- and consistency checks

In the software engineering domain and in the
industry, there is a wide-spread belief that modeling
and design based on a formal basis only introduces
unneeded complexity and does not deliver the tools the
designers need. We feel, however, that the complexity
of current applications makes the use of formal tech-
niques a necessity, and it is the task of the tools
designers to provide intuitive user interfaces, so that

the formal theory underlying the tools becomes a bene-
fit rather than a hindrance. Our tools attempt to pro-
vide just the functionality: giving the designer the
powerful apparatus of formal set theory and object-ori-
ented concepts, in the same time, however, providing
well-known graphical interface.

On the other side, in the research world there is a
certain reluctancy to provide the real-world users with
the interfaces and tools they need, rather being satis-
fied with the development of the underlying theory. We
feel that providing those layers is profitable for both
sides: there is an increased recognition of research
efforts, and the real-world users get the benefit of for-
mality and additional features. The IMPRESS data-
base Design Tool was created with above assumptions
in mind.

II. PROTOTYPE DESCRIPTION

The demonstration will present the Database
Design Tool prototype developed in the IMPRESS
project (Esprit project 6355). The IMPRESS project
started in May 1992 and aims at creating a low-level
storage manager tailored for multimedia applications,
together with a library of efficient operators, a pro-
gramming environment, high-level design tools and
methodology. The DDT is part of this last effort. It is
based on the specification language TM described in

[2], [3].
A. Goals

The goal of the DDT is derived from the application
requirements defined by the partners in the project
(including industrial partners meant as the first
users).

In the area of Technical Information Systems, there
is a need for tools supporting modeling of complex
objects. Designers start usually with a partial or
incomplete model that is further refined when new
attributes and new relations are discovered or when
knowledge about the object evolves. This is referred to
as (desirably planned) incremental design or step by
step prototyping. The process seems to be well suited
for users coping with uncertainty about their own
needs or requirements and allows great flexibility for
evolution. This design process applies to database



schemas as well as access programs. The IMPRESS
DDT is aimed at supporting this process.

In the context of modern Technical Information
Systems, we observe that applications’ size and com-
plexity is of such scale that using an underlying formal
model with its supporting tools seems to be the only
way of ensuring consistency and correctness. We thus
propose basing the design process on TM, a database
specifi cation language, which allows performing con-
sistency checks on the specifi cations, as well as con-
structing semi-automatically formal proofs of
correctness. The IMPRESS DDT supports specifi cation
of database schemas (hierarchies of classes), the
attributes defi ned on the schema as well as methods
and constraints, specifi ed in high-level, declarative
method part of the language.

Basing the tools on a formal specifi cation language
must not preclude providing easy-to-use, graphical
interfaces. The DDT provides graphical tools for:

¢ creation of the database schema using object-ori-
ented concepts such as classes and inheritance,
specifying constraints and methods on the classes
defi ned in the schema (design),

¢ instantiation of the objects in the schema, as well
as validation of the schema and operations by exe-
cuting them on a prototype (prototyping)

¢ various checks on the specifi cation, such as type
checking, safeness detection, constraint analysis,
documentation, and translation to executable lan-

guage

The DDT contains a graphical editor for the data-
base schema. It provides facilities to easily (graphi-
cally) defi ne database entity types, such as classes,
attributes, types, and inheritance structure. Con-
straints and methods can be specifi ed in TM using a
syntax-directed editor. The DDT contains features for
specifying application classes and methods, some of
them using database classes and methods. The DDT
contains a generator for rapid prototypes which can be
used for testing facilities (perform updates and queries
on a test database, as well as schema modifi cation and
simulation experiments). Such prototyping will enable
early detection of specifi cation faults, on a small data-
base, before the specifi cation is committed for realiza-
tion.

B. Functionality

Functionality of the DDT was derived from the
goals and requirements. It encompasses:
¢ flexible, graphical design of modular database sche-
mas
* handling complex objects in an effi cient manner
¢ specifi cation of constraints on various levels of
granularity using high-level declarative languages

¢ specifi cation of methods using high-level declara-
tive language

* compile-time type checking of the schema, con-
straints and methods

* schema modifi cation and simulation experiments
in prototype versions of the database

* constraint analysis consisting of semi-automatic
verifi cation of correctness-preserving properties
after invocation of database transactions

* documentation and ordering facilities, providing
fl exible “annotation”-like facilities for specifi cation

The DDT consists of (see further for introduction to
T™):

® Graphical Interface (GI), which is used to design
the database schema together with methods and
constraints, as well as application classes and
methods using database classes and methods

*TM tools, which include the prototyping environ-
ment (PTE), safeness detector and other tools

The GI provides the following functionality:

¢ graphical display/manipulation of database classes,
attributes of those classes, inheritance hierarchies

¢ display/editing of constraints and methods defi ned
on classes

¢ display/editing of application classes and methods

The PTE provides following functionality:
* population of the database with objects based on
the schema created in the GTI
¢ evaluation of database methods and constraints on
instantiated objects
* viewing the complex objects being results of the
above evaluations, using the point-and-click inter-
face to navigate through the complex object, thus
enabling “debugging” of the specifi ed methods
All those functions are supported by an intuitive
graphical interface, using windows- and mouse-based
interaction.

C. TM and its role in the DDT

The DDT uses the formal language TM as its ker-
nel. TM is a high-level language for the design and
specifi cation of object-oriented database schemas in an
effi cient and effective manner The TM language and
its accompanying design tools enable users to perform
complex semantic analyses of schemas, thus paving
the way to a complete debugging of the conceptual
design. As a design language, TM is equipped with
powerful structuring primitives which enable a user to
arrive at natural and intuitively correct designs. These
structuring primitives are characterized by the follow-
ing features

* Encapsulation (The concepts of Module and Class)
* Multiple inheritance



* Object-oriented specialization (Objects are not only
specialized by adding attributes; already existing
attributes can also be subject of specialization)

* Complex objects (Records, lists, sets, variants; and
all arbitrarily nested)

* Methods and method inheritance

¢ Static constraints of different granularity (Object,
Class-, and Database level, described by a full fi rst-
order typed logic)

* Composition links (Direct references to other
objects as values of attributes)

* Static type checkability (The language has a com-
plete formal basis)

We note that the TM language has a complete for-
mal semantics ([2]]), and it is this property of having a
formal semantics that actually creates the possibility
of having an integrated tool set, as TM does. Having a
formal semantics entails that all expressions in the
language have a precise and unique meaning; without
such a non-ambiguous meaning for all constructions
occurring in the language, it is impossible to build a
reliable toolset supporting the language features
involved. A designer using TM does not necessarily
have to have knowledge of TM’s underlying formal
basis to achieve correct specifi cations of TM schemas,
but it should be a reassuring fact that the TM toolset
is for a large part the result of careful research
depending on TM’s well-established mathematical
semantics.

The TM language is a specifi cation language that is
formally founded in the language FM. FM, in turn, is a
language that is based on the ideas of Luca Cardelli. It
can be seen as a strongly typed lambda calculus that
allows for subtyping and multiple inheritance. Over
the past four years the theory of FM has been devel-
oped by Balsters, Fokkinga, and de Vreeze [4] to
exploit the ideas of Cardelli and to augment the theory
to make it one that is suitable for object-oriented data-
base specifi cation.

The language TM should be understood as a syn-
tactically sugared version of FM. First ideas on this
language originated in discussions during a research
stay in Milano in September 1990 [2]. This is why the
language is called TM: it stands for Twente-Milano.
Most of the present syntactical constructs of the lan-
guage were developed in 1991. A redesign of the lan-
guage took place in the fi rst half of 1993.

D. Modeling of databases and applications
using DDT and TM

In the IMPRESS project, we develop a comprehen-
sive methodology to accompany the tools, even though
we claim that the tools do not force the use of any spe-
cifi ¢ methodology (rather they provide the formal

means of validating designs, which in turn can be cre-
ated in a different way).This methodology is based on
a comparison of existing methodologies and a study of
their suitability for Technical Information Systems.

In IMPRESS, we see the Database as the persistent
data and associated methods, which can be used by
different applications, each of which contains the fol-
lowing parts:

* Model View: containing all data (transient or per-
sistent) and functions used in one application: per-
sistent data may come from the Database

* Man-Machine Interface, responsible for communi-
cation and interaction with the end-users

* Translator, which synchronizes MMI events with
Model View functions

In this view of the application, the DDT is used to
design the Database as well as the Model View. Both of
those parts are designed using the Graphical Inter-
face. The design of the Database classes and methods
is in this case followed by the design of application
classes and methods. As both activities are performed
in the same tool using the same graphical symbols, the
cooperation of database designer and application
designer (not necessarily the same person) is optimal.
The approach outlined enables reuse of Database part
in different Model View components, suitable for dif-
ferent application needs. Often, the Model View com-
ponent will just extract the classes defi ned in the
Database and will defi ne additional classes and com-
ponents.

E. Implementation state

Currently (April 1994) we are presenting the proto-
type of the Graphical TM Interface and the Prototyp-
ing Environment. Both tools make use of the TM Type
Checker and TM-to-SPOKE translator. SPOKE is the
language used in the execution of TM constraints and
methods. TM as a high-level formal specifi cation lan-
guage is thus translated into the programming lan-
guage SPOKE. Both GTI and PE are also written in
SPOKE, using Motif graphical interface. The transla-
tors and the type-checker are written in C++.

F. Future plans

In the course of the project, other parts of the DDT
are being implemented:

* Safeness Detector, which analyses a TM specifi ca-
tion, detecting non-constructive expressions (evalu-
ating to infi nite sets); prototype implemented using
LIFE

* Constraint Analyser, which examines the con-
straints and methods in the specifi cation and tries
to prove that certain update methods leave certain
constraints invariant (meaning that these con-



straints need not to be evaluated after the execution
of the method).

¢ Instance Editor, which enables creation of database

objects in a graphical way, using the TM data model

* Documentation Facilities, built on WEB language,

[1]

(2]

[3]

[4]

(5]

[6]

[7]

which enable the designer to combine natural lan-

guage text with formal specifi cation text. Such a
document then serves as a database specifi cation as

well as a documentation of that specifi cation.

III. PUBLICATIONS

R. Bal & H. Balsters, © A Deductive and ¥ped
Object-Oriented Language”, in Third Interna-
tional Conference on Deductive and Object-Ori-
ented Databases, December 6-8, 1993,
Scottsdale, Arizona, USA.

H. Balsters, R. A. de By & R. Zicari, “ ¥ped sets
as a basis for object-oriented database schemas”,
in Proceedings Seventh European Conference on
Object-Oriented Programming (ECOOP), July
26-30, 1993, Kaiserslautern, Germany, 1993.

H. Balsters, R. A. de By & C.C. de Vreeze, “ The

TM manual”, University of Twente, technical
report INF 92-81, Enschede, 1992.

H. Balsters & M.F. Fokkinga, “ Subtyping can

have simple semantics”, Theoretical Computer
Science 87 (September, 1991), pp. 81-96.

H. Balsters & C.C. de Vreeze, “ A semantics of

object-oriented sets”, in The Third International
Workshop on Database Programming Lan-
guages: Bulk Types & Persistent Data (DBPL-
3), August 27-30, 1991, Nafplion, Greece, P.
Kanellakis & J.W. Schmidt, eds., Morgan Kauf-
man Publishers, San Mateo, CA, 1991, pp. 201-
217.

C.C. de Vreeze, “ Extending the Semantics of

Subtyping, accommodating Database Mainte-
nance Operations”, University of Twente,
Enschede, The Netherlands, August 1989, Doc-
toraal verslag.

C.C. de Vreeze, “ Formalization of inheritance of

methods in an object-oriented data model”, Uni-
versity of Twente, Technical Report, INF 90-76,
Enschede, December, 1990.

IV. SOFTWARE & HARDWARE REQUIRE-

MENTS

Hardware:
Sun Sparc with color monitor
16 MB disk space minimum

16 MB memory minimum

Software:

X Windows R5 or OpenWindows
SunOS 4.1.1. or later



