
 - 1 -

Identification of Crosscutting in Software Design
Klaas van den Berg

Software Engineering Group
University of Twente

P.O. Box 217
7500 AE Enschede

the Netherlands
+31 53 4893783

k.g.vandenberg@ewi.utwente.nl

José María Conejero
Quercus SEG

University of Extremadura
Avda. Universidad s/n
C.P. 10071 Cáceres

Spain
+34 927 257268

chemacm@unex.es

Juan Hernández
Quercus SEG

University of Extremadura
Avda. Universidad s/n
C.P. 10071 Cáceres

Spain
+34 927 257204
juanher@unex.es

ABSTRACT
The identification of crosscutting is a prerequisite for applying
aspect-oriented techniques in software development. We present
an operationalization of the definition of crosscutting to support
this identification. We use matrices to represent the relation
between design elements at different levels of abstraction. We
present some case studies about the identification of crosscutting
concerns in order to illustrate the application of our approach. In
particular, we apply the approach to the identification of
crosscutting in some of the GoF’s design patterns.

Keywords
Aspect-Oriented Software Development, Scattering, Tangling,
Crosscutting, Crosscutting Concerns

1. INTRODUCTION
Several approaches to the modelling of crosscutting concerns in
the different phases of the development life cycle have emerged.
Some of these approaches propose mechanisms to model
crosscutting focusing on particular phases such as design or
requirements [18] [19] [22]. Other ones present mechanisms or
techniques which allow the modeling throughout several stages or
even the entire development process [5] [11]. In [2] a more
exhaustive and detailed survey of these approaches is presented.
Usually, these approaches presuppose that crosscutting concerns
have been previously identified somehow. The identification of
such crosscutting concerns is based on either designer’s
experience or designs by others developers where crosscutting
concerns have been identified early on. So these approaches allow
us to model crosscutting concerns which are already well-know by
the AOSD community. However, both in aspect-oriented designs
and non aspect-oriented designs, new characteristics of the
systems could emerge behaving as crosscutting concerns. These
concerns could not be previously identified as crosscutting
concerns. Obviously, we need some support to identify such
crosscutting concerns in order to apply appropriate aspect-
oriented techniques to handle them. Aspect mining is a research
area which provides mechanisms to identify crosscutting.
However most of aspect mining approaches (e.g. [10] [20]) are
focused on code level. The lack of support for this identification
in earlier phases is an impediment to apply aspect modeling
approaches. In this paper we propose an approach to identify
crosscutting concerns in software designs or models.
The approach is based on our own formal definition of
crosscutting [6] and its representation by means of matrices. This
approach helps to aspect-oriented modeling since it can be used to

identify crosscutting concerns. It can be applied to design phases
but also to other consecutive phases in software development.
The rest of paper is structured as follows. In section 2, we
introduce the definition of crosscutting. We describe how to
represent and visualize crosscutting in a crosscutting matrix and
how to derive this matrix from the dependency matrix using a
scattering and tangling matrix. In section 3, we show some case
studies where we apply the concepts introduced in the paper.
Finally in sections 4 and 5, we describe related work and present
conclusions of the paper.

2. CROSSCUTTING DEFINITION
The definition presented in this paper is based on a framework of
crosscutting proposed in [6][7]. The proposition is that
crosscutting can only be defined in terms of 'one thing' with
respect to 'another thing'. In other words, at least two domains (or
two levels or two phases) are related with each other in some way.
- A domain could refer for example to a concern model with

concerns or to a design with architectural elements.
- A level could refer for example to refinements in the Model

Driven Architecture (e.g. CIM, PIM and PSM) [15].
- A phase could refer to any phase in the software

development life cycle (e.g. requirements, design, and so on).
We use here the general terms source and target (as in [15]) to
denote two consecutive domains, phases or levels. We assume
that elements in the source are related to elements in the target:
there is a mapping between source and target elements. The
mapping can be established manually or be automated in
transformation rules.
According to our definition in [6], crosscutting occurs when in a
mapping between source and target, a source element is mapped
to two or more target elements and at least one of these target
elements has a mapping from one other source element. In Figure
1, we show an intuitive representation of an example mapping
with target element t3 involved in crosscutting.

s1 s2

t1 t2

s3

t3 t4

source

target

s1 s2

t1 t2

s3

t3 t4

source

target

Figure 1. Mapping between elements at different levels of
abstraction (s1, s2, s3 at source; t1, t2, t3 and t4 at target)

 - 2 -

2.1 Matrix representation
In this section, we describe how crosscutting can be identified and
represented in matrices. As starting point, the developer must
establish a dependency matrix showing the mapping between
source and target. From this matrix, we derive the crosscutting
matrix, where we represent the crosscutting source elements.
Then, we describe how the crosscutting matrix can be constructed
from the dependency matrix with some auxiliary matrices. This is
illustrated with some examples.

2.2 Definitions of matrices
The relation between source elements and target elements can be
represented in a matrix that we called dependency matrix. As
described before, the mapping can have different types, such as
usage and abstraction dependencies (e.g. realization, refinement
and tracing [24]). A dependency matrix (source x target)
represents the dependency relation between source elements and
target elements (inter-level relationship). In the rows, we have the
source elements, and in the columns, we have the target elements.
In this matrix, a cell with 1 denotes that the source element (in the
row) is mapped to the target element (in the column).
Reciprocally this means that the target element addresses the
source element. Scattering and tangling can easily be visualized in
this matrix (see the examples below).
We define an auxiliary concept crosscutpoint used in the context
of dependency matrices, to denote a matrix cell involved in both
tangling and scattering. If there is one or more crosscutpoints
then we say we have crosscutting.
Crosscutting between source elements for a given mapping to
target elements, as shown in a dependency matrix, can be
represented in a crosscutting matrix. A crosscutting matrix (source
x source) represents the crosscutting relation between source
elements, for a given source to target mapping (represented in a
dependency matrix). In the crosscutting matrix, a cell with 1
denotes that the source element in the row is crosscutting the
source element in the column. In section 2.3 we explain how this
crosscutting matrix can be derived from the dependency matrix.
A crosscutting matrix should not be confused with a coupling
matrix. A coupling matrix shows coupling relations between
elements at the same level (intra-level dependencies). In some
sense, the coupling matrix is related to the design structure matrix
[4]. On the other hand, a crosscutting matrix shows crosscutting
relations between elements at one level with respect to a mapping
onto elements at some other level (inter-level dependencies).
We now give an example and use the dependency matrix and
crosscutting matrix to visualize the definitions (S denotes a
scattered source element - a grey row; NS denotes a non-scattered
source element; T denotes a tangled target element - a grey
column; NT denotes a non-tangled target element). The example
is shown in Table 1, representing the mapping from Figure 1.

Table 1. Example dependency and crosscutting matrix
dependency matrix

 target
 t[1] t[2] t[3] t[4]

s[1] 1 0 1 1 S
s[2] 0 1 0 0 NS

so
ur

ce

s[3] 0 0 1 0 NS
 NT NT T NT

crosscutting matrix
 source
 s[1] s[2] s[3]

s[1] 0 0 1
s[2] 0 0 0

so
ur

ce

s[3] 0 0 0

In this example, we have one scattered source element s[1] and
one tangled target element t[3]. Moreover there is one
crosscutpoint at matrix cell [1,3] (dark grey cell). Applying our
definition, we arrive to the crosscutting matrix. Source element
s[1] is crosscutting s[3] (because s[1] is scattered over [t[1], t[3],
t[4]] and s[3] is in the tangled one of these elements, namely t[3]).
The reverse is not true: the crosscutting relation is not symmetric.

2.3 Constructing crosscutting matrices
In this section, we describe how to derive the crosscutting matrix
from the dependency matrix. We use a more extended example
than the previous one. We now show an example with more than
one crosscutpoint, in this example 8 points (see Table 2; the dark
grey cells).

Table 2. Example dependency matrix with tangling, scattering
and several crosscutpoints

dependency matrix
 target
 t[1] t[2] t[3] t[4] t[5] t[6]

s[1] 1 0 0 1 0 0 S
s[2] 1 0 1 0 1 1 S
s[3] 1 0 0 0 0 0 NS
s[4] 0 1 1 0 0 0 S so

ur
ce

s[5] 0 0 0 1 1 0 S
 T NT T T T NT

Based on the dependency matrix, we define some auxiliary
matrices: the scattering matrix (source x target), and the tangling
matrix (target x source). These two matrices are defined as
follows:
- In the scattering matrix a row contains only dependency
relations from source to target elements if the source element in
this row is scattered (mapped onto multiple target elements);
otherwise the row contains just zero's (no scattering).
- In the tangling matrix a row contains only dependency relations
from target to source elements if the target element in this row is
tangled (mapped onto multiple source elements); otherwise the
row contains just zero's (no tangling).
For our example in Table 2, these matrices are shown in Table 3.
We now define the crosscutting product matrix, showing the
frequency of crosscutting relations. A crosscutting product matrix
(source x source) represents the frequency of crosscutting
relations between source elements, for a given source to target
mapping. The crosscutting product matrix is not necessarily
symmetric. The crosscutting product matrix ccpm can be obtained
through the matrix multiplication of the scattering matrix sm and
the tangling matrix tm: ccpm = sm . tm where ccpmik = smij tmjk
In this crosscutting product matrix, the cells denote the frequency
of crosscutting. This can be used for quantification of crosscutting
(crosscutting metrics). The frequency of crosscutting in this

 - 3 -

matrix should be seen as an upper bound. In actual situations, the
frequency can be less than the frequency from this matrix analysis,
because in the matrix we abstract from scattering and tangling
specifics. In the crosscutting matrix, a matrix cell denotes the
occurrence of crosscutting; it abstracts from the frequency of
crosscutting.

Table 3. Scattering and tangling matrices for dependency
matrix in Table 2
scattering matrix

 target
 t[1] t[2] t[3] t[4] t[5] t[6]

s[1] 1 0 0 1 0 0
s[2] 1 0 1 0 1 1
s[3] 0 0 0 0 0 0
s[4] 0 1 1 0 0 0 so

ur
ce

s[5] 0 0 0 1 1 0
 tangling matrix
 source
 s[1] s[2] s[3] s[4] s[5]

t[1] 1 1 1 0 0
t[2] 0 0 0 0 0
t[3] 0 1 0 1 0
t[4] 1 0 0 0 1
t[5] 0 1 0 0 1

Ta
rg

et

t[6] 0 0 0 0 0

The crosscutting matrix ccm can be finally derived from the
crosscutting product matrix ccpm using a simple conversion:
ccmik = if (ccpmik > 0) /\ (i ≠ j) then 1 else 0.
The crosscutting product matrix and the crosscutting matrix for
the example are given in Table 4.

Table 4. Crosscutting product matrix and crosscutting matrix
for dependency matrix in Table 2

crosscutting product matrix
 Source
 s[1] s[2] s[3] s[4] s[5]

s[1] 2 1 1 0 1
s[2] 1 3 1 1 1
s[3] 0 0 0 0 0
s[4] 0 1 0 1 0 so

ur
ce

s[5] 1 1 0 0 2
 crosscutting matrix
 Source
 s[1] s[2] s[3] s[4] s[5]

s[1] 0 1 1 0 1
s[2] 1 0 1 1 1
s[3] 0 0 0 0 0
s[4] 0 1 0 0 0 so

ur
ce

s[5] 1 1 0 0 0

In this example, there are no cells in the crosscutting product
matrix larger than 1, except on the diagonal where it denotes a
crosscutting relation with itself, which we disregard here. In the
crosscutting matrix, we put the diagonal cells to 0. Obviously, this
is because we interpret a source element can’t crosscut itself.
As we can see in crosscutting matrix in Table 4, there are now 10
crosscutting relations between the source elements. The
crosscutting matrix shows again that the crosscutting relation is
not symmetric. For example, s[1] is crosscutting s[3], but s[3] is

not crosscutting s[1] because s[3] is not scattered (scattering and
tangling are necessary but not sufficient condition for
crosscutting).
For convenience, these formulas can be calculated automatically
by means of very simple mathematic tools. By filling in the cells
of the dependency matrix, the other matrices are calculated
automatically.

3. CASE STUDIES
In order to show the application of our approach in different
domains, we demonstrate now how to identify crosscutting in
some well-know examples of the literature: on the one hand a
DVD store system and on the other hand some GoF’s (Gang of
Four) design patterns [8]. The latter is extracted from a more
extended study where we applied the approach to most of these
patterns. For space reasons, we do not show the complete study.
We show the application of the framework to two particular
design patterns: Mediator and Adapter.

3.1 The DVD System
In this section we describe an example to illustrate the use of our
definitions to identify crosscutting in software design. The
example is about a system to handle the selling of various DVD
products (e.g. DVDs and boxsets). Each product has one or more
suppliers. The example is based on Gradecki & Lesiecki ([9],
Chapter 1). Here, we consider four concerns: the keeping of a
price for each product (price keeping concern), the number of
DVD’s in a boxset (boxset size concern), the handling of titles of
each DVD (DVD title concern), and the recording of any changes
in the state of each product (change logging concern). These
concerns can be extracted from requirements presented in [9]
through concern modelling techniques. The object-oriented design
of the system is shown in the UML class diagram in Figure 2.
There is an abstract class Product with two subclasses DVD and
Boxset. Each product has a price (in the attribute price) and one
or more suppliers from the class Supplier. A DVD has a title
(attribute title). A Boxset contains a number of DVDs (attribute
number), representing the size of the boxset. Each product has a
Logger object. This object is used for logging changes in the price
(in the operation Product.setPrice), changes in the title (in the
operation DVD.setTitle), and changes in the number of DVDs in a
boxset (in the operation Boxset.setNumber).

Figure 2 Class diagram of the example system for selling DVD

products with logging (based on [9])
Based on an implicit and intuitive notion of crosscutting,
Gradecki & Lesiecki [9] state that the logging concern is a
crosscutting concern. However, in this paper we are interested in

 - 4 -

the formal identification of crosscutting concerns such as this
logging concern. For this purpose, we introduced the definitions
in the previous section. Then we will apply it in this example to
show the identification of crosscutting concerns.
As we mentioned as decomposition of the concerns, we have the
price keeping concern, the change logging concern, the boxset
size concern and the DVD title concern. These are the four source
elements. As decomposition of the design, we have the 5 classes:
Product, Supplier, Boxset, DVD, and Logger. These are the five
target elements. We could establish the following dependency
matrix (see Table 5). The price keeping concern is mapped onto
the class Product, and only implicitly - through inheritance of
attribute and operations - in the classes DVD and Boxset. The
logging is performed in each class where a change of state could
be performed. Therefore, the change logging concern is mapped
onto the classes Product, Boxset and DVD because of the explicit
call of writeLog in the set operations in these classes.

Table 5. A dependency matrix for the DVD products system
 Design Class

Concern
Pro
duct

Sup
plier

Box
set

DVD Log
ger

price keeping 1 0 0 0 0 NS
change logging 1 0 1 1 1 S

DVD title 0 0 0 1 0 NS
boxset size 0 0 1 0 0 NS

 T NT T T NT

Applying our definitions, we derive the crosscutting matrix for
this case. This matrix is shown in Table 6. In this case, the
logging concern is crosscutting as well the price keeping concern
as the DVD title concern and the boxset size concern, but not the
other way around (crosscutting is not symmetric).

Table 6. Crosscutting matrix for the dependency matrix in
Table 5 for the DVD products system

 Concern

Concern
price

keeping
change
logging

DVD
title

boxset
size

price keeping 0 0 0 0
change logging 1 0 1 1

DVD title 0 0 0 0
boxset size 0 0 0 0

This example shows that there should be well-defined mapping
rules from source to target elements, with a rational about which
mapping or dependency relations are included. In the example
above, the methods calls of writeLog are represented as a
dependency, but the inheritance of the price keeping is not
represented in the dependency matrix. Other choices are feasible.
Depending on the goal of the crosscutting analysis, one has to
select the mapping rules. The impact of inheritance on
crosscutting is illustrated in [25]. A tentative classification of
crosscutting based on types of dependency relationships is given
in [12].
Obviously, this logging crosscutting concern is well identified in
the AOSD literature, and the obtained result is not surprising at
all. However the same analysis may be done for systems where
other crosscutting concerns may arise. We show some other case
studies in subsequent sections.

3.2 Dialog system in GUI (Mediator Pattern)
A dialog box in a GUI commonly uses a window containing a
wide collection of widgets such as text, list boxes, buttons, radio
buttons and so on. The behaviour of the dialog box is distributed
among the different widgets which usually interact with each
other, enabling or disabling actions according with the widget
behaviour. These interactions reduce the reusability of the objects
participating in the GUI. The Mediator pattern allows widgets to
be decoupled through the addition of a class which takes over the
communication among widgets. The application of the pattern
improves the reusability of widgets making them oblivious about
the communication with other objects. The UML class diagram of
the Dialog System based on the Mediator Pattern is shown in
Figure 3. A more detailed explanation of this example and the
Mediator pattern can be found in [8].

Figure 3. Mediator pattern applied to GUI design [8]

As it is stated in [8], there are three different participants in
Mediator pattern: Mediator (the DialogDirector),
ConcreteMediator (the FontDialogDirector) and Colleagues (the
widgets). The goal of Mediator and ConcreteMediator participants
is to provide the Colleagues with a mechanism to decouple them.
When a change in a Colleague is produced it notifies the
Mediator, which performs the corresponding actions (e.g. notify
the change to the rest of Colleagues). So these participants
perform the communication or notification protocol. On the other
hand, the Colleague role is played by some classes which perform
some functionality (e.g. the concrete widget behaviour).
Based on the analysis of participants, we determined the following
concerns: Communication, because of the notification among
colleagues and mediator; List and Text Field as a result of the
different widgets behaviour; and finally Window, dealing with the
behaviour of the window graphical component. A concern
modelling technique such as [23] could also be used to discover
the concerns.
Having these concerns (as source elements) and the classes of the
UML class diagram shown above (as target elements), we obtain
the dependency and crosscutting matrices (see Table 7).
As we can see in Figure 3, the DialogDirector class addresses
both the Communication and the Window concerns, because it
has methods for showing the dialog and for allowing widgets
communication. In the dependency matrix, this is represented by
mappings in cells [1,1] and [1,4]. The FontDialogDirector class
only addresses the Communication concern because its behaviour
(to notify changes produced in widgets). It must be observed that
despite of FontDialogDirector inherits the showDialog method,
this class doesn’t redefine or even use this method. Consequently,
there is no mapping to the Window concern (only a mapping in
cell [1,2]). The Widget abstract class only provides the reference

 - 5 -

of the DialogDirector to its subclasses. Accordingly, it only
addresses the Communication concern. Finally, ListBox and
EntryField simultaneously address their own behaviour and the
communication concern (the inherited Changed method must be
called once a change is produced).

Table 7. Matrices for the Dialog System
 Design Class

Concern
Dialog

Director
Font

Dialog
Director

Widget List
Box

Entry
Field

Communication 1 1 1 1 1 S
List 0 0 0 1 0 NS

Field Text 0 0 0 0 1 NS
Window 1 0 0 0 0

 T NT NT T T
 Concern

Concern
Communication List Text

Field
Window

Communication 0 1 1 1
List 0 0 0 0

Text Field 0 0 0 0
Window 0 0 0 0

In the crosscutting matrix, we can observe that the
Communication concern crosscuts the List, Text Field and
Window concerns. We conclude that - using our analysis based on
dependency and crosscutting matrices - we identified crosscutting
which emerged in a design based on the mediator pattern. The
dependency matrix could be based on different decompositions.
An AspectJ implementation of this design pattern can be found in
[13]. This implementation removes the crosscutting from
Mediator pattern.

3.3 Drawing editor (Adapter Pattern)
Sometimes, a toolkit class that is designed for reuse is not
reusable only because its interface does not match the domain-
specific interface required in an application [8].
The adaptation of a previously implemented interface to a new
required one is known as the Adapter pattern or also a Wrapper.
In [8] we can see an example where a TextView class which
represents some text (that should be edited and drawn) must be
adapted to fulfill a different interface. In the example, the authors
add a new TextShape class where they implement this adaptation
(the functionality regarding to Adapter pattern). The UML class
diagram of this example is shown in Figure 4.

Figure 4. Adapter pattern applied to Drawing Editor [8]

The participants in this pattern are: Client, an object which must
use an interface (the DrawingEditor); Target, the interface that
Client wants to use (the Shape); Adaptee, the class whose
interface must be adapted to the required one (the TextView); and

Adapter, this is the class which adapts the Adaptee to the Target
(the TextShape). As we did in last section, we analyze these
participants in order to determine the concerns in this application.
In this case we consider four concerns: one concern for each
participant. On the other hand, the decomposition of the design is
driven by the UML classes.
Taking these decompositions as input, the dependency and
crosscutting matrices can be determined as shown in Table 8. The
crosscutting matrix shows that there is no crosscutting in this case.
As we mentioned in section 3.2, the authors in [13] use AspectJ as
implementation language to develop these patterns. They state
that the advantages of implementing the Adapter pattern by means
of AOP are almost inappreciable. From our analysis the reason
becomes clear: this pattern does not require the utilization of AOP
because there is no crosscutting.

Table 8. Dependency and crosscutting matrices for Adapter
 Design Class

Concern
Drawing

Editor
Shape Text

Shape
Text
View

Client 1 0 0 0 NS
Target 0 1 0 0 NS

Adaptee 0 0 0 1 NS
Adapter 0 0 1 0 NS

 NT NT NT NT
 Concern

Concern
Client Target Adaptee Adapter

Client 0 0 0 0
Target 0 0 0 0

Adaptee 0 0 0 0
Adapter 0 0 0 0

4. RELATED WORK
Several authors use matrices (design structure matrices, DSM) to
analyze modularity in software design [4]. Lopes and Bajracharya
[14] describe a method with clustering and partitioning of the
design structure matrix for improving modularity of object-
oriented designs. However, the design structure matrices represent
intra-level dependencies (as coupling matrices mentioned in
section 2.2) and not the inter-level dependencies as in the
dependency matrices used for our analysis of crosscutting.
In [19], a relationship matrix (concern x requirement) is described
very similar to our dependency matrix, and used to identify
crosscutting concerns in requirements. However, there is no
explicit operational definition of crosscutting.
The approach presented in [3] allows the requirements engineer to
identify crosscutting concerns. However, the identification of
crosscutting functional concerns is not yet clear and it lacks of
explicit support (such as tool and guidelines) to identify non-
functional crosscutting concerns. In [21] the authors have
improved this approach by means of a mechanism based natural
language processor to identify functional and non-functional
crosscutting concerns from requirements documents. However
this approach is focused only on requirements phases while our
approach can be applied throughout the software life cycle.
In aspect mining area, there are several approaches to identify
crosscutting, e.g. [10] [20]. However, most of these approaches
are focused on the implementation level and they use different

 - 6 -

pattern matching or dependencies graph for such identification.
As we stated in section 1, we need support to apply such
identification of crosscutting concerns in early phases. In that
sense, the framework presented in this paper provides a
mechanism which is perfectly suitable to be applied in any phase
as we mentioned above.
A definition of crosscutting similar to ours can be found in [16]
and [17]. Our definition is less restrictive showing that
crosscutting is not symmetric property. The differences are
explained in [6]. Moreover, our definition can be applied to
consecutive levels of abstractions in software development, such
as requirements, design and implementation. This can be achieved
through the cascading of dependency matrices [6].

5. CONCLUSIONS
We proposed an operationalization of the definition of
crosscutting, based on specific mappings between design elements
at two levels, called source and target. We introduced the
dependency matrix to represent and to visualize the mapping. We
used this matrix to derive the crosscutting matrix and to identify
crosscutting in software design.
We showed the application of this approach to well-know case
studies to identify crosscutting concerns. The same analysis could
be done in systems where new crosscutting concerns may emerge.
The operationalization of crosscutting with matrices constitutes a
helpful means to apply aspect-oriented modeling approaches in
different scenarios or domains.
In another study (to be published), we applied a cascading of
dependency matrices to model crosscutting relations across
several levels, for example from concern modelling, to
requirements, architectural design to detailed design and
implementation. As such, the analysis of crosscutting can be
based on traceability relationships as represented in the
dependency matrices.
As a future work, we are establishing the requirements for the
building of some automatic tools in order to derive the mappings
between source and target elements. These tools avoid the manual
filling of matrices making the approach more systematic and
useful.

ACKNOWLEDGEMENT
This work has been carried out in conjunction with the AOSD-
Europe Project IST-2-004349-NoE [1] and also partially
supported by CICYT under contract TIN2005-09405-C02-02.

REFERENCES
[1] AOSD-Europe (2005). AOSD Ontology 1.0 - Public

Ontology of Aspect-Orientation. Retrieved May, 2005, from
http://www.aosd-europe.net/documents/d9Ont.pdf

[2] AOSD-Europe (2005). Survey of Aspect-Oriented Analysis
and Design Approaches. Retrieved May, 2005, from
http://www.aosd-europe.net/documents/analys.pdf

[3] J. Araujo, A. Moreira, I. Brito, & A. Rashid (2002), Aspect-
Oriented Requirements with UML, In Workshop on Aspect-
Oriented Modelling with UML at International Conference
on Unified Modelling Language. Dresden, Germany.

[4] Baldwin, C.Y. & Clark, K.B. (2000). Design Rules vol I, The
Power of Modularity. MIT Press.

[5] Baniassad, E. & Clarke, S. Theme (2004). An Approach for
Aspect-Oriented Analysis and Design. In 26th International
Conference on Software Engineering, Edinburgh, Scotland.

[6] Berg, K.van den & Conejero, J. (2005). Disentangling
crosscutting in AOSD: a conceptual framework, in Second
Edition of European Interactive Workshop on Aspects in
Software, Brussels, Belgium

[7] Berg, K. van den, & Conejero, J. (2005a), A Conceptual
Formalization of Crosscutting in AOSD. In Iberian
Workshop on Aspect Oriented Software Development,
Technical Report TR-24/05 University of Extremadura (pp.
46-52). Granada, Spain.

[8] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995).
Design patterns. Elements of reusable object-oriented
software. Addison-Wesley.

[9] Gradecki, J.D. & Lesiecki, N. (2003). Mastering AspectJ,
Aspect-Oriented Programming in Java. Wiley.

[10] Griswold, W. G., Kato, Y. & Yuan, J. J. (2000). Aspect
browser: Tool support for managing dispersed aspects. In
Workshop on Multi-Dimensional Separation of Concerns at
International Conference on Software Engineering.
Limerick, Ireland.

[11] Grundy, J. (2000). Multi-perspective specification, design
and implementation of software components using aspects.
In International Journal of Software Engineering and
Knowledge Engineering, vol. 20.

[12] Hanenberg, S. & Unland, R. (2002). A Proposal for
Classifying Tangled Code. Workshop Aspekt-Orientierung
der GI-Fachgruppe 2.1.9. Bonn, Germany.

[13] Hanneman, J, & Kiczales, G. (2002). Design Pattern
Implementation in Java and AspectJ. In 17th Annual ACM
Conference on Object-Oriented Programming, Systems,
Languages, and Applications. Seattle, USA.

[14] Lopes, C.V. & Bajracharya, S.K. (2005). An analysis of
modularity in aspect oriented design. In 4th International
Conference on Aspect-Oriented Software Development.
Chicago, Illinois

[15] MDA (2003). MDA Guide Version 1.0.1, document number
omg/2003-06-01

[16] Masuhara, H. & Kiczales, G. (2003). Modeling Crosscutting
in Aspect-Oriented Mechanisms. In 17th European
Conference on Object Oriented Programming. Darmstadt

[17] Mezini, M. & Ostermann, K. (2003). Modules for
Crosscutting Models. In 8th International Conference on
Reliable Software Technologies. LNCS 2655. Toulouse,
France.

[18] Pawlak, R., Duchien, L., Florin, G., Legond-Aubry, F.,
Seinturier, L. & Martelli, L. (2002). A UML Notation for
Aspect-Oriented Software Design. In Workshop on Aspect-
Oriented Modeling with UML at Aspect Oriented Software
Development Conference. Enschede, The Netherlands.

 - 7 -

[19] Rashid, A., Moreira, A. & Araujo, J. (2003). Modularisation
and Composition of Aspectual Requirements. In Second
Aspect Oriented Software Conference. Boston, USA.

[20] Robillard, M. P. & Murphy, G. C. (2002). Concern graphs:
finding and describing concerns using structural program
dependencies. In 24th International Conference on Software
Engineering (pp. 406-416). Orlando, Florida.

[21] Sampaio, A., Loughran, L., Rashid, A. & Rayson, P. (2005).
Mining Aspects in Requirements. In Early Aspects 2005
Workshop at Aspect Oriented Software Development
Conference. Chicago, USA.

[22] Stein, D., Hanenberg, S. & Unland, R. (2002). A UML-based
Aspect-Oriented Design Notation For AspectJ. In First

Aspect Oriented Software Development Conference.
Enschede, The Netherlands.

[23] Sutton, S. & Rouvellou, I. (2002). Modeling of Software
Concerns in Cosmos. In First Aspect Oriented Software
Development Conference. Enschede, The Netherlands

[24] UML (2004). Unified Modeling Language 2.0
Superstructure Specification. Retrieved October, 2004 from
http://www.omg.org/cgi-bin/doc?ptc/2004-10-02

[25] Welch, I.S. & Stroud, R.J. (2003). Re-engineering Security
as a Crosscutting Concern. The Computer Journal, 46(5),
578-589.

