
Reasoning about Semantic Conflicts between Aspects

Pascal Durr?, Lodewijk Bergmans, Mehmet Aksit

University of Twente, The Netherlands
{durr,bergmans,aksit}@ewi.utwente.nl

Abstract. Aspects have been successfully promoted as a means to improve the
modularization of software in the presence of crosscutting concerns. The so-
called aspect interference problem is considered to be one of the remaining chal-
lenges of aspect-oriented software development: when multiple aspects share the
same join point, undesired behavior may emerge. Such behavior is not necessar-
ily caused by a wrong implementation of the individual aspects, but may be the
result of composition of the independently programmed aspects at the shared join
point. This paper presents a language-independent technique to detect semantic
conflicts among aspects that are superimposed on the same join point.

1 Introduction

Aspect-Oriented Programming (AOP) aims at improving the modularity of software
in the presence of crosscutting concerns. AOP languages allow independently pro-
grammed aspects to superimpose 1 behavior at the same join point. Unfortunately, such
expression power may cause undesired emerging behavior. This is not necessarily due
to a wrong implementation of the individual aspects; the composition of the indepen-
dently programmed aspects at the shared join point may cause emerging conflicts due
to unexpected semantic interactions. Note that interference between aspects may also
occur in other places without shared join points, but in this paper we concentrate on this
–most relevant– case. In this paper we use the term semantic to designate the behav-
ior of a component (aspect), rather than its syntax or structure. A semantic conflict is
emerging behavior that conflicts with the originally intended behavior of one or more
of the involved components.

In component-based programming, each component explicitly composes its behav-
ior from fine-grained actions and the interfaces of other components. For example, be-
havior is composed as a sequence of function calls, through the specification of in-
heritance or through aggregation, e.g. of objects. In all these cases, the programmer is
responsible to ensure that the specified composition is sensible. In addition, techniques
like type checking support the programmer to avoid certain mistakes, e.g. introducing
method with the same name.
? This work has been partially carried out as part of the Ideals project under the responsibility

of the Embedded Systems Institute. This project is partially supported by the Netherlands
Ministry of Economic Affairs under the Senter program.

1 We prefer to use the term superimposition instead of weaving, since it less commonly associ-
ated, or confused, with implementation techniques.



The reasoning techniques, such as type-systems, that are developed for components
cannot be directly applied to aspects at shared join points, because this kind of be-
havioral composition is implicit: each aspect is defined independently of the others,
potentially at different times and by different people. The composition of their advice
happens ’by coincidence’ at shared join points, certainly the programmers of the indi-
vidual aspects cannot always be aware that this will happen.

Recently, reasoning about the correctness of a system after superimposing multiple
aspects at the same or shared join point, as described in [20], has been considered as an
important problem to be addressed[16,17,12]. Our approach focuses on semantic con-
flicts, not conflicts that are syntactic or structural, for example changing the inheritance
hierarchy while another aspect depends on the original hierarchy.

This paper presents a language-independent technique to detect emerging semantic
conflicts among aspects that share join points. The paper is structured as follows; in
section 2 we explain the problem statement through a simple example of a semantic
conflict, based on a system with an Encryption and a Logging aspect. Subsequently,
section 3 provides an overview of our approach. Finally we provide an overview of
related work in section 4 and conclude.

2 Problem statement

To illustrate the kinds of conflicts we consider, we present an example with two cross-
cutting concerns. One may of course discover numerous other examples of semantic
conflicts between aspects, see for example[10].

Consider a base application which implements a simple protocol. Here, to handle
inbound and outbound messages, the interface of class Protocol provides the methods
sendData and receiveData. Now let us assume that we would like to add two new as-
pects: logging and encryption. LoggingAspect is applied to the join points where the
methods sendData(String) and receiveData(String) start execution. This aspect prints
the arguments of both methods. EncryptionAspect [19] provides encryption functional-
ity for all outbound messages and decryption for all inbound messages. The base system
with both aspects is shown in figure 1.

In this example, both the logging advice and the encryption advice are applied to
the same method sendData(String). Similarly, the logging advice and the decryption
advice are applied to the same method receiveData(String). These two join points create
semantic interference, as we will discuss in this section.

Consider, as an example, the method sendData(String). Now assume that the log-
ging aspect is used for debugging purposes and should be applied to non-encrypted
messages only. In this case, it seems to be a logical option to apply the logging ad-
vice before the encryption advice. However, one could also argue that the reverse order
is preferable in a “hostile” context where the messages must be encrypted first before
sending them to the debugger. The exact order must be determined based on the re-
quirements of the domain or even the individual application and therefore cannot be
determined in a generalized automated manner. We assume that it is required to apply
logging before encryption. In this case, we consider applying the logging aspect after
encryption as an undesired interference (i.e. a conflict) between these two aspects.



...
...

...
...

Protocol
sendData(String)
receiveData(String)

EncryptionAspect
encrypt : Advice
decrypt : Advice

LoggingAspect
log : Advice

Base Program

Fig. 1. Encryption and Logging example

Similarly, it is also possible to identify a similar conflict for the method receive-
Data(String). At this method, the decryption aspect must be applied first before the
logging advice. The reverse order is in this example considered as another semantic
conflict.

Now let us elaborate more on these two conflicting aspects. Individually, both as-
pects are consistent with their requirements and therefore they are considered sound.
From the language compiler point of view, the program with the conflicting order of
advices is considered as a valid program without error(s). However, once these aspects
are applied at the same join point, an emerging conflict situation appears. Such a se-
mantic conflict may lead to undesired behavior.

In this case, if one is aware of such (potentially) conflicting cases, he/she can enforce
an ordering. For example, it is possible to enforce an ordering in AspectJ with the
declare precedence construct. In practice, however, detecting emerging conflicts may
not be that easy, especially when conflicting aspects crosscut the entire base application
and share many join points. It is therefore necessary to develop techniques and tools
that reason about the (potential) semantic conflicts between aspects.

3 Approach

To reason about the behavior of advices and detect semantic conflicts between them,
we need to introduce a formalization that enables us to express behavior and conflict
detection rules. Clearly, a formalization of the complete behavior of advice in general
would be too complicated to reason with. Therefore, an appropriate abstraction must be
designed that can both represent the essential behavior of advice, and be used to detect
semantic conflicts between advices.

Our approach is based on a resource-operation model, also called resource model,
to represent the relevant semantics of advice, and detect conflicts among them. We have
chosen to adopt a resource model, as this is an easy to use model that can represent both
very concrete, low-level, semantics and very high-level, abstract behavior. For more
detailed information about the model and its usage we refer to [21]. Our approach of



conflict detection resembles the Bernstein[3] sufficient condition’s for determinacy. A
similar approach is also used for detecting and resolving conflicts in transaction sys-
tems, such as databases[18].

The key idea is that some resource must be shared among advices for the advices to
conflict. Hence semantic conflicts can be represented by modeling the operations that
advice performs on some shared resource. In the following we will explain the model
intuitively, based on the previously presented example. In [9] and [21] we present this
model more formally and provide a concrete instantiation of the model for the Compo-
sition Filters[2] approach and an implementation in Compose*[25]. To summarize: our
semantic specification language is a resource model which is attached to the advice.

Figure 2 presents the semantic analysis process and the relationships to the base
system and advice. We use this image as a guideline through sections 3.1, 3.2 and 3.3.

Pointcut Designator 
Analysis

Base Program

...Adv.1

Aspect1 AspectN
PCD.1

ClassA
Operation1
Operation2

ClassZ
Operation1
Operation2

...

Advices per
shared join point

Advice Behaviour
Abstraction

Semantic specification
sequence

per shared join point

Conflict Detection

Resource Model

Conflict 
Detection 

Rules

Verdict

Adv.N
PCD.N

Fig. 2. Overview approach

3.1 Pointcut designator analysis

At the top of the figure a set of aspects (Aspect1 . . . AspectN) is presented. These as-
pects contain advices and Pointcut Designators (PCD). There is also a base system with
a set of classes (ClassA . . . ClassZ). The aspects and base are inputs of the Pointcut
Designator Analysis phase. During this phase all PCDs are evaluated with respect to
the base program. This results in a set of join points with advice(s) superimposed on
them. Our approach only considers the join points with multiple advices superimposed
on them, these are also referred to as a shared join points.



3.2 Abstraction

After the PCD analysis phase, we retain a sequence of advices per shared join point2.
This sequence is used in the Abstraction phase. The other input for this phase is the
resource model. During the Abstraction phase, the sequence of advices are transformed
into sequences of resource-operation tuples per shared join point. We now discuss the
notion of Resources and Operations and provide instantiations of these notions for the
running example.

Resources A resource is in essence an Abstract Data Type[13]; its identity is deter-
mined by the operations carried out on it. A resource has an alphabet, a set of opera-
tions which are allowed to operate on this resource. One such resource, in our example,
is called arguments, which represents the arguments of received or sent messages. In
fact, the logging, encryption and decryption advices all operate on a resource argu-
ments. For example, the logging advice reads the argument of a message, whereas the
encryption advice modifies the same argument. Similarly, the decryption advice affects
the resource arguments. The arguments resource is a one example of a resource, other
examples are; a lock, a buffer or the return value of a method.

Operations The logging advice accesses the arguments, this is a read operation on
the arguments resource. The encryption advice encrypts the same arguments resource.
Similarly, the decryption advice also operates, with a decrypt operation, on the argu-
ments resource.

Although the very primitive actions on shared resources are basically read and write
operations, if desired by the programmer, we think that such actions must be modeled at
a higher level of abstraction. For example, in this paper, we will model both encryption
and decryption advices as respectively encrypt and decrypt operations instead of read-
write operations.

There is a subtle difference between changing the content of the arguments and
transforming or encapsulating the data, as is the case with encryption. The intended
meaning of the encryption and decryption advice is not to change the arguments. Also
we would have lost our ability to distinguish between two, semantically, different ac-
tions: encryption and decryption. We chose to model the log action as a read operation
as this adheres to the intended meaning of the advice. In short, the programmer must
be able to choose his/her own higher-level operation definitions on the shared resources
instead of primitive read-write operations only.

3.3 Conflict detection

The operation sequences per resource per shared join point are, in combination with the
conflict detection rules, the inputs for the Conflict Detection phase. This phase passes
a verdict, i.e. if a conflict is present or not, for each shared join point and for each
combined sequence of operation per resource.

2 In the case that the ordering is partially known, we iterate over the Advice Behavior Abstraction
and Conflict Detection phase for each valid ordering.



Conflict detection rules A conflict detection rule is a requirement on a resource. This
is specified as a matching expression on the sequences of operations per resource. This
rule can either be an assertion pattern, a combination of operations that must occur on
a resource, or as a conflict pattern, a combination of operations that must not occur.

In the example used in this paper, a conflict situation is specified as: “if a read
operation occurs after an encrypt operation on the same resource, then it is considered
as a conflict”. Another conflict rule is specified as: “if a read operation occurs before
a decrypt operation on the same resource, then it is considered as a conflict”. This can
be expressed with a matching language, such as temporal logic, regular expressions
or predicate based. The conflict rules are specified for the domain of the resource it
constraints, the can thus be broader than a specific application. Only the conflict rules
for application specific resources cannot be reused beyond that specific application.

For instance, we can formulate these two requirements, on the arguments resource,
as the following conflict detection rule: (encrypt before read | read before decrypt).

In case of detecting an error, several actions can be carried out, such as reporting
the conflict to the programmer or aborting the compilation process.

Conflict analysis For each shared join point, there is one sequence of operations on
the resource arguments. In our example, we thus have two sequences, one for the join
point sendData(String) and one for join point receiveData(String). Now assume that
first an encrypt and then a read operation (caused by the logging concern) occur on the
arguments resource at a shared join point. This would match the conflict detection rule:
(encrypt before read | read before decrypt), in which case the verdict of the conflict
detection process is: “conflict”.

4 Related work

In [15,14], Katz proposes three categories of aspects: spectative, regulative and invasive.
The spectative aspects do not influence the underlying system, they only query the state
of fields. Regulative aspects can alter the control flow of the underlying system. Finally,
invasive aspects both alter the control flow and the fields of the underlying system.
They are able to determine whether the combination of these aspects interfere with one
another. We can also classify aspects by inspecting the ResourceUsageMaps of the
advices and determine if they change the control flow, e.g. by writing the target, or if
they are spectative, e.g. only reading resources. Clifton and Leavens [4], also propose
a classification system based on observers and assistants. Again this classification can
be achieved by constraining the usage of resource operations. Our approach offers a
more fine-grained interference detection mechanism, that the classifications described
previously. There is also the issue that although they might know that aspect interfere
they are unable to state whether this interference is undesired.

Rinard, Salcianu and Bugrara[24] also propose a classification system for advices.
Their categories are: Augmentation, Narrowing, Replacement and Combination. They
classify interactions between the advice and the base code in terms of the usage of
the same fields. Their approach is based on the fact that if the advice interferes with
base system that there should be some shared field. This is similar to our resource



definition. They distinguish two operations on these fields, read and write. They use
code analysis tools to determine which operations the advice and base systems do.
Based on the interaction analysis on similar fields they define they following types of
interactions: Orthogonal, Independent, Observation, Actuation and Inference. A similar
classification can also be made on the bases of our resource model. Similar to the slicing
technique discussed below, they are unable to indicate whether such an inter action is
desired or conflicting. Furthermore they do not allow the use of abstract resources,
which can capture more subtle problems that accessing similar fields.

Douence, Fradet and Sudholt[6][5][23][8][7] present a technique to detect shared
join points, based on similarities in the crosscut specification of the aspects involved. If
there is no conflict the aspects can be woven without modification, else the user has to
specify the order in which the aspects should be composed. They do not consider the
semantics of the advice on inserts, they consider the presence of a shared join point to
be a conflict.

Program slicing techniques as presented by Balzarotti, Casteldo and Monga[1] also
provide aspect interference detection. They propose an approach for slicing AspectJ
woven code. The detection is based on checking whether the nodes of one aspect slice
appear in the slice of another aspect; if this is the case, there is interaction between the
aspects. They are all able to detect possible interference, e.g. read-write conflicts, and
even pinpoint the exact memory location. The main drawback of using slicing tools is
that there is no way to know if the interaction is desired or not. These are generic based
conflicts, it is hard to take application specific conflicts into account. They do have
the advantage of, automatically, being able to determine conflicts due to side effects of
advices.

In [22], Pawlak, Duchien and Seinturier present a language called CompAr, which
allows the programmer to specify the execution constraints of the advice. And it pro-
vides an abstraction from the implementation language. This technique also analyzes
the issues found at shared join points. The CompAr compiler verifies whether the ex-
ecution constraints hold for that given abstract specification. The work focuses on de-
termining the correct order of composition given the execution constraints. They do
provide a means to express certain actions that have to be carried out, but there is no
interference detection between these actions, as is the case in our approach.

5 Conclusion

This paper presents a novel approach for detecting semantic conflicts between aspects.
Our approach defines the semantics of advice in terms of operations on a resource
model. After analyzing all advices at a shared join point, we are able to detect con-
flicts based on conflict patterns over the combinations of operations on these resources.
The resource-operation model allows us to express knowledge about the behavior of
advice at both concrete and abstract levels.

The presented approach is generic and can be applied to most, if not all, AOP lan-
guages. It requires the ability to detect shared join points for such a language and the
ability to annotate advice with the semantic resource operation specifications. In that



case our model supports reasoning about the behavior of the composition of multiple
advices.

Our conflict detection model is generic and abstract. We imagine that we can apply
the same conflict detection approach on a higher design level, i.e. at the requirements
or architectural level. As the resource model is generic enough, we can use our ap-
proach for these cases and even reuse parts of the Compose* toolset for this. This is
also considered future work.

has been implemented in Compose*
In the composition filters approach we exploit the declarative specification of filters

to automatically derive the semantics from the filter specifications. As input to this pro-
cess serve the specifications of the predefined filter types, and possibly the annotations
of user-defined advice (through meta-filters). The paper also discusses our implemen-
tation of this approach within the Compose* toolset.

We believe the approach presented in this paper offers a powerful and practical
means of establishing semantic conflict detection with a minimal amount of explicit
behavior specifications from the programmer.

References

1. D. Balzarotti, A. Castaldo, and M. Monga. Slicing aspectj woven code. In FOAL ’05: The 4th
Workshop on Foundations of Aspect-Oriented Languages, Chicago, USA, March, 14 2005.

2. L. Bergmans and M. Akşit. Principles and design rationale of composition filters. In Filman
et al. [11], pages 63–95.

3. A. J. Bernstein. Program analysis for parallel processing. IEEE Trans. on Electronic Com-
puters, EC-15:757–762, 1966.

4. C. Clifton and G. T. Leavens. Observers and assistants: A proposal for modular aspect-
oriented reasoning. In R. Cytron and G. T. Leavens, editors, FOAL 2002: Foundations of
Aspect-Oriented Languages (AOSD-2002), pages 33–44, Mar. 2002.

5. R. Douence, P. Fradet, and M. Südholt. Detection and resolution of aspect interactions.
Technical Report RR-4435, INRIA, Apr. 2002.

6. R. Douence, P. Fradet, and M. Südholt. Composition, reuse and interaction analysis of state-
ful aspects. In K. Lieberherr, editor, Proc. 3rd Int’ Conf. on Aspect-Oriented Software De-
velopment (AOSD-2004), pages 141–150. ACM Press, Mar. 2004.

7. R. Douence, P. Fradet, and M. Südholt. Trace-based aspects. In Filman et al. [11], pages
201–217.

8. R. Douence, T. Fritz, N. Loriant, J.-M. Menaud, M. Segura-Devillechaise, and M. Sudholt.
An expressive aspect language for system applications with arachne. In AOSD ’05: Proceed-
ings of the 4th international conference on Aspect-oriented software development, pages
27–38, New York, NY, USA, 2005. ACM Press.

9. P. Durr, L. Bergmans, and M. Aksit. Technical report: Formal model for secret. Technical
report, University of Twente, 2005.

10. P. Durr, T. Staijen, L. Bergmans, and M. Aksit. Reasoning about semantic conflicts between
aspects. In EIWAS ’05: The 2nd European Interactive Workshop on Aspects in Software,
Brussel, Belgium, September, 1-2 2005.

11. R. E. Filman, T. Elrad, S. Clarke, and M. Akşit, editors. Aspect-Oriented Software Develop-
ment. Addison-Wesley, Boston, 2005.

12. J. Hannemann, R. Chitchyan, and A. Rashid. Analysis of aspect-oriented software, workshop
report. In ECOOP 2003 Workshop Reader, Darmstadt, Germany, July, 21 2003.



13. D. Kapur and S. Mandayam. Expressiveness of the operation set of a data abstraction. In
POPL ’80: Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 139–153, New York, NY, USA, 1980. ACM Press.

14. S. Katz. A superimposition control construct for distributed systems. ACM Trans. Program.
Lang. Syst., 15(2):337–356, 1993.

15. S. Katz and J. Gil. Aspects and superimpositions. In Proceedings of the Workshop on Object-
Oriented Technology, pages 308–309, London, UK, 1999. Springer-Verlag.

16. G. T. Leavens and C. Clifton. Foundations of aspect-oriented languages workshop. In Foun-
dations of Aspect-Oriented Languages Workshop, volume 3rd. AOSD, 2004.

17. G. T. Leavens and C. Clifton. Foundations of aspect-oriented languages workshop. In Foun-
dations of Aspect-Oriented Languages Workshop, volume 4th. AOSD, 2005.

18. N. A. Lynch, M. Merritt, W. E. Weihl, and A. Fekete. Atomic Transactions : In Concurrent
and Distributed Systems. Morgan Kaufmann, 1993.

19. L. Z. Minwell Huang, Chunlei Wang. Toward a reusable and generic security aspect library.
In AOSD:AOSDSEC ’04: AOSD Technology for Application-level Security, Lancaster, UK,
March, 23 2004.

20. I. Nagy, L. Bergmans, and M. Aksit. Composing aspects at shared join points. In Proceed-
ings of International Conference NetObjectDays, NODe2005, Lecture Notes in Computer
Science, Erfurt, Gergmany, 2005. Springer-Verglag.

21. Pascal Durr. Detecting Semantic Conflicts Between Aspects, 2004.
http://www.cs.utwente.nl/˜durr/papers/ Master Thesis Pascal Durr.pdf.

22. R. Pawlak, L. Duchien, and L. Seinturier. Compar: Ensuring safe around advice composi-
tion. In Proceedings of Formal Methods for Open Object-Based Distributed Systems, Athens,
Greece, June 2005.

23. M. S. Remi Douence, Pascal Fradet. A framework for the detection and resolution of as-
pect interactions. In Generative Programming and Component Engineering: ACM SIG-
PLAN/SIGSOFT Conference, GPCE 2002, Lecture Notes in Computer Science, Pittsburgh,
US, October,6 2002. Springer-Verglag.

24. M. Rinard, A. Salcianu, and S. Bugrara. A classification system and analysis for interactions
in aspect-oriented programs. In Foundations of Software Engineering (FOSE). ACM, Oct.
2004.

25. University of Twente. COMPOSE*. http://composestar.sourceforge.net.


	Reasoning about Semantic Conflicts between Aspects
	 Pascal Durr, Lodewijk Bergmans, Mehmet Aksit 

