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Summary. The influence of rotation on turbulent convection is investigated with
direct numerical simulation. The classical Rayleigh-Bénard configuration is aug-
mented with steady rotation about the vertical axis. Correspondingly, characteri-
zation of the dynamics requires both the dimensionless Rayleigh number Ra and
the Taylor number Ta. With increasing Ta the root-mean-square (rms) velocity-
variations are found to decrease, while the rms temperature variations increase. Due
to rotation a mean vertical temperature gradient develops, to partially compen-
sate for the reduced convective heat transfer. Compared to the non-rotating case,
at constant Ra = 2.5 106 the Nusselt number increases up to ≈ 5% at relatively
low rotation rates, Ta < Tam ≈ 106, and decreases strongly when Ta is further in-
creased. A striking change in the boundary layer structure arises when Ta traverses
an interval about Tam, as is expressed by the near-wall vertical-velocity skewness.

1 Introduction

Rayleigh–Bénard convection is a classical problem in which a fluid layer en-
closed between two parallel horizontal walls is heated from below. For small
temperature differences between the plates there is no flow and heat is trans-
ported by conduction only. Above a certain temperature difference, convection
sets in against the downward pointing gravitational acceleration, and a regu-
lar convection pattern is formed. At even higher temperature differences this
pattern breaks down, eventually leading to plume-dominated turbulence [2].

In a rotating reference frame the Rayleigh-Bénard dynamics can be con-
siderably modified through a combination of buoyancy and Coriolis forces.
The Taylor–Proudman theorem implies that at sufficiently strong rotation
rates flows are essentially two-dimensional. Hence, in general, rotation in-
duces a dynamic competition between two- and three-dimensional tendencies
in a convective flow. Rotating convection occurs in many geophysical and
astrophysical settings, such as in Earth’s atmosphere and in solar convection.
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The dynamics of rotating Rayleigh–Bénard convection can be character-
ized by three dimensionless parameters, i.e., the Rayleigh number Ra, the
Taylor number Ta, and the Prandtl number σ:

Ra =
gα ∆TH3

νκ
, Ta =

(

2ΩH2

ν

)2

, σ =
ν

κ
, (1)

where g is the gravitational acceleration, α the thermal expansion coefficient, ν
the kinematic viscosity, κ the thermal diffusivity, ∆T the temperature differ-
ence between the plates, H the separation between the horizontal walls, and Ω
the rotation velocity.

While there is a considerable body of velocity and temperature measure-
ments on non-rotating Rayleigh–Bénard convection [1], only a few measure-
ments are reported for the rotating case [2, 3]. The effect of rotation on the
total heat flux is usually expressed in terms of the Nusselt number Nu which
depends in a complicated manner on (Ra, Ta, σ). In [4, 5], Ta and Ra were
varied at constant Rossby number Ro =

√

Ra/(σ Ta). A constant value of Ro
essentially implies a fixed ratio between rotational and buoyancy effects. Only
a modest increase of Nu was found at fixed Ro, in comparison to its value
in the non-rotating system. Complementary, in [6, 7] Ta was varied indepen-
dently of Ra. A slight increase of Nu at moderate Ta was observed while Nu
decreases considerably at larger Ta.

The present study involves a separate variation of rotation rate, i.e.
different Ta, at constant Ra and σ. Temperature and velocity statistics
from direct numerical simulations (DNS) of turbulent rotating convection
at Ra = 2.5 × 106 and Prandtl number σ = 1 are considered. The Taylor
number Ta varies between 0 and 2.3×107. These values of Ra and σ allow for
direct comparison to the work of Julien et al. [4] who reported velocity and
temperature statistics from a series of numerical simulations at Ro = 0.75.
The range of Ta numbers provides for considerable rotational effects in the
flow, while still meeting horizontal resolution requirements (see Sakai [8]).

This paper is organized as follows. In Sec. 2 the numerical method and its
accuracy is discussed. The influence of rotation on velocity and temperature
statistics is analyzed in Sec. 3. Concluding remarks can be found in Sec. 4.

2 Numerical method

The model incorporates the Boussinesq approximation in the Navier–Stokes
and temperature equations for an incompressible rotating fluid [9]:

∂u

∂t
+ (u · ∇)u +

(

σTa

Ra

)1/2

ẑ × u = −∇p + T ẑ +
( σ

Ra

)1/2

∇2
u , (2)

∂T

∂t
+ (u · ∇)T = (σRa)−1/2∇2T , (3)

∇ · u = 0 , (4)
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where u is the velocity vector, ẑ the unit vector in vertical direction parallel
to the axis of rotation, p the reduced pressure, and T the temperature. The
equations have been made dimensionless with length scale H , a convective
time scale τ = H/U based on the free-fall velocity U =

√
gα∆TH, and

temperature scale ∆T .
Equations (2)–(4) are solved on a rectilinear domain using the same bound-

ary conditions as in [4]. In particular, the horizontal directions are periodic
to approximately represent an infinite horizontal extent. At the top and bot-
tom boundaries no-slip conditions are applied for velocity. The temperature
is set to T = 1 at the lower wall, while at the upper wall T = 0. The dis-
cretization scheme is the symmetry-preserving finite-volume discretization as
proposed in [10]. Preservation of symmetry in the difference operators ensures
stability on any grid, and conservation of mass, momentum and kinetic en-
ergy when inviscid flow is concerned. Time-integration is done via a so-called
one-leg (one evaluation of fluxes per time step) scheme similar to the popular
Adams–Bashforth scheme. Values of Ta can be found in Table 1.

Table 1. All simulations adopt Ra = 2.5 × 106 and σ = 1 while the Taylor num-
bers Ta are chosen such that buoyancy forces are either larger than Coriolis forces
(Ro > 1) or smaller (Ro < 1).

Ta 0 1.6 × 105 2.4 × 105 4.0 × 105 1.4 × 106

Ro ∞ 4.00 3.20 2.50 1.33

Ta 4.5 × 106 1.0 × 107 1.6 × 107 2.3 × 107

Ro 0.75 0.50 0.40 0.33

The sides of the computational domain are chosen to be 2×2×1 in the two
horizontal and in the normal directions respectively. The grid consists of 1282

equidistant points horizontally, and vertically 64 unevenly spaced points are
used. There is a higher density of grid points near the top and bottom walls in
order to adequately resolve the thin viscous and thermal boundary layers. In
all simulations the domain allows for at least four characteristic length scales
in both horizontal directions [8]. A coarsening of the grid, as well as a change
of the domain dimensions to 1× 1× 1, induced no essential differences in the
results which further underpins the selected resolution as well as the length
of the periodic directions.

A simulation is initialized with zero velocity and a linear vertical tempera-
ture profile upon which small random perturbations are superimposed. After
an initialization period of 50 dimensionless units, a statistically stationary
state was found to have established itself after which the averaging-process
was started. The averaging, denoted by 〈 . 〉, was carried out over horizontal
grid-planes and time. Two quantities are of special interest for this study, i.e.,
the Nusselt number Nu and the vertical-velocity skewness Sw. The Nusselt
number Nu involves the derivative of the average temperature at the wall [11]:
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Fig. 1. Convergence of time-averaging at Ta = RUDIE. Scaled by their final values
are given the maximum rms value of vertical velocity (circles), Nu calculated at the
top wall (crosses), and Nu for the bottom wall (pluses). The 1% accuracy interval
is indicated by the dotted lines.

Nu =
∂ 〈T 〉
∂z

∣

∣

∣

∣

wall

. (5)

This definition implies that the thermal boundary layers near the walls are
adequately resolved, which necessitates the near-wall grid refinement. The
skewness of vertical velocity Sw is defined as

Sw =

〈

(w − 〈w〉)3
〉

〈(w − 〈w〉)2〉3/2
. (6)

After averaging over 100 time-units the statistical convergence of the av-
eraging process was observed to be within 1% relative error for Nu. This is
illustrated in Fig. 1 for a characteristic simulation-setting. In particular, the
running-time average of the maximum root-mean-square (rms) value of ver-
tical velocity, scaled by its final value, and the convergence of Nu calculated
at the bottom and top wall are shown.

3 Velocity and temperature statistics

The rms values of vertical and horizontal velocities as a function of the vertical
coordinate are presented in Fig. 2. The rms horizontal velocity urms is defined
following Kerr [11]

urms =
√

〈(u − 〈u〉)2〉 + 〈(v − 〈v〉)2〉 , (7)

where 〈u〉 ≈ 〈v〉 ≈ 0 are included for generality. For Ta = 0 qualitative agree-
ment is observed with profiles found by numerical simulations [11, 12] and
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Fig. 2. (a) Vertical velocity rms as a function of the vertical coordinate. The non-
rotating case (Ta = 0) is emphasized (thick solid line). From right to left Ta increases
(alternating dashed and solid lines), see Table 1 for values. (b) Horizontal velocity
rms as a function of the vertical coordinate. The line styles are the same as in (a),
with Ta again increasing from right to left.

experiments [13], albeit at other Rayleigh and Prandtl numbers. In addition,
we may directly compare the Ro = 0.75, Ta = 4.5 × 106 case to the simula-
tions of Julien et al. [4]. The rms vertical velocity at the mid-plane reported
there is 0.108 (value adapted to the scaling used in this paper), while we
obtain 0.110. Similarly, the temperature rms at the mid-plane is 0.0795 as re-
ported by [4] (scaling adapted) compared to 0.0793 found here. These values
show an excellent quantitative agreement within the time-averaging accuracy.

From Fig. 2 it is clear that at larger rotation rates the rms velocities near
the centre are smaller, both horizontally and vertically. As Ta increases, the
Rossby number Ro in the bulk decreases, thus indicating that the flow in
the bulk is becoming more and more ‘geostrophic’, i.e., in this regime iner-
tial and viscous forces are negligible when compared to the Coriolis force.
The Taylor–Proudman theorem states that under such geostrophic conditions
vertical motion is practically inhibited. The explanation for the decrease of
horizontal velocity with increasing Ta has the same origin. At strong rotation
the vertical motion is concentrated in coherent vertical vortex-tube structures.
A radial flow towards the vortex tubes across the viscous boundary layers feeds
the vortices. As the vertical motion is less intense, conservation of mass im-
plies that the horizontal flow towards the vortices must also be smaller, hence
the decrease of urms with increasing Ta.

The skewness of vertical velocity Sw, as defined in (6), is shown in Fig. 3.
The non-rotating profile is very similar to the profiles found in numerical
simulations by Kerr [11] and Moeng & Rotunno [12]. As is argued in [12] this
skewness is a measure for the spatial distribution and importance of upward
and downward motions in horizontal cross-sections. If there is a strong upward
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Fig. 3. Skewness of vertical velocity. For clarity only four curves are included: Ta = 0
(crosses), Ta = 1.6 × 105 (circles), Ta = 4.0 × 105 (squares), and Ta = 1.4 × 106

(triangles). The higher-Ta curves are comparable to that at Ta = 1.4 × 106.

motion that occupies only a small fraction of the cross-sectional area, a rather
large positive skewness results. Similarly, a negative skewness is indicative of
a strongly localized downward motion.

With increasing rotation rate, the near-wall skewness is seen to change
sign, cf. Fig. 3. This indicates that the flow structures in rapidly rotating
boundary layers differ essentially from the non-rotating case. In particular,
the sign-change corresponds to a transition in which dominance of strongly
localized downward motion ‘switches’ to a dominance of localized upward
motion near the lower wall, and vice versa near the upper wall. This connects
qualitatively to the strong thermal plumes that are observed in snapshots of
the temperature field at high Ta. The structures in the boundary layers are
highly influential to the thermal properties of the entire domain. Therefore,
the effects of rotation on the flow-structures, especially in the boundary layers,
is currently further investigated to quantify the above high-Ta switching.

In Fig. 4 the average temperature and its rms value as a function of the
vertical coordinate are depicted. With increasing rotation there is a more
pronounced temperature gradient over the bulk. In the non-rotating case there
is hardly any temperature difference over the central region [11]. Julien et
al. [4] provide an ingenious explanation for the persistence of the gradient.
First they show that thermal plumes tend to have cyclonic vorticity, since the
horizontal flow at the boundary layer toward a plume spins up cyclonically as a
result of the Coriolis force. Then they note that in geostrophic turbulence like-
signed vorticity regions tend to clump together [14]. The like-signed thermal
vortices have a tendency to merge, thereby increasing lateral mixing. This
lateral mixing causes the plumes to lose part of their heat while crossing the
domain; a mean temperature gradient results. As the rotation increases, so
does the vorticity associated with the thermal vortices. Hence, the tendency
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Fig. 4. (a) Average temperature. Line styles as in Fig. 2. Ta increases with increasing
temperature gradient near the centre. (b) Temperature rms values as a function of
the vertical coordinate. Line styles as in Fig. 2, with Ta now increasing from left to
right.

to merge increases as well, as does lateral mixing and the vertical temperature
gradient.

The mid-plane rms value of temperature increases with rotation, see
Fig. 4(b). Apparently, the plumes moving vertically across the domain need
a larger thermal contrast to counteract the suppression of vertical motion by
rotation. Fernando et al. [3] experimentally found this result.

The dependence of the heat flux, as characterized by the Nusselt number,
on the rotation rate is presented in Fig. 5. A remarkable feature is that Nu
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Fig. 5. Dependence of Nu on Ta in which Nu is calculated at the top wall (crosses)
and at the bottom wall (circles). Nu for Ta = 0 is indicated on the vertical axis
(thick solid line).
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is increasing for Ta . 106, while decreasing at higher values. The simulations
indicate that Nu appears to decay exponentially with increasing Ta. Simi-
lar behavior was also noticed in experiments in water (σ = 6.8) [6], with a
maximum heat flux for Ta = 3.0 × 106 at Ra = 2.5 × 106.

Several authors [4, 5, 6, 15] note that Ekman pumping could account for
the increased heat flux at moderate rotation rates. At larger rotation rates
(Ta & 106), however, the vertical motions are less intense and the convective
heat flux is therefore reduced. It is expected that for Ta → ∞ all convective
motion will have ceased and that a purely conductive state (Nu = 1) remains
with a constant temperature gradient over the fluid layer.

4 Concluding remarks

The influence of rotation on convective turbulence expresses itself in temper-
ature and velocity statistics. An increase in rotation implies a decrease of rms
velocities, while rms temperature fluctuations are increased. A vertical tem-
perature gradient is maintained under rotation as opposed to the non-rotating
case. At larger rotation rates the total heat flux through the fluid layer de-
creases. These changes can be explained through the suppression of vertical
motion in the geostrophic bulk region. The vertical-velocity skewness shows a
rather unexpected change under rotation, indicating a changing near-wall flow
structure. A thorough investigation of the structures of motion with emphasis
on the near-wall regions is currently carried out.
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