
 A Case Study of Metric-based and Scenario-driven Black-box Testing

IWSM/MetriKon 2006 1

A case study of metric-based and scenario-driven black-box testing
for SAP projects

Maya Daneva*, Alain Abran**, Olga Ormandjieva***, Manar Abu Talib***
*University of Twente, **Uiversité du Québec à Montreal, ***Concordia University

m.daneva@utwente.nl, alain.abran@etsmtl.ca, ormandj@cse.concordia.ca,
m_abutal@cse.concordia.ca

Abstract:
Enterprise Resource Planning (ERP) projects are perceived as mission-critical ini-
tiatives in many organizations. They are parts of business transformation programs
and are instrumental in improving organizational performance. In ERP implemen-
tations, testing is an activity that is crucial in order to ensure that the functionality
embedded in the solution matches the business users’ requirements. However, little
is known about how to make the testing process more predictable or how to in-
crease its chances of success.
This paper makes a first attempt towards improving the quality of the testing proc-
ess in ERP projects by using a metric-based test case selection approach. The pa-
per reports on how this approach was adapted to an ERP package-specific project
context, how it was applied in five settings in a mid-sized project and what was
learnt about using it.

Keywords
Black-Box Scenario-based Software Testing, Enterprise Resource Planning, COS-
MIC-FFP

1 Introduction

ERP testing is the process by which configured ERP transactions are executed in a
controlled fashion. Its objective is to validate whether or not the ERP solution be-
haves as defined in the business requirements document that has been signed off
by business representatives in the early stage of an ERP implementation project. It
can be an expensive and labor-intensive process, for both systems testers and
business users. Industry trend observers [7,11,15] estimate that, for example, when
following the Accelerated SAP methodology for rapid SAP implementation, it can
take twenty testers four weeks to manually run a test cycle of an end-to-end busi-
ness process (or a similar test) consisting of 100 transactions. With four testing
cycles per year, organizations can expect to spend 12,800 hours manually testing,
at a cost of $499,200 (based on average salaries of $60,000). Acknowledging that
there is a relationship between the quality of the test process and the final quality
of the solution being delivered, improvement of the ERP test process is essential
for project success in any organization adopting ERP. The state of the art in ERP
testing practice suggests that testers “break” the system that is being tested into

Daneva, Abran, Ormandjieva, Abu Talib

2 Software Measurement Conference

classes of test cases using guidelines and their experience. They then choose the
most effective classes of test cases that have previously been found when uncover-
ing defects in other systems. However, this traditional common-sense approach
cannot entirely serve the needs of ERP project teams, as the client organization’s
testers often do not have any previous ERP testing experience or even knowledge
of ERP testing in general.
In this paper, we take a first step towards systematically improving the ERP test-
ing process by using a metric-based approach, where “metric” means the distance
between two elements in a set of test cases, defined in terms of their similarity and
dissimilarity. We draw on earlier experience [2] gained by three of the authors
(Abu Talib, Ormandjieva and Abran) in metric-based and scenario-driven black-
box testing as applied to COSMIC-FFP [1] functional size measurement projects
using use-case modeling and UML [8] in the analysis phase. In [2], Abu Talib et
al. investigated how a set of test cases and test plans can be built, partitioned and
prioritized early in a software project for which the requirements are documented
by means of the use-case scenarios and the corresponding UML sequence dia-
grams. Because the typical requirements engineering (RE) process for ERP deliv-
ers business requirements in terms of scenario models [4], we felt intuitively that
the testing method proposed by Abu Talib et al. [2] looked like a good candidate
to be considered for use in ERP testing. Our choice of this method is also moti-
vated by earlier conclusions drawn by the authors [2] suggesting that, for a given
testing strategy and budget constraints, the approach allows the quality of the test-
ing processes to be maximized, and, as a consequence, our confidence in the qual-
ity of the tested product to be increased.
Below, we report on how we adapted this approach to ERP project settings and
how we applied it to improve ERP testing. Aspects of the testing process were
analyzed in the specific context of projects implementing the SAP R/3 package, a
leading product in the ERP market.
The remainder of this paper is organized as follows: in section 2, we provide
background on the state-of-the-art ERP testing process and its challenges, summa-
rize the metric-based test selection method [2] that we propose for improving the
current ERP testing practice and present our research approach; in section 3, we
comment on an adaptation of the testing method [2] to SAP settings and the early
findings that resulted from of its application are discussed; in section 4, our work
is linked to existing publications in the area of both ERP and non-ERP testing; in
section 5, two validation threats are evaluated; and, in a section 6, our early con-
clusions and future research priorities are presented.

 A Case Study of Metric-based and Scenario-driven Black-box Testing

IWSM/MetriKon 2006 3

2 Background

In this section, the notions of SAP testing and COMIC-FFP black-box testing are
introduced.

2.1 SAP testing: process and issues

ERP vendors (e.g. SAP, PeopleSoft, Oracle) provide their client organizations with
a package-specific standard testing process that is part of the package implementa-
tion methodology they suggest for the project. In SAP project settings, the testing
process that a client company is likely to adopt is part of the Accelerated SAP
methodology for rapid SAP implementation [10]. SAP testing, like the testing of
any complex system, includes two distinct phases: integration, which is mostly
concerned with finding defects in the ERP solution, and release testing, which is
concerned with demonstrating whether or not the solution meets its business user
requirements. The latter is known as “black-box” testing, where: (a) test cases are
derived from requirements specifications; and (b) the behavior of the system is
analyzed by its inputs and outputs. The primary goal of this process is to build up
and increase the ERP adopter’s confidence that the system, built by the consult-
ants, meets its requirements. This involves showing that the system in fact embeds
the specified functionality, and that it will exhibit a specified level of performance
and not fail under normal conditions of use.
The SAP testing process deploys a requirements-based testing concept. The proc-
ess is tightly linked with the SAP RE process and embodies the following princi-
ples:

• ERP RE postulates that the ERP requirements should be associated with
the building elements of scenario process models [5], which ensures that
the requirements are testable.

• ERP RE teams are prompted to document the requirements for their solu-
tions in such a way that it is possible for testers to derive test cases and
for business users to check that the requirements are indeed satisfied.

• Test cases are derived directly from the elementary, logical components
of the SAP solution described in the business requirements specifications
(which is the key deliverable from the RE process).

• Testing teams focus solely on end-user acceptance testing, with the as-
sumption that the ERP vendor's internal software testing had already
taken care of application bugs.

Typically, the SAP business requirements documents specify business scenarios
represented in terms of Event-driven Process Chains (EPC) consisting of proc-
esses, events and logical connectors [4]. Thus, from the perspective of business
users in a company, a process describes what an organizational unit does, and,
from the perspective of the SAP R/3 System, a process means a physical transac-
tion (which is a piece of code). For example, “Enter Material” is a user-

Daneva, Abran, Ormandjieva, Abu Talib

4 Software Measurement Conference

recognizable piece of business functionality and it also corresponds to transaction
MM01 in the SAP Materials Management module. An example from a SAP sce-
nario model is illustrated in Figure 1.

PReq with
vendor is
created

PReq w/o
source of
supply is
created

PReq with
contract

number is
created

XOR

Purchase
requisition
processing
for service

XOR

Requirement
for services
has arisen

Requirement
occurred

PReq account
category
known is
selected

PReq account
category

unknown is
selected

XOR

Determine
PReq account

category

Purchase req.
item category

service is
selected

Select PReq
item

category

XOR

Requirement
for services
has arisen

Requirement
occurred

Business Process Model

Business Scenario

Figure 1: An example of a scenario process model

Like the SAP RE process, the SAP testing process relies exclusively on the con-
cept of refining these business process scenarios into business processes, then
mapping a process into process variants, and, finally, transforming each business
function that makes up a process variant into a test case (Figure 2).

Figure 2: SAP Testing with eCATT

Business pro-
cess scenarios

Process variants Elementary Proces-
ses/SAP Transactions

Test cases Business processes

 A Case Study of Metric-based and Scenario-driven Black-box Testing

IWSM/MetriKon 2006 5

In other words, the test case models a complete business process, with all its pre-
requisites for a particular test.
The SAP testing process requires that a testing environment be set up separately
from the configured solution and be in a ready-to-use state prior to testing. This
environment is a replication of the productive system (including all its stored
data), and serves to simulate customized developments and evaluate them against
real data. Experiments [10] indicate that replicating the productive system is a
time-consuming task requiring a great deal of storage and generating ongoing
hardware costs. Moreover, the test manager will need to ensure that all the neces-
sary data (master, transactional, test) are properly loaded as part of the assessment
for the test-readiness review. To support clients in testing activities, SAP offers (as
part of the SAP package) a suite of testing tools, the so-called SAP Test Work-
bench. These tools are used to create, analyze and monitor manual and automatic
test cases, as well as tracking their progress and systematically archiving them. It
allows clients to integrate cases and test scripts from non-SAP providers in test
plans. It also ensures that the tests are reused each time the application is modi-
fied. The suite consists of: (i) Test Data Migration software, a data transfer tool
enabling ERP adopters to extract representative application data from a productive
system and standardize the set-up of non-productive systems; and (ii) the extended
Computer-Aided Testing Tool (eCATT) for generating, recording, managing and
executing test cases.

Despite the supporting SAP standards and tools, SAP testers receive very little
guidance on: (a) what to do in order to test fragments of the SAP solution in a
cost-effective way; and (b) how to prioritize test cases in the face of shrinking test-
ing budgets. The quality of the decision-making processes related to these two
questions depends heavily on the tester’s judgment based on his/her personal test-
ing experiences with SAP [10]. Moreover, an ERP market trend indicates that ERP
solutions are becoming increasingly complex and are interconnecting with in-
creasingly intricate coordination support systems across multiple operating envi-
ronments. With the growing business demand for more cross-organizational coop-
eration and sharing of data and processes, coupled with the advent of newer, more
productive integration concepts, like the Service Oriented Architecture, it is evi-
dent that more pieces of ERP functionality are being put together in very short pe-
riods of time. ERP users are expecting solutions to be tested to work the first time
and in a 24/7 mode. They learned from earlier experiences [12] that ERP system
outages are visible and costly in both the short and the long run. At the same time,
ERP testing has expanded to the point that a rapidly growing testing services mar-
ket has emerged. However, little or almost no evidence from real-life projects
suggests that these developments in the ERP testing field make it easier for testers
to confront the above two issues (labeled (a) and (b) above). This research targets
the adaptation of the COSMIC-FFP back-box scenario-based testing method in-

Daneva, Abran, Ormandjieva, Abu Talib

6 Software Measurement Conference

troduced below for optimizing ERP testing quality while respecting budgetary
constraints.

2.2 COSMIC-FFP-based black-box scenario-driven testing method

For the purpose of our case study research efforts, we have chosen to use COS-
MIC-FFP-based black-box scenario-driven testing [2]. The basic idea of this test-
ing is to first apply the COSMIC-FFP functional size measurement method and
count the COSMIC Full Function Points (FFP) of an application, the requirements
of which are specified by scenarios. Then, as a by-product of the counting process,
an exact inventory of the application usage scenarios and their elementary build-
ing blocks is carried out. In order to do this, we first map the scenarios to se-
quences of events, and, second, we divide them into equivalent classes of the input
domain. Here, a domain refers to the input/output behavior space partitioned into
sub-domains so that the behavior of software on the inputs/outputs of a sub-
domain is similar. The scenarios within each equivalent class are prioritized for
testing purposes based on the amount of information they carry to or from the sys-
tem. The test cases are finally selected from all equivalence classes based on their
priority level, which allows the highest level of coverage (and therefore testing
quality) to be achieved within given budget constraints. This testing method in-
cludes the following steps: (i) generation of test cases through mapping the sce-
narios to a sequence of events in time (or data movements in COSMIC-FFP); (ii)
partitioning test cases into equivalence classes by using a metric-based partition-
ing algorithm, where the partitioning criterion is the distance between the test
cases based of their similarity and dissimilarity; (iii) prioritization of test cases
based on functional complexity measurement in the COSMIC-FFP context; and
(iv) selection of an optimal subset of test cases in terms of maximizing the test
suite coverage within a given budget by using a budget-related algorithm.
Partitioning. The metric defined for the information distance between two test
cases, for example t1 and t2, rests on the similarity/dissimilarity between their
event sequences, and is calculated using the length of the longest common prefix
(LCP) and the minimum amount of change necessary to convert test case t1 into
test case t2. The distance between the two test cases, t1 and t2 (t2 is the test case
that might be chosen next), is calculated as follows:

td (t1, t2) = similarity (t1 , t2) * dissimilarity (t1 , t2) * e -l
where

l = (length (t1)/length (t2))
similarity (t1 , t2) = 2(- length (LCP (t1, t2))

LCP is the longest common subsequence of the two test cases starting from a trig-
gering event. This metric is used to partition the sets of test cases into equivalent

 A Case Study of Metric-based and Scenario-driven Black-box Testing

IWSM/MetriKon 2006 7

classes, where an “equivalent” relation is defined in terms of the distance between
the test cases, which has to be at most εmax. The information distance is chosen be-
cause it is an absolute and objective quantification of the distance between indi-
vidual objects.
Prioritization. The priority of the test cases for the scenarios is assigned based on
the complexity of their functionality, which is defined as an amount of informa-
tion handled by the events in one scenario [2]. Functional complexity character-
izes the dynamic performance of the system seen as a sequence of events required
to fulfill a certain piece of functionality of the system. The concepts of informa-
tion theory are applied to measure the amount of work performed in a time slice
by the system in terms of the amount of information in the event sequence. For the
purposes of functional complexity measurement in the COSMIC-FFP context, dif-
ferent types of events to which the system must respond in some time interval
were considered, as specified in the scenarios of usage of the software. Intuitively,
the greater the variety and number of these events, the more complex the func-
tionality. The probability of occurrence of the i-th most frequently occurring event
is equal to the percentage of the total number of event occurrences it contributes,
and is calculated as ip = if / NE, where if is the number of occurrences of the i-th
event and NE is the total number of events in the sequence. The classical entropy
calculation quantifies the average amount of information contributed by each
event. Therefore, the functional complexity (FC) in a time slice is defined as an
average amount of information in the corresponding sequence of events, and is
computed as follows:

)/(log)/(-
1

2 NEfNEfFC
n

i
ii∑

=

= . …… (3)

The functional complexity in a period of time with higher average information con-
tent should, on the whole, be more complex than another with lower average in-
formation content. That is, the FC measure is intended to order the uses of a system
in a time period in relation to their functional complexity.

Optimal Test Set Selection. The authors in [2] assume that the total resource con-
sumption is directly proportional to the number of the test cases selected. As a re-
sult, the total cost of the test set is calculated by multiplying the number of se-
lected test cases by C, where C is a positive constant scalar denoting the cost of
one test case. In order to select the optimal subset of test cases that will be charac-
terized by the highest test coverage, the budget and the priority of the test cases
are balanced as follows:

Daneva, Abran, Ormandjieva, Abu Talib

8 Software Measurement Conference

For all nonempty equivalence classes TSi
Step 1. Choose the highest-priority test case from the equivalence class TSi;
Step 2. Add the chosen test case to the Optimal SubSet and remove it from
the equivalence class TSi;

 Step 3. Increase the total testing cost in C;
 Step 4. If (the total testing cost exceeds a given budget Cmax)
 then
 End the algorithm
End For
We decided to use this testing method because: (i) it rests on a model-driven RE
process as the SAP project context does; (ii) its proof-of-concept has been demon-
strated [2]; and (iii) it relies on an inventory of the elementary functional compo-
nents of the system under development taken by a standardized functional size
measurement technique, namely COSMIC-FFP [1].

3 Research method

The objective of our paper is to answer two research questions (RQ):
RQ1: How can the COSMIC-FFP testing method be adapted to the SAP testing
process?
RQ2: Where in the SAP testing process can the newly introduced method create
benefits for the testing team?
Our research method consists of two parts: first, we map the logical components
of the testing strategy from the UML settings to the SAP settings, and then we
carry out a case study to try out our approach to improve ERP test-case partition-
ing, selection and prioritization.
The unit of analysis in our case study is the testing strategy. Its application is ob-
served in five SAP subproject settings [3, 4] which implemented five business
scenarios based on the packaged SAP functionality. These are: External Service
Procurement, Maintenance of a Service Master Record, Procurement of Stock Ma-
terials, Maintenance of a Materials Master Record and Procurement of Consum-
able Materials.

 A Case Study of Metric-based and Scenario-driven Black-box Testing

IWSM/MetriKon 2006 9

4 The case study

4.1 The SAP testing method

The adaptation of the approach in [2] to the SAP settings included:
(i) the replacement of use-case scenarios by SAP scenarios, which are the

building blocks of the SAP requirements document,
(ii) the use of the International Function Point Users Group (IFPUG) method

of Function Points Analysis [3] instead of the COSMIC FFP method (this
was justified by the fact that FP counts already existed in the organization
prior to carrying out this case study and that no one on board was famil-
iar with the COSMIC FFP method), and

(iii) mapping the steps of the approach by Abu Talib et al. [2] to the steps be-
ing carried out using the standard SAP tools.

The results of this exercise are sets of rules for practitioners which help him/her
translate the testing method of Abu Talib et al. [2] in the terms of SAP project arti-
facts. The adapted approach includes these steps:
First, the set of SAP scenarios that served as an input to FPA constitutes the set of
test cases required to form the test set to be generated.
Second, that set of test cases is partitioned into equivalence classes.
Third, the test selection algorithm is run on the set of non-empty equivalence
classes. The result is a set of selected test cases that ensures the best possible cov-
erage [2].
However, as Abu Talib et al. [2] have already indicated, we cannot claim exhaus-
tive fault coverage, since this algorithm maximizes test coverage within the limits
of a given budget.

4.2 Application and findings

The adapted approach was applied to a case-study setting with five subprojects in
a medium-sized project upgrading the SAP Materials Management module in a
telecommunications company. The business process requirements for this project
were documented in the form of event-driven process chains using the LiveModel
tool [3], which assisted in automatically mapping the company-specific process
diagrams to the transactions of the SAP software package. Using this tool, a user
can navigate from a business scenario process, to an elementary process, to a
transaction, to a screen, and ultimately to a test case. The use of the LiveModel
tool ensured that the inventory of the transactions to be tested was carried out
quickly. For each scenario, this tool made it possible to generate a mapping be-
tween the logical steps in the scenario and the unique identifiers of all the transac-
tions that will be activated by a business user when executing these steps. Thus,
visualization of a scenario using the LiveModel tool made it possible to obtain an

Daneva, Abran, Ormandjieva, Abu Talib

10 Software Measurement Conference

inventory of the relevant transactions and to clearly see the order of their execu-
tion. In other words, for each scenario, the LiveModel tool identified the elemen-
tary process components that served as inputs to our testing approach. For exam-
ple, the External Services Procurement scenario involves seven elementary proc-
esses: (1) create purchase requisition for service; (2) determine possible service
providers; (3) create purchase order for service; (4) monitor purchase order; (5)
enter services actually performed; (6) accept services performed; and (7) verify
invoices for services. Once these process components were identified, we applied
the approach as described in [2]. This process was repeated with four more SAP
scenarios. The results of the testing method’s application to all five scenarios are
described below.
Test case generation. The test selection domain V is the set of chosen SAP sce-
narios. The scenarios are mapped to sequences of elementary processes. The 25
elementary processes extracted from the SAP scenarios are listed in Table 1. The
final set of generated test cases is STC (STC = {t1, t2, t3, t4, t5}) (see Table 2 for
their descriptions).

 A Case Study of Metric-based and Scenario-driven Black-box Testing

IWSM/MetriKon 2006 11

Table 1: Elementary processes for the five SAP scenarios

Event: Name
e1: Create purchase requisition for service

e2: Determine possible service providers

e3: Create purchase order

e4: Monitor purchase order

e5: Enter services actually performed,

e6: Accept services performed

e7: Verify invoices for services

e8: Create request for materials master record change

e9: Display a materials master record

e10: Verify change request

e11: Notify requisitioner about failure

e12: Change a materials master record

e13: Send a master record update to requisitioner

e14: Create purchase requisition

e15: Create purchase order with a reference to a requisition

e16: Create purchase order without a reference to a requisition

e17: Create a requisition for a quotation

e18: Select a vendor

e19: Follow-up on purchase order

e20: Process goods receipt

e21: Verify invoice

e22: Request service master record change

e23: Display a service master record

e24:Verify service request

e25: Change a service master record

Daneva, Abran, Ormandjieva, Abu Talib

12 Software Measurement Conference

Table 2: Test case descriptions

Test case # Test-case description Event-driven process model from
which a test case is obtained

Length of
test case

t1 e1.e2.e3.e4.e5.e6.e7 External service procurement 7

t2 e8.e9.e10.e11.e12.e13 Materials master maintenance 6

t3 e14.e15.e16.e17.e18.e19.e20.e21 Procurement of stock materials 8

t4 e16.e18.e19.e20.e21 Procurement of consumable materials 5

t5 e22.e23.e24.e25 Service master maintenance 4

Test case partitioning algorithm. The metric-based test case partitioning algo-
rithm is now applied to the set STC of generated test cases, which is {t1, t2, t3, t4,
t5}. The test-distance calculation is illustrated in the first step of the partitioning
algorithm. It is assumed that εmax =1. The authors chose to start with the longest
test case (length=8), which is test case t3; therefore, STC will become the set of
{t1, t2, t4, t5} and the first element in the first equivalence class is t3 (TS1= {t3}).
The distance is calculated between t3 and the rest of the test cases in STC, as
shown in Table 3, so that the test cases with the minimal distance will be included
in the same equivalence class TS1.

Table 3: Distance calculated between t3 and the remaining test cases

Ti similarity (t3 , ti) dissimilarity (t3, ti) e -l td (t3, ti)
t1 20 = 1 8 e(-8/7) = 0.3189 2.5512

t2 20 = 1 8 e(-8/6) = 0.2636 2.1088

t4 2-4 = 0.0625 3 e(-8/5) = 0.2019 0.0378

t5 20 = 1 8 e(-8/4) = 0.1353 1.0824

As a result, t4 is minimally distant from t3, and both are in the same equivalence
class, where TS1 = {t3, t4}, STC = {t1, t2, t5} and ε is set to 0.0378.
Application of the partitioning algorithm steps is continued until all the equiva-
lence classes have been created: TS1 = {t3, t4}, TS2 = {t1}, TS3 = {t2} and TS4 =
{t5}.
Prioritization of test cases. The test cases inside each equivalence class are pri-
oritized according to their functional complexity. Greater and more diverse func-
tionality of the system would lead to a larger portion of the system being involved
in that usage, and, therefore, it will have more priority than other test cases since it
could cover more failures. The functional complexity for each test case is shown
in Table 4.

 A Case Study of Metric-based and Scenario-driven Black-box Testing

IWSM/MetriKon 2006 13

Table 4: The functional complexity values for the five test cases

TS1
t3 - log2 1/8

t4 - log2 1/5

TS2
t1 - log2 1/7

TS3
t2 - log2 1/6

TS4
t5 - log2 1/4

It is to be noted that, in TS1, the FC for t3 is greater than the FC for t4, and there-
fore t3 will be given a higher priority than t4. The new TS1 = {t3, t4}, is an or-
dered set. The sets TS2, TS3 and TS4 contain only one test case, and therefore the
priority of that test case is considered to be the highest.
Test-selection algorithm. The last step in the authors’ testing approach in [2] is
based on the budget, since the testing process is so expensive. It is assumed that
the total cost of the testing process is directly proportional to the number of test
cases and does not exceed Cmax. The average cost of a test case in the SAP subpro-
ject settings has been calculated based on the effort data presented in Table 5.

Table 5: Effort Data

Test case

Total person/hours in testing EPC model from which a test case is obtained Total cost

1 40 External Service Procurement $1730

2 25 Materials Master Maintenance $ 504

3 37 Procurement of Stock Materials $1483

4 26 Procurement of Consumable Materials $ 992

5 14 Service Master Maintenance $ 555

In Table 5, the total number of person/hours in the second column means the total
number of hours spent by people acting in three roles: testers, business users and
external consultants. The reported time includes: (i) the time they spent writing
and correcting the test case; (ii) the time taken to run and review the results with a

Daneva, Abran, Ormandjieva, Abu Talib

14 Software Measurement Conference

business user; and (iii) the time taken to write a test acceptance report with the
failed and successful test cases. For example, for test case 1, the total of 40 hours
means that the tester logged 20 hours, the business user spent 10 hours and the
consultant spent 10 hours working on this test case. Each of these three roles had
an individual hourly rate: the tester’s rate was $18, the business user’s rate was
$27 and the external consultant’s rate was $110. To calculate the accrued test case
cost generated by the tester, the business user and the consultant, we multiplied
the number of hours each of them spent on the test case by each individual’s
hourly rate. We then calculated the total cost generated by each individual’s role
and obtained the dollar values in the right-hand columns.
We also found that the actual average test case cost C for the given five SAP sce-
narios was approximately $1,000.
Assume now that the budget permits three test cases only. The test-selection algo-
rithm allows the testing process to be optimized through selection of the highest
priority test cases from each equivalence class, TSi. Ultimately, the optimal set
will contain the following test cases: {t3, t1, t2}. At that time, the total testing cost
will not exceed the given budget Cmax (in this case, $3,000, or three test cases).
Assessment of RQ1. Our early results gave the initial indication that partitioning
of test cases and assigning priorities to each test case based on the Abu Talib et al.
[2] algorithms fits with the SAP testing process, which provides an affirmative an-
swer to research question RQ1. Our study suggests that this testing strategy can be
adapted to package implementations with no substantial costs incurred by the pro-
ject. We also identified a few prerequisites that significantly impacted the straight-
forward application of our testing approach:
First, we did not allow testing to span over several SAP system instances, each of
which implements the same SAP-supported business process.
Second, the business process documentation was up to date and valid, so that test-
ers were sure that they were testing the most recently acquired functionality.
Third, the transactions were automatically mapped to the business process scenar-
ios using a tool. Thus, any subjective influence on the taking of our inventory of
SAP functionality was eliminated.
However, to assess the extent to which our testing strategy improves the testing
process within given budget constraints, we needed to evaluate the testing quality
achieved with the original SAP testing process and the testing quality achieved af-
ter introducing the new test selection method into the SAP testing process. We
then needed to compare the assessments of testing quality to be able to draw some
early conclusion on the improved testing process.

 A Case Study of Metric-based and Scenario-driven Black-box Testing

IWSM/MetriKon 2006 15

4.3 Evaluation of testing quality

To address RQ2, we looked into the quality of the testing process. We defined its
quality in terms of effectiveness and efficiency. A testing process is termed to be
effective if the testing method being used uncovers as many defects as possible.
The effectiveness of testing processes is measured in terms of coverage. Thus, in
the context of SAP projects, coverage is defined as the percentage of elementary
transactions (or series of screens) covered by the sets of test cases. Next, a testing
process is termed efficient if the testing method finds the largest possible number
of defects using the fewest possible tests. The efficiency of testing processes is
measured in terms of the average number of transactions per test case.
To assess the effectiveness aspect of the testing process complemented with our
method, we compared both sets of test cases (derived by the COSMIC-FFP
method and by the SAP testing method) in terms of their percentages of the ele-
mentary processes covered. For instance, the effectiveness of the optimal set of
test cases chosen by the test selection algorithm for the restricted budget is 70%,
which in this case was achieved within the 60% of the cost of SAP-exhaustive
testing. This clearly indicates an increase of more than 16% in the effectiveness of
the optimized set of test cases.
To assess the efficiency aspect of the testing process, we compared the average
numbers of elementary processes per test case for both the COSMIC-FFP and
SAP testing methods. The efficiency of the test cases generated by the original
SAP testing process (see Table 2) is 6; the efficiency of the optimal test selection
applied on the SAP test cases (t1, t2 and t3) is 7, which also indicates an increase
of more than 16%. This proves the increase in the efficiency of the optimized test-
ing process.
The above results answer the research question RQ2, by demonstrating that the
RE testing method for optimizing the generated set of test cases for a given testing
strategy and budget constraints newly introduced into the SAP increases the qual-
ity of the testing process.

5 Evaluation of validity concerns

Following Yin [13], we considered two types of validity concerns regarding this
case study. The threat to external validity means that the case study project may
not be representative for all ERP projects. We decided on five subproject settings,
which: (i) had up-to-date business requirement models in the form of scenarios;
and (ii) are typical for the telecommunications companies in North America. We
judge these settings to be typical because they seem common to all SAP-adopting
organizations that are members of the American SAP Telecommunications Users
Group (ASUG).

Daneva, Abran, Ormandjieva, Abu Talib

16 Software Measurement Conference

It is our experience that the method works best when the company has modeled its
ERP-supported processes and mapped them to the set of configurable transactions
in the package.
The threat to the internal validity of our study was seen as the risk that there might
factors of which we are unaware and over which have no control, even though the
testing strategy delivered meaningful results. To ensure internal validity, each
process scenario was first taken and studied from the public SAP HELP library
available on the Internet. Then, we reexamined the implementation of each
process in the company-specific setting. We made sure that: (a) each business
requirements document was created using the same RE process, standards and
tools; and that (b) transactions were mapped to scenarios using the LiveModel
tool. When adapting the Abu Talib et al. approach [2] to the SAP settings, the
mappings between the UML concepts and the EPC modeling notation were
borrowed from published literature sources [9].

6 Related work

Although ERP testing is recognized in the ERP literature as a critical issue and as
a significant cost component of any ERP project, to the best of the authors’
knowledge, there seem to be no published papers on this topic in the software en-
gineering literature. We have searched in three commonly used databases of scien-
tific literature sources, namely IEEE Xplore, the ACM Digital Library and Wiley
InterScience, found that there is no publication on ERP testing that is accessible
through these databases. We also found that K. Bassin et al. [3] are the only au-
thors who have so far considered measurement to evaluate vendor-specific soft-
ware based on test case execution results. This suggests that, by and large, the
topic remains under-researched by the software engineering community.
A few papers have been published on the topic of testing non-ERP component-
based software. Bassin et al. [3] discuss experiences of the way in which meas-
urement has provided decision support in quantified terms with regard to assess-
ing progress, analyzing test effectiveness and product stability, and calculating the
degree of risk associated with each of these topics. Next, Yoon & Choi [14] pro-
pose a testing technique for component-based software built by component users
who obtain components from component providers without having access to the
source code of these components.
Our research work differs from related work in that we target the optimization of
the testing process in the ERP environment prior to the actual implementation of
the system. Our approach would allow achievement of better SAP RE testing re-
sults within a given budget. The approach is easy to implement as an enhancement
to the current ERP RE testing process.

 A Case Study of Metric-based and Scenario-driven Black-box Testing

IWSM/MetriKon 2006 17

7 Conclusions

This paper explored the adaptation and the application of the metric-based sce-
nario-driven black-box testing method by Abu Talib et al. [2] to a specific class of
projects, namely ERP. We complemented the original requirements-based ERP
approach to test-case derivation by finding partitions in the input and output data
sets and by suggesting that testers carry out ERP transactions with values from
these partitions. The reported study revealed that this method has the potential to
complement traditional ERP testing approaches, such as the ones built in and as-
sumed in the ERP packages. Our case study demonstrated an efficiency increase
of approximately 16%. Moreover, it also revealed two issues:

• the business process documentation should be up to date and valid, so
that testers are sure that they are testing the most recently acquired func-
tionality;

• the transactions should be mapped to the scenario processes from the
business requirements.

We recommend, however, a replicated follow-up case study be carried out to con-
duct a deeper investigation of the validity threats to our testing method. More case
studies will also help promote the use of our method.
In addition to experimenting with the testing method presented in this paper, we
plan, in the immediate future, to focus our research efforts on adapting and apply-
ing the COSMIC FFP functional sizing technique to a variety of ERP project con-
texts characterizing new ERP implementations, upgrades and cross-organizational
alignments. This is motivated by one essential component of the testing strategy
by Abu Talib et al. [2], namely the use of entropy, which relies on the application
of the COSMIC method for FP counting. To this end, our current case-study set-
tings involved solely the application of the IFPUG FPA standard. Our efforts in
experimenting with the COSMIC method in ERP settings is considered to be part
of a bigger research initiative, the COSMOS project [6], which is aimed at devel-
oping ERP functional size measurement and cost estimation models.

Acknowledgment

We would like to thank Tina James, Mac Kutty, Catherine Lee and Marry-Anne
van Alpen for sharing their thoughts on aspects of this topic.

References

1. Abran, A., Desharnais, JM, Oligny, S., St-Pierre, D., Symons, C., Measurement Man-
ual COSMIC Full Function Points 2.2 - The COSMIC Implementation Guide for
ISO/IEC 19761, École de technologie supérieure, Université du Québec, Montréal,
Canada, 2003, www.gelog.etsmtl.ca/cosmic-ffp.

Daneva, Abran, Ormandjieva, Abu Talib

18 Software Measurement Conference

2. Abu Talib, M., Ormandjieva, O., Abran, A., Khelifi A., Buglione, L. Scenario-based
Black-Box Testing in COSMIC-FFP: a Case Study, ASQ Software Quality Profes-
sional Journal 8 (3), June 2006, pp. 23-33

3. Bassin, K., S. Biyan, P., Santhanam, Metrics to Evaluate Vendor-developed software
based on test case execution results, IBM Systems Journal 41 (1), 2002, pp. 13-30.

4. Daneva M., Practical Reuse Measurement in ERP Requirements Engineering, Proc.
of the 12th Intl Conf. on Advanced Information Systems Engineering (CaiSE’00),
Stockholm, Sweden, June 5-9, 2000, LNCS, Springer Verlag, pp. 309-324.

5. Daneva, M., ERP Requirements Engineering Practice: Lessons Learnt, IEEE Soft-
ware, 21(2), pp. 26-33.

6. Daneva, M., Status Report on Cross-organizational Functional Size Measurement and
Cost Estimation, International Workshop on Software Measurement - IWSM 2006,
Postdam, Germany, Shaker-Verlag, Nov. 2-3 2006.

7. Fiorenzi, B., J. Winkler, HR Testing Tips from SBC Communications, America’s
SAP User Group (ASUG) Conference, Miami Beach, May 20-23, 2001.

8. Larman, G., Applying UML and Patterns: An Introduction to Object-Oriented Analy-
sis and Design and the Unified Process (3d Edition). Prentice Hall, 2006.

9. Loos, P.; Allweyer, Th.: Object Orientation in Business Process Modeling through
Applying Event Driven Process Chains (EPC) in UML, in: Kobryn, C.; Atkinson, C.;
Milosevic, Z. (eds.), Enterprise Distributed Object Computing (2nd Int. Workshop
EDOC'98, IEEE Comp Society Press, Piscataway 1998, pp 102-112.

10. Oberneidermaier, G., Geiss, M., Testing SAP R/3 Systems, Addison-Wesley, Paper-
back, Published October 2000

11. Radhakrishnan, R., Accelerated Testing for SAP Upgrades and Implementations,
Mercury Inc., A tutorial at SAP TechED’06, Las Vegas, September 11-16, 2006.

12. Schwartz, M., Mastery in ERP Testing, Software Magazine, June ’98, 18 (8).
13. Yin, R.: Case Study research: Design and Methods. Sage Publications, 2003.
14. Yoon H., Choi B., Effective test case selection for component customization and its

application to Enterprise JavaBeans, Journal of Software Testing, Verification and
Reliability, 2004, 14, pp. 45-70.

15. Zrimsek, B., SAP Implementation Project Staffing: Examining the Data, Gartner
Group, March 7, 2005.

