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A two-port ring-resonator circuit is studied theoretically. It is shown that superluminal 
and negative group velocity (vg) phenomena can occur in both a passive two-port ring-
resonator circuit with loss and an active one with gain. We present numerical 
observations of temporal behavior of a Gaussian pulse passing through circuits having 
such properties. We also show that when the negative vg is ‘slow’ (|vg|<<c), there is 
enhanced sensitivity of the phase shift to the ring effective index changes, which 
suggests its potential for highly sensitive optical sensing applications. 

1. Introduction 
Besides the possibility to travel with low group velocity (vg), light can also travel with 
large vg (larger than the light velocity in vacuum c) or even with negative vg [1]. In fact, 
the phenomenon where light travels with negative vg has been theoretically studied by 
Brillouin and Sommerfeld [2] and recently experimentally demonstrated in active 
optical fibers [3]. Its consistency with causality has also been experimentally verified 
[4]. 

 Recently, Heebner and Boyd [5] briefly 
reported that a lossy two-port ring-resonator 
(TPRR) circuit (as depicted in Fig. 1) can also 
exhibit such negative vg phenomenon when 
operated in an undercoupled condition. However, 
since the group velocity is not the signal velocity 
[2] in such a phenomenon, there is no true signal 
advancement and hence regarded as physically 
meaningless [2] and can not be used in applications 
like telecom delay lines [6]. While at one side, the 
peculiar pulse temporal behavior in such a structure 
is interesting for scientific curiosity, at the other 
side, we believe that it is still can be beneficial for 
applications where an analytic form of input signal 
is used. In this paper, we studied TPRR circuit 
theoretically and observe the temporal behavior of 
Gaussian pulses passing through such structure in 
various regimes including the negative vg and superluminal vg regimes. We also show, 
that when the negative vg is ‘slow’ (i.e. when |vg|<<c), there is enhancement of 
sensitivity of the optical properties (like phase shift) to the effective index changes in 
the ring, which suggests the potential of such devices for sensing applications. 

 
Figure 1. The two-port ring-resonator 
(TPRR) circuit and the notation used 
in the modeling. 
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2. Modeling method 
To study the TPRR, we divided the structure into 4 sections as shown in Fig. 1. In this 
study, we have assumed that the coupler and straight waveguide sections are lossless, 
while the resonator can have loss or gain. For simplicity, we assume that both the ring 
resonator and straight waveguides are single mode waveguides. 

By assuming a time dependence of exp(iωt), the transfer function of the straight 
waveguide section for a wave traveling from left to right in Fig. 1 can be expressed as 

( )1 straight 1/ expS b a i Lβ= = −  and ( )2 straight 2/ expS f d i Lβ= = − , where a to f are variables 
representing the fields at corresponding positions as illustrated in the figure; βstraight, L1, 
and L2 are the propagation constant of the mode of the straight waveguide, the length of 
the first and the second sections of the straight waveguide, respectively. 

The properties of the coupler section can be described using a scattering matrix 
d b b
e c c

τ κ
κ τ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
S          (1) 

with τ and κ representing the through and cross port amplitude coupling constant of the 
directional coupler, respectively. The transfer function of the ring is 

( )/ expR c e iθ= = −           (2) 

with ( ) ( )res res round-trip res res 2i L i rθ β α β α π= − = − , where βres, αres, Lround-trip, and r represent the 
(linear) propagation constant, the attenuation constant, the effective round trip 
propagation length, and the effective radius of the ring resonator, respectively. Using 
eq. (1) and (2), we obtain ( ) ( ) ( )2 2 exp 1 expC d b i iτ κ τ θ τ θ⎡ ⎤= = + − − − −⎡ ⎤⎣ ⎦⎣ ⎦ . Hence, the 
transfer function of the TPRR circuit can be written as 

( )( )( ) ( ) ( ) ( ) ( )2 2
2 1 straight 1 2exp exp 1 expT f a f d d b b a S CS i L L i iβ τ κ τ θ τ θ⎡ ⎤⎡ ⎤= = = = − + + − − − −⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦ . 

By making use of the unitary property (SSH=I, where superscript H denotes conjugate 
transpose) of the scattering matrix as a consequence of power conservation of the 
lossless coupler, with purely imaginary κ and real τ, the transfer function of the 
structure can then be written as ( )straightexpT i L Cβ= − , where 

1 2L L L= +  and ( ) ( )exp 1 expC i iτ θ τ θ= − − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . 

Using the complex transmission coefficient approach [7], we can treat T as a 
complex quantity and rewrite it as [ ]expT T iφ= − , where the effective phase shift 

( ) ( )arctan Im / Re 2T T pφ π= − ±⎡ ⎤⎣ ⎦  can be used to calculate the group velocity defined as 

{ } ( ){ } 11
eff / / /gv Lβ ω φ ω

−−≡ ∂ ∂ = ∂ ∂ and other phase related parameters of the structure. In 
the φ  expression, p is an integer. The complex transmission spectrum T(λ) of the TPRR 
can then be calculated. For a known input pulse a(t), by the help of Fourier transform, 
we can then get the shape of the output pulse f(t) to study the pulse temporal behavior in 
the TPRR. 

3. Numerical observations and discussions 
For numerical observations, we take a TPRR circuit with neff,straight=neff,res=2 for the 
effective indices of the straight and ring waveguides, respectively; αres 1dB/cm, 
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0dB/cm, and -1dB/cm for lossy TPRR, lossless TPRR, and TPRR with gain, 
respectively; r= 300μm, and L=1 cm. 
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Fig. 2. (a). ng at resonant wavelength as function of the coupling constant for lossy TPRR, lossless 
TPRR, and TPRR with gain as specified in the text. (b). A zoomed plot of part of figure (a) showing the 
four possible regimes of vg. The plot for αres=1dB/cm coincides with αres=-1dB/cm. 

Fig. 2a shows the group index 
g g/n c v=  at the resonant wavelength as 

one varies the coupling constant. The 
figure clearly shows that negative vg can 
occur in both TPRR with loss and gain 
operating in the under coupling 
condition, but can not occur in lossless 
TPRRs. It also shows that for TPRR 
with loss or gain, in the over coupling 
condition, vg is always positive and slow 
i.e. 0<vg<c/(neff,straight+2πrneff,res/L) (see 
[8]). However, Fig. 2b shows that in the 
under coupling condition, there are 4 
possible operating regimes, i.e. 
c/neff,straight<vg<c, vg>c, vg<(-c), and 
0>vg>(-c) which we referred to as ‘slow’ 
light with positive vg, ‘fast’ light with 
positive vg, ‘fast’ light with negative vg, 
and ‘slow’ light with negative vg, 
respectively. Note that our definitions 
are slightly different than the widely accepted definitions [1]. Detail analysis on 
classification of such regimes is reported elsewhere [8]. 

Fig. 3 shows the temporal behavior when the lossy TPRR is excited with a 
Gaussian input pulse ( ) ( ) ( )2

d cexp / expa t t t i tω⎡ ⎤= −⎣ ⎦  with td=2ns, c c2 cω π λ=  where λc is the 

resonant wavelength of the ring nearest to 6328nm (λHeNe) at several sampled points 
representing the four operation regimes. Here, we have assumed that the straight 
waveguide is not dispersive. For ‘slow’-light regimes, the pulses experience 
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Fig. 3.  The power of output pulses of the lossy 
TPRR circuit operating in various regimes, exited by 
a Gaussian pulse. For reference, the input pulse, the 
output pulse if it would travel through vacuum and 
straight waveguide only of length L, are also plotted 
together with vertical dotted lines to indicate their 
peak positions. 
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considerable delay and insertion loss (as 
an indication of intensive light-matter 
interaction). For ‘slow’ negative vg, the 
pulse experiences negative delay, where 
the peak of the output pulse appears 
earlier than the peak of the input pulse. 
Since the leading edge of the strong 
input pulse already exists before the 
weak output pulse with negative vg, the 
energy of such output pulse indeed 
comes from the energy of the input pulse 
as has been discussed in the literature 
[1]. Besides, the leading edge of the 
output pulse if it would travel in vacuum 
also already exists before the output 
pulse with negative vg. Hence, the 
energy velocity is positive and not faster than c. Since the Gaussian pulse is analytic, it 
is infinitely differentiable. Through Taylor’s expansion, it is possible to exactly predict 
the pulse in the ‘future’ using the information available in the neighborhood of a point 
in the ‘past’. So, the information velocity is also positive, since the information is in fact 
already available in the ‘past’. Hence, there is no violation to the causality in such 
negative vg phenomenon. Fig. 4 shows that as the light is ‘slow’ (either with positive or 
negative vg), there is enhanced sensitivity of the phase shift to the ring effective index 
change ,/ eff resS nφ≡ ∂ ∂ , which suggests its potential for sensing applications. The S of the 
‘slow’ light in the figure corresponds to sensor effective interaction length of around 10 
cm. Since we can opt to work with continuous wave (which is analytic), we believe that 
the exploitation of ‘slow’ light with negative vg for sensing application is possible. The 
experimental verification of this application will be part of our future topics. 
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Fig. 4. The sensitivity of the phase shift to the 
changes in the effective index of the resonator. 
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