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Abstract. In this article we propose, for any ε > 0, a 2(1+ε)-approxima-
tion algorithm for a facility location problem with stochastic demands. At
open facilities, inventory is kept such that arriving requests find a zero
inventory with (at most) some pre-specified probability. The incurred
costs are the expected transportation costs from the demand points to
the facilities, the operating costs of the facilities and the investment in
inventory.
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1 Introduction

Facility location problems have been extensively studied in the OR literature. In
a facility location problem, we are given a set of demand points and a set of lo-
cation where facilities may be opened. The goal is to decide at which location to
open facilities and how to assign demand points to facilities such that the total
cost of opening facilities and of connecting demand points to facilities is mini-
mized. Variants of this problem can be formulated if one imposes requirements
on the set of open facilities or on the assignment of demand points to facilities
[1]. Examples of such requirements are a maximum number of facilities that may
be opened, a maximum demand that may be served by a facility, or a maximum
travel distance from a demand point to an open facility. The facility location
problem with its variants has proved to be a very useful tool in modeling many
network design or location problems, such as location of plants or warehouses
[1, 2] and placement of caches [3].

In this paper we study a variant of the facility location problem where at
demand points a stochastic number of requests for items is generated. At open
facilities, inventory is kept and, if possible, requests for items are fulfilled imme-
diately. However, since the number of requests is random, it may occur that there
is no inventory at the arrival of a request and the request has to be cancelled.
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An arbitrary request arriving at a facility, should only have a (pre-specified)
small probability of being lost. We are interested in the relationship between
the problem with stochastic demands and inventory and known facility location
problems, in particular from the perspective of approximation algorithms.

We will call a ρ-approximation algorithm a polynomial time algorithm that
always finds a feasible solution with objective function value within ρ times
the optimum. The value ρ is called the performance (approximation) guarantee
of the algorithm.

The majority of facility location problems for which approximation algo-
rithms are known, are deterministic. The simplest version of a facility location
problem, the metric uncapacitated facility location problem (UFLP), that is the
facility location problem with no restrictions on the facilities or the assignment of
demand points and with the transportation costs being a metric, is known to be
NP-hard. If the transportation costs are unrestricted, approximating the UFLP
is as hard as approximating set cover, and therefore cannot be done better than
O(log n) factor, unless NP ⊆ P̃. In this article, we assume, for all the facility
locations mentioned, that the transportation costs form a metric. The currently
known best performance guarantee for the UFLP is 1.52, due to Mahdian, Ye
and Zhang [4]. Guha and Khuller [5] and Sviridenko [6] have proved that a better
factor than 1.463 for the UFLP is not possible unless NP ⊆ P̃.

The problem in which each facility has a certain capacity, but more facilities
may be opened at a location if the demand exceeds the capacity of one facility, is
known as the soft capacitated facility location problem. The best approximation
algorithm for this problem has an approximation ratio of 2 and was proposed by
Mahdian, Ye and Zhang in [7]. In [8] the authors propose a 1.861-approximation
algorithm for the variant in which the cost of facilities are concave functions of
the number of demand points served. For the hard capacitated facility location
problem with splittable demands, where each facility has a certain capacity, only
one facility may be open at a location and a demand point may be served by
several locations, the best approximation algorithm is due to Zhang, Chen and
Ye [9], and achieves an approximation ratio between 3+2

√
2−ε and 3+2

√
2+ε,

for any given constant ε > 0.
Stochastic facility location problems (problems where the demand is stochas-

tic or/and the service offered by facilities is of stochastic nature) were mainly
treated in the OR literature [10, 11, 12, 13, 14]. Several heuristics have been pro-
posed to obtain solutions for these problems. To the best of our knowledge,
the first approximation algorithm for a stochastic facility location problem was
proposed by Ravi and Sinha in [15] and improved by Mahdian in [16]. The lat-
est algorithm is based on the primal-dual technique and has a 3-approximation
guarantee. Their approach is scenario-based, i.e. in each scenario all the data are
known, including the probability with which each scenario takes place.

The paper is organized as follows. In section 2 we describe the stochastic facil-
ity location problem in more detail and formulate it such that it can be reduced to
a soft capacitated facility location problem. Based on this reduction, we then pro-
pose in Section 3, a 2(1+ε)-approximation algorithm for our problem. We conclude
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the section by showing that the same ideas can be applied for designing approxima-
tion algorithms for a larger class of problems. Finally, we present some conclusions
and remarks on the stochastic facility location problem we have analyzed.

2 The Facility Location Problem with Stochastic
Demands

In this section we describe in more detail the stochastic facility location problem
in which we are interested. There is a set of demand points D, |D| = N at which
requests are generated, and a set of locations, F, |F | = K, where facilities may
be opened. We assume that the requests at a demand point j ∈ D are generated
according to a Poisson process, independent of the processes at other demand
points in D. At each open facility an inventory is kept such that an arriving
request finds a zero inventory (and is lost), with probability at most α. We then
say that (1 − α) is the fill rate of the system . The inventories at the open
facilities are restored only at fixed points in time and the period between two
such points is called a reorder period. The holding cost per unit of inventory at an
open facility i ∈ F is ci and the cost of keeping a facility open at location i ∈ F
during a reorder period is fi. The transportation cost per unit of demand from
facility i ∈ F to demand point j ∈ D is cij . We assume that the transportation
costs are proportional to the distances and form a metric.

The goal is to decide at which locations to open facilities, the level of inventory
to be installed at each open facility and how to assign demand points to facilities
such that the fill rate is at least 1 − α and the average total cost per reorder
period is minimized.

Let Xj denote the number of generated requests at demand point j during a
reorder period and let λj = E(Xj). Denote by Vi the inventory order up to level
at facility i ∈ F , i.e. the inventory level at the beginning of a reorder period. Let
yi, respectively xij , be 0 − 1 variables indicating if a facility at location i ∈ F
is open, respectively if demand point j ∈ D is assigned to a facility i ∈ F . The
facility location problem with stochastic demands given above, is fully described
by the following integer program:

min
∑

i∈F

(fi + ciVi)yi +
∑

j∈D

∑

i∈F

λjcijxij (1)

s.t. xij ≤ yi, i ∈ F, j ∈ D, (2)
∑

i∈F

xij = 1, j ∈ D, (3)

P
(

an arbitrary arriving requests at
facility i is lost

)
≤ α, i ∈ F , (4)

xij , yi ∈ {0, 1}, i ∈ F, j ∈ D. (5)
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The first term in the objective function includes the costs for keeping facilities
open and for the maximum inventory at the facilities during a reorder period,
while the second term is the expected transportation cost during such a period.
Constraints (2), (3) and (5) guarantee that each demand point is assigned to
exactly one open facility and constraints (4) guarantee that the fill rate attained
at each open location will be at least 1 − α.

Next we will give an equivalent formulation of constraints (4). Let X̃i be
the total demand assigned to location i. Clearly, X̃i =

∑
j∈D xijXj . Since the

requests generated at demand points during reorder periods are independent
Poisson distributed random variables, X̃i has a Poisson distribution with mean
E(X̃i) =

∑
j∈D xijλj . From the theory of regenerative processes (see e.g. [17]),

it follows that for location i, the following holds:

P
(

an arbitrary arriving requests at
facility i is lost

)
=

E((X̃i − Vi)+)
E(X̃i)

, (6)

where (a)+ = max(0, a). Condition (4) can be rewritten as

E((X̃i − Vi)+) ≤ αE(X̃i). (7)

For a Poisson distributed random variable Y with E(Y ) = λ, define the inventory
Vα(λ) by

Vα(λ) = min{n|E((Y − n)+) ≤ αλ}. (8)

Using (7) and (8), our problem can be reformulated as

(P)

min
∑

i∈F

(fi + ciVα(
∑

i∈F

xijλj))yi +
∑

j∈D

∑

i∈F

λjcijxij

s.t. xij ≤ yi, i ∈ F, j ∈ D,
∑

i∈F

xij = 1, j ∈ D,

xij , yi ∈ {0, 1}, i ∈ F, j ∈ D.

Note that constraints (4) have moved into the objective function. This will
enable us to further reduce the problem to a soft capacitated facility location
problem, for which approximation algorithms are known (see e.g. [7]). In the
remainder of the paper we will present this reduction in detail.

3 A 2(1+ ε)-Approximation Algorithm for the Stochastic
Facility Location Problem

For a facility location problem (P ), an instance I and a feasible solution S we
denote by costF,I(P )(S) the cost of opening facilities and by costT,I(P )(S) the
transportation cost incurred by S. For the sake of simplicity, we will omit to
mention the instance.

An Approximation Algorithm for a Facility Location Problem
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Definition 1. We call a polynomial time reduction R from facility location
problem P1 to P2 a (σF , σT )-reduction if R maps an instance I of P1 to an
instance R(I) of P2 and it has the following properties:

a) For any feasible solution S1 for the instance I of P1 there is a correspond-
ing solution S2 for the instance I of P2 with

costF,P2(S2) ≤ σfcostF,P1(S1),

and
costT,P2(S2) ≤ σccostT,P1(S1).

b) For any feasible solution S2 for the instance R(I) of P2, there is a feasible
solution S1 for the instance I of P1 with

costF,P1(S1) + costT,P1(S1) ≤ costF,P2(S2) + costT,P2(S2).

Definition 2. An algorithm is called an (α, β)-approximation algorithm for a
facility location problem (P ), if for any instance I of (P ), and for any solution
S for I the cost of the solution found by the algorithm is at most αcostF,P (S) +
βcostT,P (S).

Remark 1. Note that combining a (σF , σT )-reduction from P1 to P2 and an
(α, β)-approximation algorithm for P2 gives an (ασF , βσT )-approximation algo-
rithm for P1. Moreover, the approximation guarantee of the algorithm for P1 is
max{ασF , βσT }.

The construction of a 2(1 + ε)-approximation algorithm for (P), consists of
several steps. First we will study the inventory function Vα(λ) given by (8).
Based on it’s properties, we propose a (2, 1)-reduction of (P) to a soft capaci-
tated facility location problem, named (SP2). Finally, we describe a refined soft
capacitated problem, (SP1+ε) to which (P) can be (1 + ε, 1)-reduced and show
that this gives 2(1 + ε)-approximation algorithm for (P).

Lemma 1. The function Vα(λ) satisfies

Vα(λ1 + λ2) ≤ Vα(λ1) + Vα(λ2).

Proof. Suppose that two independent Poisson streams with rate λ1, respectively
λ2, arrive at a location i and that the inventory level at location i is Vα(λ1) +
Vα(λ2). Let Y1 and Y2 be the number of arrivals in the first, respectively in the
second stream. Since

(Y1 + Y2 − (Vα(λ1) + Vα(λ2)))+ ≤ (Y1 − Vα(λ1))+ + (Y2 − Vα(λ2))+,
it is readily seen that

E(Y1 + Y2 − (Vα(λ1) + Vα(λ2)))+

≤ E(Y1 − Vα(λ1))+ + E(Y2 − Vα(λ2))+ ≤ α(λ1 + λ2).
Hence, Vα(λ1 + λ2) ≤ Vα(λ1) + Vα(λ2). ��
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Remark 2. Note that Vα(λ) is a step function, thus not concave. Therefore we
cannot directly use the procedure proposed in Mahdian and Pal [18], for solving
the facility location problem with concave facility cost functions. Moreover, not
even the length of the steps is increasing as function of the height, where the
length of a step at level n is defined as sup{λ|Vα(λ) = n} − inf{λ|Vα(λ) = n}.
For example, numerical experiments show that, when α = 0.1, the length of the
steps is increasing up to level 40 and decreasing above this level.

Next we present a reduction of (P) to a soft capacitated facility location
problem, which we denote by (SP2). The demand points, their requests and
facility locations are the same as in problem (P). Let M = �log2(Vα(

∑
j∈D λj)�

and let L = {1, · · · ,M}. We define M types of facilities with capacities u� =
max{λ|Vα(λ) ≤ 2�}, respectively. A facility of type l at location i is denoted
by (i, l) and has corresponding cost fil = fi + ci2�. At each location i ∈ F , M
facilities may be opened.

Let the 0-1 variables yil, xilj , indicate whether a facility of type l is opened
at location i, respectively whether demand point j is assigned to facility (i, l).
Then, (SP2) can be formulated as the integer program:

(SP2)

min
∑

j∈D

∑

i∈F

∑

�∈L

λjcijxi�j +
∑

i∈F

∑

�∈L

fi�yi�

s.t.
∑

j∈D

λjxi�j ≤ u�yi�, i ∈ F, � ∈ L, (9)

∑

i∈F

∑

�∈L

xi�j = 1, j ∈ D, (10)

xi�j , yi� ∈ {0, 1} , i ∈ F, j ∈ D, � ∈ L. (11)

Constraints (9), (10) and (11) insure that each demand point is assigned to one
open facility and that no more than demand u� is assigned to a facility of type �.

Remark 3. Note that although formulated as a hard capacitated facility location
problem (yil ∈ {0, 1}), problem (SP2) is a soft capacitated problem. Suppose
that we relax the y variables to be integer. Consider first a k < M . The optimal
solution of the relaxed version will not choose to open two facilities of type k
at a location, since opening a facility of type k + 1 is cheaper and has, at least,
the same capacity as two facilities of type k. Since one facility of type M can
handle all the demand, there will be always at most one facility of type M open
in the optimal solution of the relaxed version of (SP2). Thus, (SP2) is a soft
capacitated facility location problem.

In the following lemma we describe a (2, 1)-reduction of (P) to (SP2).

Lemma 2.
(i) For each feasible solution (x̃, ỹ) of (P) with facility cost costF,P(x̃, ỹ) and
transportation cost costT,P(x̃, ỹ) there exists a feasible solution (x, y) of (SP2)
with costF,SP2

(x, y) ≤ 2costF,P(x̃, ỹ) and costT,SP2
(x, y) = costT,P(x̃, ỹ).

An Approximation Algorithm for a Facility Location Problem
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(ii) For each feasible solution (x, y) of (SP2), there exists a feasible solution
(x̃, ỹ) of (P) of lower cost.
(iii) There exists a (2, 1)-reduction of (P) to (SP2) .

Proof. (i) Consider a solution (x̃, ỹ) of (P). For i ∈ F with ỹi = 1 and � ∈ L
define �i = min{n|∑j∈D x̃ijλj ≤ un}, set yi� = 1 for � = �i, set yi� = 0 otherwise
and set xi�j = x̃ijyi� for j ∈ D. For each i ∈ F with ỹi = 0, set xi�j = yi� = 0 for
j ∈ D and � ∈ {1, · · · ,M} and define �i = 1. It can readily be seen that (x, y) is
a feasible solution of (SP2) with associated costs

costT,SP2
(x, y) =

∑

i∈F

∑

j∈D

∑

�∈L

λjcijxi�j =
∑

i∈F

∑

j∈D

λjcij x̃ij

= costT,P(x̃, ỹ)

and

costF,SP2
(x, y) =

∑

i∈F

∑

�∈L

fi�yi� =
∑

i∈F

(fi + 2�i)yi�i

≤ 2costF,P(x̃, ỹ),

where the inequality follows from the definitions of �i and un.
(ii) For each feasible solution (x, y) of (SP2), define the vector (x̃, ỹ) by x̃i,j =

max�∈{1,···,M}{xi�j} and ỹi = max�∈{1,···,M}{yi�}. Clearly, (x̃, ỹ) is a feasible so-
lution for (P). Moreover, from Lemma 1 follows that Vα(

∑
j∈D x̃ijλj) ≤

∑
� v�yi�

and so (x̃, ỹ) has a lower cost than the one incurred by (x, y) for (SP2).
(iii) Follows from (i) and (ii) of this lemma. ��
In the following, we prove that one can obtain a (1 + ε, 1)-reduction between

(P) and a slightly modified version of (SP2) by the same reasoning as in Lemma
2. We define this modified version (SP1+ε) as follows.

Define for ε > 0 the integer sequence ṽ0,0 = 0; vm0 = 	(1+ε)(1+vm−1,0)
 and
vmk = 2kvm0 for m = 1, 2, · · · and k = 0, 1, · · ·. Next, define the integer sequence
v0 = 0 and v� = min{ṽmk > v�−1|m = 1, 2, · · · and k = 0, 1, · · ·} for � = 1, 2, · · ·
and define M = min{�|v� ≥ Vα(

∑
j∈D λj)}. Since ṽm0 ≥ (1+ ε)vm−1,0, it is easy

to find that, for ε ∈ (0, 1),

M ≤ �log(1+ε)(Vα(
∑

j∈D

λj)��log2(Vα(
∑

j∈D

λj)� ≤ 4
ε
�log2(Vα(

∑

j∈D

λj)�2.

Furthermore, from the construction of the sequence v�, we see that (1 + v�) ≤
v�+1 ≤ (1+ε)(1+v�). Consider a facility location problem with the same demand
points, requests and facility locations as in problem (P). At each location i ∈ F ,
M facilities may be opened, (i, 1), ...(i,M), of costs fi + civ� and capacities
u� = max{λ|Vα(λ) ≤ v�}.

Let the 0-1 variables yil, xilj , indicate whether a facility of type l is opened
at location i, respectively whether demand point j is assigned to facility (i, l).
Then, (SP1+ε) can be formulated as an integer program similar to (SP2).
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As in Remark 3, we note that although formulated as a hard capacitated
facility location problem, (SP1+ε) is in fact a soft capacitated facility location
problem. In order to show this, we prove that, even if we allow more facilities
of the same type to be opened at a location, at most one will be opened in the
optimal solution. Assume that in the optimal solution, at least one facility of
type k at location i is opened. If the cost of facility (i, k) exceeds fi + ciVα(λ)/2,
then opening facility (i,M) (which can handle all demands) is cheaper than
opening two facilities (i, k). If the costs of facility (i, k) equals fi + civk with
vk ≤ Vα(λ)/2, we see, by the definition of the sequence v�, that there is also a
facility (i, k′) with cost fi +2civk. By Lemma 1, the capacity of a type k′ facility
is at least twice the capacity of a type k facility. Hence, in the optimal solution
of the relaxed problem of (SP1+ε), at every location at most one facility of type
k is opened. Thus, (SP1+ε) is a soft capacitated facility location problem.

Lemma 3. For any ε > 0, the problem (P) can be (1+ε, 1)-reduced to (SP1+ε).

Proof. We follow the proof of Lemma 2. Consider a feasible solution (x̃, ỹ) of (P)
and construct a feasible solution (x, y) of (SP1+ε) as follows. Open facility (i, �)
at location i only if

∑
j∈D x̃ij = 1 and � = min{n|∑j∈D x̃ijλj ≤ un}. Since the

inventory levels are discrete and
∑

j∈D x̃ijλj > u�−1, the inventory at location i
satisfies Vα(

∑
j∈D xijλj) ≥ 1 + v�−1 and therefore the cost of opening facilities

in (SP1+ε) is at most (1 + ε) times the facility costs in (P).
Now consider a solution (x, y) of (SP1+ε) and construct a corresponding

solution (x̃, ỹ) of (P) by x̃i,j = max�∈{1,···,M}{xi�j} and ỹi = max�∈{1,···,M}{yi�}.
As in Lemma 2, one can show that (x̃, ỹ) is a feasible solution with the same
transportation cost as the one incurred by (x, y) and with less opening facility
cost than the one incurred by (x, y). ��

Theorem 1. There is a 2(1+ε)-approximation algorithm for the facility location
problem with stochastic demands (P).

Proof. Problem (SP1+ε) is a soft capacitated facility location problem with
general demands. For the soft capacitated facility location problem with unit
demands, a (2,2)-approximation algorithm was proposed in [7]. It can easily be
shown that their analysis also applies for general demands, thus implying a (2,2)-
approximation algorithm for (SP1+ε). The existence of a (2,2)-approximation
algorithm for (SP1+ε), implies, by Lemma 3 and Remark 1, the existence of a
2(1+ε)-approximation algorithm for the stochastic facility location problem (P).

��
Generalization. At the basis of our algorithm lies the property that, for two
demand points j and j′, with demand λj , respectively λj′ , the inventory which
has to be installed at a facility satisfies Vα(λj + λj′) ≤ Vα(λj) + Vα(λj′), i.e.,
it is more profitable to look at the joint demand than to treat the demands
separately. It is easy to see that the same analysis holds for the metric UFLP
with the cost of opening facilities depending on the amount served by a facility
and satisfying fi(λj + λj′) ≤ fi(λj) + fi(λj′), for each i ∈ F and j, j′ ∈ D.
Clearly, concave facility costs have this property.

An Approximation Algorithm for a Facility Location Problem
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Remark 4. The same technique can also be used for the following version of
the facility location problem with stochastic demands: at facilities an arbitrary
number of servers can be placed, which all work at equal speed. At each facility,
there is an upperbound on the expected waiting time of a customer. The incurred
costs are the transportation costs and the facility costs; the cost of a facility is
the sum of the opening cost and the cost for installing servers, which is linear in
the number of installed servers.

We model a facility as an M/M/k queue, that is a queue with k servers and
exponential interarrival and service times. Without loss of generality, we assume
that the expected service time is 1. Let WT (Mλ/M/k) denote the expected wait-
ing time at such a queue with arrival rate λ. At an open facility i with arrival rate
Λi and ki servers, the constraint on the waiting time then is WT (MΛi

/M/ki) ≤ τ
for some pre-specified τ . An explicit expression for this expectation can be found
in e.g. [19], page 71 Define Nτ (λ) = min{k|WT (Mλ/M/k) ≤ τ). It can be shown
that Nτ (λ1 + λ2) ≤ Nτ (λ1) + Nτ (λ2). Thus, applying a similar reduction as the
one described in this section, one obtains a 2(1+ ε)-approximation algorithm for
this problem as well.

4 Conclusions

In this paper we have introduced a facility location problem with inventory
and stochastic demands. We proposed a 2(1 + ε)-approximation algorithm for
this model by giving both a (1 + ε, 1)-reduction to a soft capacitated facility
location problem with general demands and a (2, 2)-approximating algorithm
for this soft capacitated facility location problem. The same analysis is applied
for approximating more general problems.
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