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Abstract
With Independent Component Analysis (ICA) the objective is to separate multi-
dimensional data into independent components. A well known problem in ICA
is that since both the independent components and the separation matrix have
to be estimated, neither the ordering nor the amplitudes of the components can
be determined.

One suggested method for solving these ambiguities in ICA is to measure the
data power of a component, which indicates the amount of input data variance
explained by an independent component. This method resembles the eigenvalue
ordering of principle components. We will demonstrate theoretically and with
experiments that strong sources can be estimated with higher accuracy than
weak components.

Based on the selection by data power, a method is developed for estimating
independent components in high dimensional spaces. A test with synthetic data
shows that the new algorithm can provide higher accuracy than the usual PCA
dimension reduction.

1 Introduction

Independent component analysis (ICA) is a method to estimate the independent com-
ponents or sources from which the data is generated. ICA assumes the data is generated
by making linear combinations of a number of independent sources, denoted by s. This
can be described by:

x = A-s (1)

where x denotes the data or the vector of mixtures and A denotes a mixing matrix.
The objective of an ICA algorithm is to reverse the linear mixture by estimating a
separation matrix, W, which separates estimates of the independent sources, denoted
y, from the mixture.

y = W-x (2)



Comon [5] shows that the ICA estimate has some ambiguities: any multiplication of the
separation matrix with a permutation matrix and a scaling matrix results in another
valid ICA estimation. Therefore the source estimates are usually supposed to have unit
variance.

The estimation of the separation matrix can be split in two stages. In the first stage
the data is whitened. This is often done by Principle Component Analysis (PCA). Since
the covariance matrix of the whitened input data and the source estimates are identity
matrices, the remaining mixing matrix after whitening has to be an orthogonal matrix
[6]. Because of the ambiguities of ICA only a rotation matrix has to be estimated. The
estimation of this rotation matrix forms the second stage. Several algorithms have been
proposed to estimate this rotation matrix. The general approach is to use a contrast
function which achieves an extremum when the whitened data is rotated such that the
marginals are independent [4].

In order to solve the ambiguity of the order of the estimated sources, it has been
suggested to consider the contrast function, used in ICA estimation [8], for example
kurtosis. The argument is that sources which have low contrast, are Gaussian and
are thus hard to separated. However, depending on the contrast function used, source
distributions get different contrast levels assigned. For example, there are distributions
which have a zero kurtosis while being far from Gaussian.

Comon [5] suggested to remove the ambiguity of ICA by ordering the eigenvectors
matrix columns, the eigenvalue diagonal and the ICA rotation matrix rows such that
the eigenvalues in the eigenvalue matrix are in descending order. The only reason
for doing so is to make the components appear in the same order every estimation.
In Bayesian ICA, it has also been suggested to use the values of the elements of the
estimated mixing matrix to determine whether an estimated source is a real source [2].

In the remainder of the article we will focus on solving the source ordering problem
by data power. We will demonstrate that strong sources can be estimated with higher
accuracy. Based on this ordering an algorithm will be developed which can provide a
solution to overtraining behaviour in high dimensional ICA problems.

1.1 Data power definition

In ICA estimation without Bayesian inference, one possibility is to consider the data
power of the components. The variance of the input data can be described by individual
contributions of the independent components:
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where x is the input data, s represents the independent sources and A is the mixing
matrix. In equation 3 it can be seen that each component makes an independent
contribution to the total variation of the input data. Sources which provide large
contributions are considered strong sources and those which provide small contributions
are considered weak sources.

There are a few reasons for selecting the components with the highest data power.
The procedure is related to the selection based on eigenvalues in PCA, and is actually
the same in certain mixtures. It therefore shares some of the arguments for using
eigenvalue selection. For example, data power selection provides the best description
of the data in independent components in the least squared sense.



2 Analysis on relation estimation accuracy and data
power

Another reason to select only the strong sources is that they are more robust to errors
in the estimation. The weak sources are very sensitive to errors in the eigenvectors
estimation. Recall that a common approach to ICA estimation is to first whiten the
data after which an ICA rotation matrix is estimated. The separation matrix can thus
be decomposed into:

W=A7.D:z.E” (4)

where E and D are the eigenvector matrix and the eigenvalue matrix respectively,
which can be found by performing PCA on the input data. A’ denotes the ICA
rotation matrix.

Data power differences between independent components can only occur if the ICA
rotation projects different sources on different diagonal elements of the scaling matrix.
This causes the sources to be scaled with different factors. Nadal et al.[9] considered the
situation in which the mixing matrix was nearly singular and also noise was present.
They use the mutual information between the inputs and the outputs of a neural
network to demonstrate that weak sources disturb the estimation of strong sources.
We will focus more on the influence of the whitening stage in this error. We will also
assume the errors are introduced by limited sample behaviour, instead of noise.

While in [9] only large differences in strength are considered, it still makes sense to
select sources with large data power when the differences are small as will be shown
next. When the number of data samples is sufficiently large, the matrices in equation
4 can be estimated accurately, but when only a limited number of samples is available,
errors are introduced. Small errors in E have a different effect on strong sources than
on weak sources. Consider the 2D mixing problem where a strong and a weak source
are mixed with a scaling matrix:
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where > 1. An error in the eigenvector matrix can be represented as an additional
rotation of the input data by rotation matrix R before the separation is performed.
Therefore the "whitened” data, denoted by z, is no longer white:
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Note that crosstalk of source 2 on the estimate of source 1 differs a factor a? from
the crosstalk of source 1 on the estimate of source 2. The difference between the power
caused by the crosstalk is a factor a*. After whitening an ICA rotation matrix still
has to be estimated. Since the data is no longer white, it depends on the specific ICA
algorithm chosen what happens with the ICA rotation matrix. Cardoso [3] reported
the effects of non white data on some objective functions. He reported that some
objective functions acquire an additional correlation term. These objective functions
thus attempt to find a rotation which partly minimizes the correlation between the two
estimates even though the data is not white.

Besides the limited sample behaviour, another possibility for an incorrect estimate
of the eigenvalue rotation matrix is when the estimation is done on a subset of the data.



This is for instance the case when ICA is used to determine features for recognition
purposes. ICA is then performed only on training data, which may not accurately
represent the entire data set. The ICA rotation can not react on the error in the
eigenvector estimate in such situations.

The estimation of sources can also be corrupted by the presence of noise [9].
Learned-Miller [7] already indicated that Gaussian noise filters the probability den-
sity functions of the independent components, so they become more Gaussian. Weak
sources are more affected than strong sources when equal powered noise is added to
every dimension of the observation data, so the estimation of weak sources gets more
difficult in the presence of noise and leads to more errors.

3 Experiments with data power

In this section several experiments with synthetic data are described to verify the theory
of section 2. To verify the crosstalk between strong and weak sources, an experiment
has been performed in which two sources are mixed with a diagonal mixing matrix
with a diagonal [1,0.01]. This mixing matrix causes source 1 and 2 to be a strong
and a weak source respectively. Three source configurations are used. In experiment 1
both sources are sub Gaussian. In experiment 2 source 1 is super Gaussian and source
2 is sub Gaussian. In experiment 3 both sources are super Gaussian. Sources are sub
(super) Gaussian when the kurtosis of the source is negative (positive) [6]. For all tests
all sources consist of 100 samples.

The separation of sources is performed by only performing the whitening step,
which should be sufficient to separate the sources. According to equation 7 the power
of the crosstalk in the two estimates should differ by a factor 10%. The experiments are
repeated a few hundred times. Each time the crosstalk of the sources in the estimates is
measured. Histograms of these measurements are plotted in figure 1(a). The horizontal
axis in each plot displays the measured crosstalk power. The vertical axis indicates the
number of experiments which had an amount of crosstalk as indicated on the horizontal
axis. The two plots in each column belong to the same source configuration. The three
plots in each row belong to the same source crosstalk in estimate measurement (for
example row 1 indicates the crosstalk of source 2 on the estimate of source 1 for the
different source configurations). The shapes are the same for every source configuration,

but the crosstalk differs indeed a factor 10® in the two estimates.

After whitening the strong components have less distortion than the weak compo-
nents. Next ICA estimates the ICA rotation matrix. In the next experiment the same
setup is used as in the previous experiment, but now the ICA rotation is also estimated.
This is done using the fastICA algorithm with a tanh nonlinearity function.

In figure 1(b) the histograms of the crosstalk power are given. The ICA rotation
matrix in the generating process is an identity matrix, so an accurate estimate of the ro-
tation matrix would result in similar results as in experiment 1. However, the crosstalk
between both sources is equal in strength. Apparently ICA reduces the accuracy of the
strong source estimate in order to increase the accuracy of the weak source estimate.
Nadal et al.[9] also found that the presence of small sources disturbed the estimation
of the strong sources when using the infomax criterion. However they assume a clear
distinction between weak and strong sources. Since the small components are largely
present in the small eigenvalues, this result suggests to remove the smallest principle
components before performing ICA.

The second possibility of an error in the estimation of the eigenvectors suggested
was in a training-test situation. In figure 1(c) the results are shown of the same test as
in the previous experiment, but now an addition rotation of 0.3 degrees is introduced
to the mixing matrix after separation estimation. Clearly a bias is introduced in the
estimate of the components. The strong component causes on average 30 percent of
the power of the weak source estimate, while the weak source is hardly present in the



strong source estimate, although the influence difference is not a factor 10® as in the
first situation.
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Figure 1: Histograms of the crosstalk power between two source estimates. Source
1 and 2 have mixing factors 1 and 0.01. Three source configurations are used: both
sources sub Gaussian, source 1 super Gaussian and source 2 sub Gaussian and both
sources super Gaussian.



4 Application in blocked ICA (bIICA)

ICA is known for its overtraining behaviour in high dimensional data with limited
sample size. Sédreld and Vigédrio [10] provided some analysis on the subject, especially
when kurtosis is used as contrast function. A solution to the problem is to reduce the
dimension of the data before ICA is performed. Several authors suggested the use of
PCA for this reason [10], [6] chapter 13. Source selection is performed after ICA, so it
cannot prevent overtraining in the proposed implementation of section 2.

When the number of sources present in a group of dimensions of the data is limited,
another possibility exists. Instead of considering all data dimensions at once, ICA can
be performed on separate dimension clusters of the data. Consider the problem of
performing ICA on image data, in which each image is an observation. Every pixel is
considered one dimension, so the number of dimensions is high, while the number of
images is in general low. Clusters of dimensions can be formed by cutting the images
into blocks of equal size. On each block ICA can be performed. Using the data power
criterion, the strongest sources of each block are selected and the rest is discarded.
The remaining sources of neighbouring blocks are placed into new blocks on which the
same operations are performed. This process is repeated until only one block remains.
Attias [1] described such an approach for Bayesian ICA.

The separation process defines one separation matrix. However, an estimation
of the mixing matrix is not defined. This also leaves the data power undefined. The
mixing matrix elements can be estimated by the cross correlation between the estimated
sources and the data components. This definition allows the use of overlapping blocks,
for example block two partly contains dimensions already used in block one. This may
prevent border effects: when a strong source is present on the border of block one and
two it might be rejected in both blocks since its power is only half in both blocks, while
it might be retained if it is in the center of one of the blocks.

5 Experiments with blICA

To demonstrate the usefulness of the blICA algorithm, the following experiment has
been performed. Synthetic images are created of size 16x16 pixels from 256 white super
Gaussian sources, each consisting of 10,000 samples. A mixing matrix is constructed
with its elements Gaussian distributed. Next masks are applied to the columns of the
mixing matrix. The masks have a 2D gaussian shape with uniform random means. 30
strong masks are generated which have both a larger amplitude and a larger spread
value. To get an overlap of strong sources in principle components, each strong mask
gets another strong mask added. An example of the resulting strong masks is given
in figure 2(a). The resulting mixing matrix is used to mix the 256 sources into the
synthetic images.

From the mixture data 16 sources are estimated using both the PCA ICA method
and the bIICA method. Of the estimated components the amount of crosstalk power is
measured. The result is given in figure 2(b). bIICA estimated all the components PCA
also estimated with higher accuracy, and all sources have about the same amount of
crosstalk. The PCA method on the other hand has a few sources which consist mostly
of crosstalk. The result gets even worse for PCA when the number of dimensions is
reduced to 4. It is very difficult to identify a single source which is estimated, most
estimates are best described as a linear combination of sources. The result for bIICA
is the crosstalk of the first 4 elements in figure 2(b). Thus if the estimated number of
dimensions is incorrect, bIICA performs better in such mixture configurations.
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Figure 2: blICA versus ICA with PCA results.

6 Conclusion

We proposed to solve the ambiguity of the ordering of ICA components based on
the data power of a component. Although the method has been suggested before,
we provided some new arguments in favour of the method: weaker sources are more
sensitive to variations in the estimate of the eigenvectors in the whitening stage. In
regular ICA, this is partly compensated by ICA rotation, which introduces errors on the
estimate of strong sources, but in training-test situations weak sources get considerable
more crosstalk from strong sources than visa versa. In Nadal et al. [9] also the situation
with strong and weak sources is considered, but only with large differences in strength
and presence of noise. The training-test situation is not considered at all.

In Nadal et al. [9] it was suggested to remove the small principle components, since
they would contain the small sources. However, as they noted, when two strong sources
could only be separated using a smaller principle component, the dimension reduction
could lead to separation problems. Making a selection of the strongest sources after
ICA prevents this problem.

A part of the problem of ICA estimation is that after the whitening, ICA rotation
transfers part of the error in the weak estimate to the strong estimate. It might be a
good idea to modify the symmetric update, like in FastICA [6], with a strength term,
so the strong estimates are less effected by the errors in the weak estimates.

Using the component selection criterion, the bIICA algorithm has been developed,
which reduces the overtraining behaviour of ICA in the case that the sources are only
locally present. In such a situation the experiment showed that bIICA can estimate
the sources with higher accuracy than the general PCA dimension reduction method.
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