
A Protocol Compiler for Secure Sessions in ML

Ricardo Corin1;2 and Pierre-Malo Deniélou1

1 MSR-INRIA Joint Centre
2 University of Twente

Abstract. Distributed applications can be structured using sessions that specify

�ows of messages between roles. We design a small speci�c language to declare

sessions. We then build a compiler, called s2ml, that transforms these declara-

tions down to ML modules securely implementing the sessions. Every run of a

well-typed program executing a session through its generated module is guaran-

teed to follow the session speci�cation, despite any low-level attempt by coali-

tions of remote peers to deviate from their roles. We detail the inner workings

of our compiler, along with our design choices, and illustrate the usage of s2ml

with two examples: a simple remote procedure call session, and a complex ses-

sion for a conference management system.

1 Sessions for distributed programming

Programming networked, independent systems is complex: when systems communicate

through an untrusted network, and do not trust each other, enforcing security properties

is hard. As a �rst step to simplify this task, programming languages and system libraries

offer abstractions for common communication patterns (such as private channels or

RPCs). Beyond simple abstractions for communications, distributed applications can

often be structured as parties that exchange messages according to some �xed, pre-

arranged patterns, called sessions (also named contracts, or work�ows, or protocols).

Sessions simplify distributed programming by specifying the behaviour of each network

entity, or role: the parties can then resolve most of the programming complexity upfront.

Language-based support for sessions is the subject of active research [7,8,9,14,18,31,32].

Several of these works focus on developing type systems which statically ensure com-

pliance to session speci�cations. There, type safety implies that user code that instan-

tiates a session role always behaves as prescribed in the session. Thus, assuming that

every distributed program participating in a session is well-typed, any run of the session

follows its speci�cation. There, being well-typed implies that every session participant

is benign, and therefore complies with the session speci�cation. Moreover, the network

is also assumed to behave as expected, (e.g., delivering messages correctly).

However, in an adversarial setting, remote parties may not be trusted to play their

role. Moreover, they may collude to attack compliant participants, and may also control

the network, being able to eavesdrop, intercept, and modify en route messages. Hence,

defensive implementations also have to monitor one another, in order to prevent any

confusion between parallel sessions, to ensure authentication, correlation, and causal

dependencies between messages, and to detect any deviation from the assigned roles of



a session. Left to the programmer, this task involves delicate low-level coding below

session abstractions, which defeats their purpose.

In order to keep sessions being useful and safe abstractions, we consider their se-

cure implementation in terms of cryptographic communication protocols, by develop-

ing s2ml. To our knowledge, our compiler s2ml is the �rst to systematically com-

pile session speci�cations to tailored cryptographic protocols, providing strong security

guarantees beyond simple functional properties.

In ongoing work [10], we explore language-based support for sessions. We design

a small language for specifying sessions, and identify a secure implementability con-

dition. We present a formal language extending ML [24,25] with distributed communi-

cation and sessions, designed in a way so that type safety yields functional guarantees:

any sent message is expected by its receiver, with matching payload types. Then, we

develop the s2ml compiler that translates sessions to cryptographic communication

protocols, and formally show, as main result, that programs are shielded from any low-

level attempt by coalitions of remote peers to deviate from their roles. In that work,

we are most concerned about establishing the correctness of the code generation, and

illustrate the approach with a small, simple toy example.

In this paper, we turn to present the details of our implementation. We focus on

presenting our compiler s2ml, along with its usage and inner workings. Furthermore,

we investigate the applicability and scalability of our approach to more realistic and

complex settings through the study of a RPC session and a conference management

system (CMS) session example.

Architecture. The basis of our work is a language for sessions with a CCS-like

syntax to describe the different roles in a session. The s2ml compiler reads the session

declarations, and works as follows: First, it checks correctness and security conditions

on every session declaration, using an internal graph-based, global representation of

the message �ow. Then, it generates an ML module (along with its interface) for each

speci�ed session. The interface provides the programmer with the functions and types

needed to execute every session role.

We rely on the ML language for several reasons. First, we take advantage of ML's

typechecking to ensure functional correctness (i.e., that user code follows the session

as prescribed), as opposed to having a dedicated type system as in other session types

approaches. Second, our generated session role functions have (usually mutually re-

cursive) types which are driven by user code using a continuation passing style (CPS)

which allows for compact session programming. Finally, our generated types and cryp-

tographic protocols heavily use algebraic types and pattern matching to specify and

check the different allowed session paths. Our generated code uses the Ocaml syntax3

and can be run in both Ocaml and F# [29].

Programs using the generated session interfaces can be linked against networking

and cryptographic libraries, obtaining executable code. We provide three alternative

implementations for these libraries: two concrete implementations using either Ocam-

l/OpenSSL and F#/Microsoft .NET produce executable code supporting distributed

runs; a third, symbolic library implements cryptography using algebraic datatypes and

communication via a Pi calculus library, useful for correctness checks and debugging.

3 Although we use Ocaml syntax, our work can easily be adapted to other ML dialects.
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Related Work. Session types have been explored �rst for process calculi [19,21,32],

to describe interaction on single channels. Behavioral types [9,22] support more expres-

sive sessions, typed as CCS processes possibly involving multiple channels. Another

type system [6] also combines session types and correspondence assertions [20]. Recent

works consider applications of session types to concrete settings such as CORBA [30], a

multi-threaded functional language [31], and a distributed object-oriented language [14].

In particular, the Singularity OS [18] explores the usage of typed contracts in operating

system design and implementation. In all these works, type systems are used to ensure

session compliance within fully trusted systems, excluding the presence of an (active,

untyped) attacker. Sessions for Web Services are considered for the WSDL and WS-

SecureConversation speci�cation languages (see e.g. [3,8]); Bhargavan et al. [3] verify

security guarantees for session establishment and for sequences of SOAP requests and

responses. In recent, independent work, Carbone et al. [7] also present a language for

describing Web interactions from a global viewpoint and describe their end-point pro-

jection to local role descriptions. Their approach is similar to our treatment of session

graphs and roles in Section 2; however, their descriptions are executable programs, not

types. More generally, distributed languages such as Acute and HashCaml [27,13,5]

also rely on types to provide general functional guarantees for networked programs, in

particular type-safe marshalling and dynamic rebinding to local resources.

Cryptographic communications protocols have been thoroughly studied, so we fo-

cus on related work on their use for securing implementations of programming-language

abstractions. They can provide secure implementations for distributed languages with

private communication channels [1,2]. They can also help support the distributed imple-

mentation of sequential languages such as JIF/Split [33], while preserving high-level,

typed-based integrity and secrecy guarantees. In a similar vein, the Fairplay [23] system

compiles high-level procedural descriptions toward secure two-party computations. In

other work, type-based secrecy and integrity guarantees are enforced by a combination

of static typechecking and compilation to low-level cryptographic operations [17]. Pro-

tocol synthesis and transformation have been explored in other settings: for instance,

the Automatic Protocol Generation (APG) tool [26] generates authentication protocols

then veri�ed using Athena [28] and, more recently, Cortier et al. [12] verify the correct-

ness of a generic transformation to protect a protocol from active attacks (but not from

compromised participants).

Contents. Section 2 presents the session language that serves as input to s2ml, and

introduces the examples. Section 3 illustrates the usage of sessions used by program-

mers to develop secure distributed applications, by coding the roles the RPC and CMS

examples. Section 4 presents our security property, called session integrity, along with

several threats our implementation needs to guard against. Section 5 focuses on the

compiler s2ml: �rst it describes its inner workings, then it illustrates generated out-

put for examples, and �nally, it presents some performance measurements. Section 6

concludes. The project website [11] contains additional information, including a fully

functional release of s2mlincluding the code of all our examples.
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2 Specifying Sessions

A session is a static description of the valid message �ows between a �xed set of roles.

Every message is of the form f(v), where f is the message descriptor, or label, and v

is the payload. The label indicates the intent of the message and serves to disambiguate

between messages within a session. Labels are also used as ML type constructors (and

are thus expected to start with a capital letter).

We denote the roles of a session by R = fr0; : : : ; rn�1g where n � 2. By con-

vention, the �rst role (r0) sends the �rst message, thereby initiating the session. In any

state of the session, at most one role may send the next message�initially r0, then the

role that received the last message. The session speci�es which labels and target roles

may be used for this next message, whereas the selection of a particular message and

payload is left to the role implementation.

We de�ne two interconvertible representations for sessions. A session is described

either globally, as a graph de�ning the message �ow, or locally, as a process for each

role de�ning the schedule of message sends and receives:

Global graph The graph describes the session as a whole and is convenient for dis-

cussing security properties and the secure implementability condition. Brie�y, a

session graph consists of nodes representing global states that are annotated with

the corresponding active role (the role sending the next message), and edges be-

tween nodes labelled with message labels and the types of their payloads.

Local roles Local role processes are the basis of our implementation: they describe the

session from each role's point of view. They thus provide a direct typed interface

for programming roles, and constitute our language for sessions.

2.1 A Language for Sessions

Our language for sessions has a CCS-like grammar for expressing local roles processes:

� ::= Payload types

unit j int j string base types

p ::= Role processes

!(fi :�i ; pi)i<k send

?(fi :�i ; pi)i<k receive

��:p recursion declaration

� recursion

0 end

� ::= Sessions

(ri :Ti = pi)i<n initial role processes

Role processes can perform two communication operations: send (!) and receive (?).

When sending, the process performs an internal choice between the labels fi for i =
0; : : : ; k � 1 and then sends a message fi(v) where the payload v is a value of types �i
(for convenience, we consider only the basic unit, int and string types which simplify

marshalling). Conversely, when receiving, the process accepts a message with any of

the receive labels fi (thus resolving an external choice). The �� construction sets a

recursion point which may be reached by the process �; this corresponds to cycles in
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graphs. Finally, 0 represents a completion of the role for the session. On completion, a

session role produces a value whose type Ti is speci�ed in the process role ri :Ti = pi.

For the return type Ti, we accept any ML type.

For convenience, we omit the trailing semicolon and 0 process at ending points.

Also, our concrete syntax uses the keyword `mu' for � and keywords `session' and

`role' in front of session and role de�nitions.

2.2 Example A: Remote Procedure Call

Figure 1 (top) shows a session graph for a simple RPC exchange, in which the client

role, called C, sends the server role S a Query message (of payload type string), who

answers with a Response message (of payload type int). The bottom part of the �gure

speci�es the RPC session in terms of local role processes, using the above grammar.

After naming the session as Rpc, the two roles are de�ned with a return type and their

local message �ows: the client sends a Query, then expects a Response and �nally

returns an int; the server waits for a Query, then sends a Response and �nally returns

unit. These three lines are the actual input of our compiler.

Query:string

C S C
Response:int

session Rpc =

role client:int = !Query:string; ?Response:int

role server:unit = ?Query:string; !Response:int

Fig. 1. Session graph and Local roles for an RPC (�le rpc.session)

2.3 Example B: a Conference Management System

We now describe a session for a conference management system. Although this system

is rather simpli�ed from a real life implementation, we believe it's signi�cantly large in

comparison with other case studies attempted in the session types literature.

Global description. Figure 2 shows the graph of a CMS session. There are three

roles: pc (the conference organizer), author, and confman (the submission manager).

All messages carry as a payload either a string value (which is used for the call for

papers, paper submissions, and so on), or a unit value, when no payload is necessary.

The session proceeds as follows. Initially, the program committee pc sends a call

for papers message, Cfp, to the prospective author 4. The author then uploads a draft by

sending an Upload message to the conference manager confman, who checks whether

4 Our session speci�cations exclude broadcast, e.g. assuming here that theCfp is sent to a single

author, already chosen by the program committee. We do not think this is inconvenient, as

we can easily replicate the program committee to start other sessions with other prospective

authors.
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Cfp :string Upload:string

BadFormat:string

Ok:unit Submit:string

Paper:string

ReqRevise:string

Revise:string

Close:unit

Done:unit

Shepherd:string

Accept:string

Reject:string Rebuttal:string

Withdraw:unit

Retract:unit

FinalVersion:string

authorpc confman author confman

confman pc

pcconfman

confmanpcauthorpc

author author

Fig. 2. A Conference Management System (CMS): Global graph

the draft meets the conference format (e.g., style format or compliance with the size).

If the format is invalid, the confman replies to the author with a BadFormat message,

with an explanation; at this point we have a loop in which the author can �x the draft

and try again. Eventually the format is valid, and the confman replies with an Ok mes-

sage. Now the author can submit a paper by sending a Submitmessage to the confman.

Alternatively, it can choose to refrain from submitting a paper by sending aWithdraw

message, which the confman communicates to the pc by sending a Retract message. If

the author indeed submitted a paper, the confman forwards it to pc, who then will eval-

uate it. The pc can ask the author to revise the paper, by sending a ReqRevise message

to the confman which will in turn send a Revise message to the author. This phase can

loop until eventually the pc reaches a decision, and asks the confman to stop receiving

revisions by sending aClosemessage. The confman answers with aDonemessage, and

then the pc can notify the result to the author, enclosing possibly reviews for the paper.

The noti�cations are either acceptance of the paper (sending an Accept message), or

rejection (sending a Reject message), or a decision to exceptionally `shepherd' the pa-

per (sending a Shepherd message), in which the author can support her submission by

sending a Rebuttal. This can again loop until the pc decides a �nal verdict, i.e. either

accepting or rejecting the paper. In the case of acceptance, the author sends the pc a

�nal version of the paper.

Local processes. Figure 3 presents the counterpart of the CMS graph from Figure 2

in terms of local roles. We illustrate local roles by describing in detail the behaviour
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of the author role. From the author's point of view, the session starts by receiving a

Cfp message. A recursion point called reformat is created, and then the author checks

the paper by sending an Upload message. If a BadFormat message is received, ex-

ecution jumps back to the reformat point. If an Ok message is received, the author

sets a recursion point called submission and then choose to either send a Submit or a

Withdrawal message. For the latter, execution ends. For the former, another recursion

step discuss is set, and several messages can be expected: either an Accept, in which

the author ends by sending a FinalVersion, or a Reject which also ends execution, or

a Shepherd message to which the author replies with a Rebuttal and then jumps back

to discuss; �nally, a Revise message may also be received, in which the author jumps

back to submission.

session Conf =

role pc:string = !Cfp:string; mu start.

?(Paper:string; !(Close:unit; ?Done:unit; mu discuss.

!(Accept:string; ?FinalVersion:string

+ Reject:string

+ Shepherd:string; ?Rebuttal:string; discuss)

+ ReqRevise:string; start)

+ Retract:unit)

role author:string = ?Cfp:string; mu reformat. !Upload:string;

?(BadFormat:string; reformat

+ Ok:unit; mu submission.

!(Submit:string; mu discuss.

?(Accept:string; !FinalVersion:string

+ Reject:string

+ Shepherd:string; !Rebuttal:string; discuss

+ Revise:string; submission)

+Withdraw:unit))

role confman:string = mu uploading. ?Upload:string;

!(Ok:unit; mu waiting.

?(Submit:string; !Paper:string;

?(Close:unit; !Done:unit

+ ReqRevise:string; !Revise:string; waiting)

+Withdraw:unit; !Retract:unit)

+ BadFormat:string; uploading)

Fig. 3. A Conference Management System: Local role processes (�le cms.session)

3 Programming with sessions

Once we know how to specify sessions, we are now ready to use them by instantiating

the different session roles by actual principals. We start by describing how principals
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are de�ned. Then we program the simple RPC session from the previous section, and

�nally we consider the more challenging case of the CMS session.

Principals. Principals are the network entities that instantiate session roles and

specify networking information (i.e., IP address and port) and cryptographic creden-

tials (X.509 certi�cates and private keys), for message delivery and security. Hence,

when a programmer wants to initiate or join a session, she must register the princi-

pals in a local store used by our implementation. To this end, we provide a library for

managing principals called Prins, with a register function, which when invoked as

register id �lename inet port registers a principal called id, whose credentials are in

the �le �lename, IP address is inet and port is port.

For example, the programmer's source code for the CMS example that involves

three participants includes the following calls:

let = Prins.register "alice" "alice.cer" "193.55.250.70" 8765

let = Prins.register "bob" "bob.cer" "193.55.250.71" 8765

let = Prins.register "charlie" "charlie.cer" "193.55.250.72" 8765

Files containing cryptographic credentials have to include an X.509 certi�cate, plus

optionally the corresponding private key. Thus, user code can register both the running

principal of a session role by including both keys (which the generated protocol will

use to sign and verify messages) and other principals running the session, by registering

only their certi�cates (which are used to verify other principals'signatures).

3.1 Programming an RPC session

Initially we invoke our compiler with �le rpc.session from Figure 1. Two �les,
called Rpc.ml and Rpc.mli, are created by s2ml. The former is the generated mod-
ule implementing the RPC session, while the latter is its interface:

type principal = string

type principals = fclient:principal; server:principalg

type result client = int

type msg0 = Query of (string�msg1) and msg1 = fhResponse:(principals! int! result client)g
val client : principals!msg0! result client

type result server = unit

type msg3 = fhQuery: (principals! string!msg4)g and msg4 = Response of (int�result server)
val server : principal!msg3! result server

The record type principals is used to instantiate roles with principals at runtime. Func-

tion client runs the session as the client role; when invoked, user code needs to provide:

1. a principals record populating the roles (since the client role is the session initiator,

it can choose the session participants); and

2. a continuation (of type msg0) which drives the client role (our programming disci-

pline relies on a CPS style, see below Section 3.2); here, it sends a Query message

consisting of a payload to be sent (of type string) and a continuation message han-

dler (of type msg1), which processes the answer Response message.
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The server is symmetric, except that as responder it only needs to choose its identity.
We can easily program this RPC session; here's the code for a client that runs as

alice, contacts bob, as the server, with a Query �Number?�, and prints the response
(we assume the principals registered as described above):

open Rpc

... (� register principals �)
let prins = fclient = "alice"; server = "bob"g
let answer = client prins (Query("Number?",fhResponse = fun i! ig))
let = Printf.printf "Answer is %i\n" answer

A programmer runs a session (as role client) by calling function client providing a

record instantiating roles to principals, and a continuation that sends and processes in-

coming messages. The �rst message (of type msg0) has to be sent by client, modelled

by constructor Query which awaits for a payload and a continuation. Since the client

then waits for a reply, the programmer has to provide a function handler for each of

the possible incoming messages, those functions acting as continuations: here only one

continuation is required (since only a Response may arrive) and the record has thus

only one �eld labelled hResponse. The continuation has to be a function of two argu-

ments: the �rst is the vector of principals involved in the session and the second is the

payload of the corresponding message.

The code for a server ignoring the query content and responding with `42' is shown

next. Although this code implements a single instance of a server, it is easy to replicate

it, enabling several server instances.

open Rpc

... (� register principals �)
let = server "bob" fhQuery = fun !Response(42,())g

From the session programmer's point of view, sending a message is as simple as return-

ing a constructed type with the right payload and continuation: Response(42,()). Here

the continuation is simply unit as the session ends and any value of type result server

(which is above de�ned as unit) will do. All the rest is taken care by the module Rpc

generated by s2ml, like message formatting, cryptographic signing, and routing.

Finally, in order to obtain an executable, we compile this user code with Rpc.ml

and libraries for implementing cryptographic operations (like hashing and signing) and

networking using the standard Ocaml compiler. Conveniently, if user code implements

a session incorrectly (i.e., not respecting the message �ow), then a type error (indicating

the incompatible message) is given.

3.2 Session programming and CMS example

We run s2mlwith the CMS example of Figure 3 for theConf session, on �le cms.session.

This produces �les Conf.ml and Conf.mli. As in the RPC example, the interface

Conf.mli contains a specialized principals record plus generated types and functions

for each role (here we show only the ones for the author role):

type principal = string

type principals = fpc:principal; author:principal; confman:principalg
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type msg9 = f hCfp : (principals! string!msg10)g
and msg10 = Upload of (string � msg11)

and msg11 = f hBadFormat : (principals! unit!msg10) ;

hOk : (principals! unit!msg12)g
and msg12 = Submit of (string � msg13) jWithdraw of (unit � result author)
and msg13 = f hAccept : (principals! string! result author) ;

hReject : (principals! string! result author) ;

hShepherd : (principals! string!msg16) ;

hRevise : (principals! string!msg12)g
and msg16 = Rebuttal of (string � msg13)

val author : principal!msg9! result author

The principle behind session programming using CPS is that, whenever a message is

received by the role, the generated secure implementation calls back the continuation

provided by the user and resumes the protocol once user code returns the next mes-

sage to be sent. Taking advantage of this calling convention, with a separately-typed

user-code continuation for each state of each role of the session, we can thus entirely

rely on ordinary ML typing to enforce session compliance in user code. The program-

mer is then free to design the continuations that will be safely executed whenever the

chosen role is active. Programming with a session consists then in following the (pos-

sibly recursive) generated types by s2ml, by �lling in the internal choices and payload

handling functions (i.e., the continuations).

4 Session Security

At run time, a session is executed by processes running on hosts connected through

an untrusted network. Each process runs on behalf of a principal. In order to state our

security property, called session integrity, we �rst describe the threat model, and then

informally discuss session integrity and possible threats to it.

Threat model. We consider a variant of the standard Dolev-Yao threat model [15]:

the attacker can control corrupted principals (that may instantiate any of the roles in a

session, and do not necessarily run as speci�ed by the session declaration nor use our

compiler), and perform network-based attacks: intercept, modify, and send messages

on public channels, and perform cryptographic computations. Moreover, the corrupted

principals may collude between themselves and the network during an attack. However,

the attacker cannot break cryptography, guess secrets belonging to compliant principals,

or tamper with communications on private channels.

Session Integrity. We say that a distributed session implementation preserves ses-

sion integrity if during every run, regardless of the behaviour of the attacker, the process

states at compliant principals (which use the generated cryptographic protocols as de-

tailed in the next section) are consistent with a run where all principals seem to comply

with all sessions. (This informal notion is made precise in [10]; see also below.)

Session integrity requires that all message sequences exchanged by compliant prin-

cipals are consistent and comply with the session graph, that is, every time a compliant

principal sends or accepts a message in a session run, such a message be allowed by the

session graph; conversely, every time a malicious principal tries to derail the session by
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sending or replaying an incorrect message, this message is silently dropped, or reliably

detected as anomalous.

In order for our compiler s2ml to enforce session integrity, it must generate a cryp-

tographic protocol for each compliant principal that can guard against several possible

attacks. We illustrate next some of these attempts to break integrity, and how the gener-

ated cryptographic protocol prevents them.

Session identi�er confusions Each session instance needs to have a unique session

identi�er, as otherwise there could be confusions between different running ses-

sions. The generated protocols compute a unique session identi�er as s = hash(DeaN ),

where D ea N is the tagged concatenation of D = hash(�), a digest of the whole

session declaration, ea, the principals assigned to the session roles; and N , a nonce

freshly generated by the initiator. IncludingD prevents confusions about the speci-

�cation of the session being executed; including ea prevents confusions about which

principal is executing which role; and including N prevents confusion with other

running session instances of the same declaration � and principal assignment ea.

Messages sent by our generated cryptographic protocols always include as header

the session identi�er s, plus, in initial messages, ea and N to allow receivers to re-

compute s (we assume D is expected and known by receivers). For example, for

our CMS example, the generated protocol computes D as the hash of the session

declaration from Figure 3, ea = charlie alice bob (indicating that charlie plays

the pc role, alice the author and bob the confman), and N is a random nonce.

Message integrity attacks Whenever a principal playing a role in a session receives a

message corresponding to a path executed in the session graph, it needs to ensure

every label in the path has been sent by the presumed principal. Otherwise, an attack

is possible, where some principal is impersonated by the attacker: for example in

Figure 2, a malicious author could send the confman an Upload message even

though the pc never sent a Cfp; if the confman does not check the presence of

the pc, session integrity is violated. In order to prevent these attacks, the generated

protocols include in messages a series of cryptographic signatures5: one signature

from the message sender, plus one forwarded signature from each peer involved in

the session since the receiver's last message (or the start of the session).

For our CMS example, consider the �rst time that the confman role gets contacted

with an Upload message in Figure 2. At that point, the generated protocol needs to

check signatures from the principals playing the roles author and pc; for our running

session with session identi�er as above, an incoming message is accepted by bob

as confman only if it includes a signature from charlie (as role pc) of a Cfp

message, and another signature from alice (as author) of an Upload message.

On the other hand, if bob as confman is at the same node contacted again (e.g.,

because bob sent a BadFormatmessage and entered a loop), in the next incoming

message bob needs to only check a (new) Upload message from alice, and

the Cfp message needs not be forwarded again, as bob already checked it. The

compiler accounts for both situations, and outputs accordingly speci�cally tailored

functions for message generation and veri�cation.

5 Cryptographic (or digital) signatures ensure the sender authenticity, as the signing private key

of a compliant principal is kept secret.
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Fig. 4. (a) A session graph with a `blind fork' and (b) its safe counterpart.

Intra- and Inter-session replays Message replays can also thwart session integrity.

Three situations can happen: (1) a message from one running session can be in-

jected into another running session; (2) an initial message involving a principal can

be replayed, trying to re-involve the same principal twice; and (3) a message from

one running session can be replayed in the same running session (e.g., messages

inside loops, which are particularly vulnerable).

Whilst (1) is directly prevented using a unique session identi�er as detailed above,

(2) and (3) need special treatment. For the former, like any protocol with responder

roles, our generated protocol relies on dynamic anti-replay protection for the mes-

sages that may cause principals to join a session, that is, the �rst messages they may

receive in their roles. To prevent such replays, each principal maintains a cache that

records pairs of session identi�ers and roles for all sessions it has joined so far. For

the latter, our generated protocol includes a logical timestamp for messages inside

loops, that is incremented at each loop iteration; it thus disambiguates messages oc-

curring in cycles (messages not occurring in loops are not vulnerable, as message

labels are assumed to be unique, see below).

Valid Sessions Not every session encodable using the language of Section 2 makes

sense: for example, a role sending a message that is never received is clearly unde-

sirable. Our compiler checks this and other syntactic conditions that a session has

to satisfy in order to be implementable (see Section 5). In particular, the compiler

checks the absence of `blind forks', which are in fact a security threat to session

integrity. Consider for instance the session of Figure 4(a), where S may send ei-

ther a Reject to C or an Accept to O. Unless C and O exchange some information,

they cannot prevent a malicious S from sending both messages, thereby breaking

the session speci�cation. (In fact, any graph containing the one in Figure 4(a) as

subgraph is vulnerable!)

Nevertheless, such vulnerable session graphs can be transformed to equivalent ones

without forks, at the cost of inserting additional messages. Figure 4(b) shows a safe

counterpart of the vulnerable session of Figure 4(a), in which message Accept is

split into two, Accept1 and Accept2, and S is obliged to contact C no matter which

branch is taken. (The general transformation is not dif�cult to build [10].)

Proving Session Integrity The security of automatically-generated cryptographic pro-

tocol implementations crucially relies on formal veri�cation. To this end, our language

design and prototype implementation build on the approach of Bhargavan et al. [4],

which narrows the gap between concrete executable code and its veri�ed model. Our
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generated code depends on libraries for networking, cryptography, and principals, with

dual implementations.

A concrete implementation uses standard cryptographic algorithms and networking

primitives; the produced code supports distributed execution (we have both

Ocaml/OpenSSL and F#/Microsoft .NET implementations). A second, symbolic im-

plementation de�nes cryptography using algebraic datatypes, in Dolev-Yao style; the

produced code supports concurrent execution, and is also our formal model.

In order to formally state and prove session integrity, we develop a high-level se-

mantics that enforces sessions following their speci�cation [10]. Our compiler, in turn,

transforms session declarations to modules implementing them. Thus, we have two

possible semantics in which user code runs: either a high-level con�guration (where

sessions execute as prescribed by de�nition) and a low-level con�guration, in which

user code executes calling the session-implementation modules. Our main security re-

sult (Theorem 1 in [10]), stated in terms of may testing, expresses that any behaviour of

a low-level con�guration can be simulated by a corresponding high-level con�guration.

Hence, the cryptographic protocol implementing the session is not letting an adversary

gain anything, as any possible behaviour of session implementations using our com-

piler interacting with an adversary (comprising of corrupted principals colluding with

the network) can be also reproduced by an adversary that does not interact with session

implementations, and is subject to semantics where sessions run as prescribed.

5 Compiling Sessions to Modules

In Section 3 we present the interface generated by s2ml, so that programmers can use

sessions. In this section, in turn, we discuss the inner workings of the compiler, i.e.,

how s2ml generates a cryptographic protocol securely implementing the session, and

preventing possible threats to session integrity as detailed in the previous section. Our

compiler s2ml works as follows:

1. For each session de�nition using local roles, it transforms it to a global graph and

checks several well-formed and implementability conditions on it. From this graph,

it also generates visible sequence messages which are used by the code generation

phase.

2. Then, the compiler generates for each session its corresponding cryptographic pro-

tocol, and emits both its interface and its code as an ML module.

Checking validity conditions and generating visible sequences. As the session spec-

i�cations are written in term of local role processes, and since a global view is required,

the compiler �rst tries to generate the graph version of the session. Following the �ow

of the session (starting from the �rst role and messages), s2ml veri�es that all the sent

messages are expected by someone (i.e., are among the messages declared to be pos-

sibly received by a different role). Each node of the graph thus corresponds to a given

active role and the edges are the messages sent to a different role which, after reception

of the message, becomes active.

This conversion checks the correctness and coherence of the session declaration. In

particular, we rule out invalid sessions in which messages are sent but not expected, and
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self-sent messages. We also require that labels are unique: two different edges cannot

have the same label. This ensures the intent of each message label is unambiguous: the

label uniquely identi�es the source and target session states.

As explained in the previous section, branching in itself can lead to a security risk.

The minimal condition to avoid this kind of attacks can be formulated in the following

way (see [10] for details): For any two paths in the graph starting at the same node and

ending with roles r1 and r2, we require that if neither r1 nor r2 are in the active roles

of the two paths (i.e., they don't send any of the messages), then r1 = r2. Basically,

this means that paths that fork and lead to different roles are dangerous. Checking this

property is done in the s2ml implementation by a careful look at branching nodes:

lists of active roles are recorded on every path starting at these nodes, followed by a

comparison that ensures that the roles in different branches are related.

As an additional output, from this global graph s2ml generates the DOT [16] graph

of the session graph, which can be used to view the speci�ed session.

Visibility. After checking that the graph is valid and safe, s2ml generates the visi-

ble sequences, an essential part of the generation of the cryptographic protocol. Brie�y,

a sequence of labels is visible at a given node in the session graph if it contains only the

last label sent by every other role. This notion is used in minimizing the number of sig-

natures checks at runtime in the generated implementation: it relies on the fact that only

the latest labels sent by every other role have to be checked to ensure session integrity.

We compute the visible sequences at compile-time to avoid any graph computation at

runtime: the runtime signature checks which rely on visible sequences can thus be ef-

�ciently performed. For example, in the CMS example of Figure 2, the node in which

the confman role is �rst contacted by an Upload message has two visible sequences,

Cfp-Upload (along the initial path) and just Upload (through the cycle).

Generating the session interface and implementation. The main dif�culty in the

interface generation is to produce the set of recursive types that specify the alternation

of constructed messages and continuations required from the user.

The generation of these types is based on four principles: �rst, an internal choice is

translated into an algebraic sum type where message labels are used as constructors and

where the constructor expects a correct payload and a continuation corresponding to

the role's next expected message; second, an external choice generates a record whose

labels are derived from message labels and whose data are functions handlers for the

incoming messages (those functions take as arguments the record of principals and the

payload of the message); third, mutual recursion re�ects a recursive point in the local

role description; forth, when ending, the result type is used.

More formally, our algorithm �rst associate type names to each of the sub-processes

of a given role process: the names are of the form msgn (below we call this function

name). The 0 sub-process is a particular case and its associated type name is of the form

result rolename.

Then we have the following generating function that is applied successively to all
sub-processes:

[[!(fi :�i ; pi)i<k]] = and name(p) = f j fi of (�i�name(pi))gi<k
[[?(fi :�i ; pi)i<k]] = and name(p) = ffhfi: principals! �i! name(pi);gi<kg
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This generates a collection of potentially mutually recursive types, which explains the
default use of the and keyword. A pretty-printing phase then completes the interface
generation. As shown in section 3, the result types have the following shape:

[...] and msg11 = f
hBadFormat : (principals! unit!msg10) ; hOk : (principals! unit!msg12)g

and msg12 =

j Submit of (string � msg13) jWithdraw of (unit � result author)
[...]

Wired types and messages generation. The low-level handling of messages in the

generated protocols is done by a series of specialized types and functions. These func-

tions have also the task of maintaining a local store containing the necessary crypto-

graphic material for the session. Concretely, s2ml generates a family of sendWiredlabel

functions (one generated function for each message tagged with label of the session)

that perform the following operations:

1. build the session id (a digest of the session declaration, principals, and a nonce);

2. build the header (the session id plus the sender and receiver's identities);

3. marshall the payload;

4. create a new signature of the label and logical time;

5. update the local signature store and logical clock;

6. build the message from the header, the label, the payload and the transmitted sig-

natures (whose list is known from the previously computed visibility);

7. send the message on the network

Symmetrically, the receiving sequence of actions done by the family of receiveWiredn

functions (one function for each node n in the graph) is the following:

1. receive the message from the network;

2. unmarshall and decompose into parts (header, label, payload, signatures);

3. check the session id;

4. match the message label against possible incoming messages;

5. check the signatures' correctness (using visibility) and logical time-stamps;

6. update the local signature store and logical clock;

7. check the message against the cache (if it is the �rst message of a run of the session)

Any check failure will either silently restart the function (to continue listening) or throw

an exception. Since initial messages require special treatment (e.g., cache checking),

s2ml creates speci�c versions of the low-level functions (named with the init suf�x).

The types of the sendWiredlabel and receiveWiredn are of the form:

val sendWiredlabel : wiredn! state

val receiveWiredn : state! unit!wiredn

where the state corresponds to the local cryptographic store, and the wiredn types are

the sum types corresponding to messages that can be received in the state n of the role's

process. The internals of the proxy, in charge of enforcing the session �ow and user

interaction, critically relies on these types.
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Proxy functions The last part of the generated protocol implementation consists on the

proxy functions that the user can call from the interface. Their purpose is to follow

the �ow of sent and received messages as speci�ed by the session and to call back a

user-de�ned continuation at the correct moment.

Concretely, these functions have to be able to handle the users' choices of messages

to send and call the appropriate low-level sendWiredlabel function. Then they have to

listen to incoming messages using the receiveWiredn functions and, when a message is

received, to call back the appropriate �eld of the user-speci�ed record of continuations.

We illustrate these proxy functions by the author function from the CMS example:

let author (prin: principal) (user input : msg9) =

...

and author msg10 (st:state) : msg11! result author = function

j Upload(x, next)! let newSt = sendWiredUpload host dest (WiredUpload(st, x)) in

author msg11 newSt next

and author msg9 init : msg9! result author =

function handlers!
let (newSt, r) = receiveWired0 init host prin () in

match r with

jWiredCfp (newSt, x)! let next = handlers.hCfp newSt.prins x in

author msg10 newSt next

in

Printf.printf "Executing role author with principal %s...\n" prin;

author msg9 init user input

Initially it calls the function author msg9 init which uses receiveWired0 init to re-

ceive a �rst message. It is checked to be a Cfp message, and if so, the payload x is ap-

plied to the user code continuation (handlers.hCfp), and then the function author msg10

is invoked, which continues the session by sending a Upload message.

5.1 Concrete implementation and benchmarks

Our concrete implementation links the generated code against concrete cryptographic

implementations (as opposed to a symbolic model, used to formally prove security,

which uses algebraic datatypes). We provide two variants of concrete libraries: one

using Ocaml and wrappers for OpenSSL, and another using F#/Microsoft .NET cryp-

tography. (Unfortunately the two implementations do not yet interoperate, due to in-

compatibilities among certi�cates.) The data and cryptographic functions we use are

as follows. For cryptography, we use SHA1 for hashing, RSASHA1 for signing, and

the standard pseudorandom function for nonce generation. Signing uses certi�cates in

`.key' format for OpenSSL and `.cer' for Microsoft .NET. As for data, we use Base64

for encoding the messages in a communicable format. We use UDP-based communica-

tion (although in the future we plan to move to TCP-based communications).

Benchmarks. We executed the CMS example using the Ocaml/OpenSSL concrete

implementation in a setting in which every loop is iterated 500 times. This table reports

the benchmarks for a Pentium D 3.0 GHz running linux-2.6.17-x86 64:
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No crypto Signing, not Verifying Signing, Verifying Standard OpenSSL

�rst loop 0.231s 2.79s 2.95s

second loop 0.468s 5.62s 6.11s

third loop 0.243s 2.81s 2.98s

total 0.942s 11.22s 12.04s 8.38s

These results show that most execution time is devoted to cryptography, as expected:

the generated code s2ml consists of optimally compact, specialized message handlers.

The last column, labelled 'Standard OpenSSL', compares our implementation to the

standard OpenSSL 0.9.8e by reporting the time it takes to send 4000 single character

messages using the command-line tool from the distribution. Our implementation, that

deals with much more complex messages, is comparable in speed.

6 Conclusions

We present a simple language for specifying sessions between roles, and we detail its

usage as a secure communication abstraction on top of ML. Our compiler s2ml gen-

erates custom cryptographic protocols that guarantee global compliance to the session

speci�cation for the principals that use our implementation, with no trust assumptions

for the principals that do not.

Whilst in previous work we focus on establishing (theoretical) security guarantees

for the generated code of s2ml, here we concentrate on describing the inner work-

ings of the compiler, and explore its applicability to the concrete examples of an RPC

exchange and a rather large conference management system. This latter case study is

treated smoothly by s2ml, providing con�dence for its usability as a concrete tool for

structuring and securing distributed programming.

Future Work. We are exploring variants of our design to increase the expressive-

ness of session speci�cations: session-scoped data bindings that ensure the same values

are passed in a series of messages, as well as more dynamic principal-joining mecha-

nisms, to enable new principals to enter a role subject to agreement among the current

principals. (Still, we remind the reader that sessions are at the level of message �ow

speci�cations, and user code implementing them can be arbitrary ML code.) We are

also interested on providing support for communicating richer payload types, by study-

ing the extension of s2ml with general and secure marshalling.
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A Output for Rpc

$ ./client.exe

[Impl] Executing role client with principal

alice...

[Impl] Preparing message: Query(Number?)

[Prins] sent:

MDg0MDAyTkowNjEwMDEwMDAxMTAyMKMdkFskmfB0Eb9KUk1/E2

Fzn50OMDExMDA1YWxpY2Vib2KVmxw7s9N6gWZ+SEs1XyrZMDA1

UXVlcnlOdW1iZXI/MDAxMDEyOHp+3gwAG+ae388U5fV5L42sLU

7t6hMOUT9JlPyHnVMPCxavHAYq5GhnOwjFnY5RWGywCtw1E+F1

miECRTcFLwNOLB3tdEZUaOxqOd7jwq4deiC+WWwZoRoEyi0FE1

HgO3H2FJIrqD19Twy1UDBQqmG+Nnoq0Vgo3CwH+KfbRbhaMDAx
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MDAwMA==

[Prins] received:

MDgyMDAyTkowNjEwMDExMDAxMDAyMKMdkFskmfB0Eb9KUk1/E2

Fzn50OMDExMDA1YWxpY2Vib2KVmxw7s9N6gWZ+SEs1XyrZMDA4

UmVzcG9uc2U0MjAwMTExMjiP/uJ+eHiWg6gbgY98CjinyGoSmK

8/p1jfxT7d2lW7o46a/uz3G6iJx+xoSArCRqpMIr3frIZHr6PF

yf0ATnS2IGkcGtVlNQ39tpZh/PRjHGbdltpD21KhlxNN5m8jHe

6Q/JPg1oaTQ9UZegYS6SeEWl45g4WXxwj74J4KJMf91jAwMTAw

MDA=

[Impl] Accepted correct message: Response(42)

[Impl] Updating signatures ...

[Impl] Signatures updated!

Answer is 42

B CMS Code for author, pc and confman

B.1 Interface

type result pc = string

type msg0 =

Cfp of (string � msg1)

and msg1 = f
hPaper : (principals! string!msg2) ;

hRetract : (principals! unit! result pc)g
and msg2 =

Close of (unit � msg3)

j ReqRevision of (string � msg1)

and msg3 = f
hDone : (principals! unit!msg4)g

and msg4 =

Accept of (string � result pc)
j Reject of (string � result pc)
j Shepherd of (string � msg7)

and msg7 = f
hRebuttal : (principals! string!msg4)g

val pc : principals!msg0! result pc

type result confman = string

type msg18 = f
hUpload : (principals! string!msg19)g

and msg19 =

Ok of (unit � msg20)

j BadFormat of (unit � msg18)

and msg20 = f
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hSubmit : (principals! string!msg21) ;

hWithdraw : (principals! unit!msg26)g
and msg21 =

Paper of (string � msg22)

and msg22 = f
hClose : (principals! unit!msg23) ;

hReqRevision : (principals! string!msg25)g
and msg23 =

Done of (unit � result confman)

and msg25 =

Revise of (string � msg20)

and msg26 =

Retract of (unit � result confman)

val confman : principal!msg18! result confman

B.2 User code

open Conf

open Printf

let rec handler response =

f hAccept = (fun comments!FinalVersion("Final", "Accepted! " � comments));

hReject = (fun comments!"Rejected because " � comments);

hShepherd = (fun questions!
Rebuttal("Let me in!", handler response));

hRevise = (fun reviews! Submit("Paper", handler response)) g

let rec handler format =

f hBadFormat = (fun error!
printf "Formatting error: %s\n" error;

Upload("Submission", handler format));

hOk = (fun s!
if Random.int 4 <> 0

then Submit("Submission", handler response)

elseWithdraw((), "Paper withdrawn")) g

let handler cfp =

f hCfp = fun p s!Upload("First draft", handler format)g

let result = author "alice" handler cfp in

printf "Author session complete: %s\n" result

Here, the handler_format record contains two functions: one handles a BadFormat

message (i.e. which is called back when a BadFormatmessage is received), prints the

error message and sends a Upload message with a different payload and a recursive

continuation; the other handles the Okmessage and chooses (in an over-simpli�ed way)

if the paper has to be withdrawn, i.e. if the next message to be sent is a Submit or a

Withdraw. The call to the author role function has thus as arguments the chosen

principal (here "alice") and a record handling the �rst incoming Cfp message.
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open Conf

open Printf

let (prins:principals) =

f pc = "charlie";
author = "alice";

confman = "bob" g

let cfp = "Call for papers"

let rec handler discuss = f
hRebuttal = (fun !
Accept("Ok then ...", f

hFinalVersion = (fun s!"We accepted

the following paper: "�s)

g))
g

let rec handler paper = f
hPaper = (fun s! if s.[0] = 'S'

then ReqRevision("Make it better!", handler paper)

else Close((),f
hDone = (fun ! Shepherd("Do you really want

to be in?", handler discuss))

g));
hRetract = (fun !"Retracted") g

let =

let result = pc prins (Cfp(cfp, handler paper)) in

printf "PC: session complete: %s\n\n" result

open Conf

open Printf

let rec handler decision = f
hClose = (fun !Done((), "No more revisions"));

hReqRevision = (fun r!Revise(r, handler submission))

g

and handler submission = f
hSubmit = (fun submit!Paper(submit, handler decision));

hWithdraw = (fun !Retract((), "Retracted"))

g

let rec handler paper prins draft =

if String.length draft > 12

then BadFormat("Make it shorter!",fhUpload = handler paperg)
else Ok((),handler submission)
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let =

let result = confman "bob" fhUpload = handler paperg in
printf "ConfMan: session complete: %s\n\n" result
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