
A Comparison of Data and Process

Mediation Approaches

Rodrigo Mantovaneli Pessoa1, Dick A. C. Quartel2,

Marten J. van Sinderen1

1 University of Twente, 7500 AE Enschede, The Netherlands
2 Telematica Instituut, 7500 AN Enschede, The Netherlands

{r.mantovanelipessoa, M.J.vanSinderen}@ewi.utwente.nl

{Dick.Quartel}@telin.nl

Abstract. In recent years, a huge amount of effort has been invested in the area

of service discovery and composition. However, surprisingly little effort is

being put into the evaluation of these approaches. The SWS Challenge is an

ongoing and continuous experiment in developing a common understanding of
various technologies intended to facilitate the automation of mediation,

composition, and discovery for Web Services using semantic annotations. The

mediation scenario problems concern making a legacy order management

system interoperable with external systems that use a simplified version of the

RosettaNet PIP3A4 specifications. The participants are supposed to be

evaluated with focus on functional coverage. However, it turned out that it is

extremely difficult to assess this in an objective manner. In this paper, we

describe a framework for comparison of data and process mediation

approaches. As a case study, we apply our framework to perform a comparative

analysis of four participants from the SWS Challenge.

Keywords: Data and Process Mediation, Enterprise Application Integration
(EAI), Semantic Web Service Challenge

1 Introduction

One of the most engaging promises of Service Oriented Architectures (SOA) is to

enable the construction of flexible and loosely coupled business applications,

spanning over several networked enterprises capable of interconnecting their

applications and share data by combining a set of services. As services mature to suit

the basic building blocks of Service Oriented Architectures, the service composition

paradigm is becoming one of the main concerns of the application development

process. Some already raised questions related to services are: how to specify them in

an expressive enough language, how to compose them, how to discover them through

the distributed environment, and how to ensure their correctness.

However, the multiplicity and diversity of the proposed approaches attests a lack of

consensus on the most appropriate technologies and methodologies to compose

services. The Semantic Web Service Challenge is an initiative aiming to develop a

common understanding of various technologies intended to facilitate the automation

of mediation, discovery and composition for services using semantic annotations. The

evaluation process is performed by teams composed of workshop organizers and peer

participants with focus on evaluating the functional coverage, i.e. on whether a

particular level of the problem could be solved by a particular approach. However it

turned out that it is extremely difficult to assess this in an objective manner [1].

Motivated by this fact, we developed a framework for comparison of mediation

approaches. The framework is expressed in terms of quantitative and qualitative

evaluation points in order to clarify and expose different aspects involved in features

supported by a method or tool. As a case study, we applied our framework to perform

a comparative evaluation of four participants from the SWS Challenge, around the

mediation scenario.

The remaining of this work is structured as follows: Section 2 presents the

mediation scenario proposed by the Semantic Web Services Challenge. Section 3

introduces our comparison framework. Section 4 describes four different approaches

for data and process mediation. In Section 5, the comparison is conducted and

summarized. Finally, Section 6 presents our conclusions and defines some future

research directions.

2 The Mediation Problem: Purchase Order Scenario

This session describes the static mediation scenario proposed by the Semantic Web

Services Challenge. This problem centres around a simple purchase order scenario

between two companies: Moon and Blue. The manufacturer Moon has signed an

agreement with the company Blue, to exchange purchase order messages in

RosettaNet PIP 3A4 format. RosettaNet is an industry-driven standard for B2B

integration that represents an agreement on the message exchange patterns, the

message content and a secure transportation mechanism among business trading

partners in a supply chain network. The Blue’s system has to interact with Moon’s

legacy system, also provided as a set of Web services, which however do not use the

RosettaNet standard. The objective of the SWS Challenge is to build a system called

Mediator, which compensates the differences in communication between the involved

parties by solving possible data and behaviour mismatches.

The subsequent levels of the SWS Challenge addresses the mediation problem by

asking its participants to, while minimizing direct intervention from programmers,

effectively and quickly react to incremental changes of the application requirements

built on top of the static scenario. Those solutions that were still able to tackle the

problem are then ranked in different levels of adaptability.

2.1 The Static Mediation Scenario

The static scenario involves the mediation between two companies, Blue and Moon,

within a stable (static) context: the protocols, the messages, and the data formats are

known a priori and fixed. In the scenario discussed above, the company Moon uses

two back-end (legacy) systems to manage its order processing, namely, a Customer

Relation Management System (CRM) and an Order Management System (OM).

As illustrated by Figure 1, the customer Blue sends a RosettaNet order request and

expects that, upon the request being submitted, the order will be processed and a

purchase order confirmation will be received, acknowledging that the order was

received and processed by the company Moon. Messages in RosettaNet PIP 3A4

format enable a buyer to issue a purchase order and to obtain a quick response from

the provider that acknowledges which of the purchase order product line items are

accepted, rejected, or pending. As mentioned before, the company Moon only offers a

set of legacy Web Services that do not fit with the RosettaNet standard. The mediator

is in charge of receiving a single RosettaNet message (containing all the order details)

from Blue and splitting it to the various messages needed by Moon to create and

handle a purchase order. In this way, the mediator will have to orchestrate a sequence

of services provided by Moon and translate the set of confirmation messages into a

whole RosettaNet Purchase Order Confirmation to be sent back to Blue.

Fig. 1. – Mediation Scenario Overview.

At first, the Mediator receives a Purchase Order Request message from the

customer Blue. The Purchase Order Request message is synchronously confirmed by

an Acknowledgement of Receipt message. However, in order to orchestrate Moon to

process a RosettaNet purchase order, several steps have to be made.

First, the customer needs to be identified by sending a search string to Moon’s

CRM system. The internal costumer identification number is obtained by invoking the

searchCustomer operation. As a next step, the creation of a new order is requested by

sending the costumer identification number to Moon’s OM system invoking and

invoking the createNewOrder operation, which returns the id of the newly created

order. After a new order is created, Moon’s OM system expects all order lines to be

added one by one by invoking addLineItem operation (possibly for many times).

Finally, once all the line items are submitted, Moon OM system is requested to close

the order (closeOrder operation) and returns the number of items that has been

received. Subsequently, Moon’s OM system confirms the status of each order line,

which is acknowledged synchronously the mediator. After all order lines have been

confirmed, a RosettaNet PIP3A4 Purchase Order Confirmation message is sent to

Blue and confirmed synchronously by an Acknowledgement of Receipt message

3 The Comparison Framework

This section describes our framework for comparison of mediation approaches. In

order to develop our framework, we use the DESMET method [2], a comprehensive

methodology for assisting organisations and academic institutions to plan and execute

unbiased and reliable evaluation exercises. This method identifies such an evaluation

as a qualitative or subjective evaluation and enables the framework to be expressed in

terms of a set of common (mandatory and/or desirable) features supported by a

method or tool.

Quantitative or objective evaluations are based on identifying the expected benefits

and drawbacks of a new method or tool in measurable terms. Qualitative or subjective

evaluations assess the appropriateness of a method/tool in terms of the features

provided by the method/tool, the characteristics that distinguish this method/tool from

others, support offered by the method/tool supplier and its training requirements. This

type of analysis is usually based on the identification of the requirements that

potential users have for performing a particular task and the mapping of those

requirements to features that a method/tool (intend to support that task) should

possess. The main activities involved in carrying out a feature analysis are [2]:

1. Select a set of candidate method/tools to evaluate.

2. Decide upon the required properties or features of the item being evaluated.

3. Prioritise those properties or features with respect to the requirements of the

method/tool users.

4. Decide the level of confidence that is required in the results and therefore

select the level of rigour required of the feature analysis.

5. Agree on a scoring/ranking system that can be applied to all the features.

6. Allocate the responsibilities for carrying out the actual feature evaluation.

7. Carry out the evaluation to determine how well the methods/tools being

evaluated meet the criteria that have been set.

8. Analyse and interpret the results.

9. Present the results to the appropriate decision-makers.

As shown in Figure 2, our framework involves both qualitative and quantitative

elements, structured into five main features: data mediation, process mediation,

correctness, suitability of design concepts and level of effort required to drive

changes. Under data mediation and process mediation features, we consider both

design time and runtime aspects of the mediation task. The first refers to the design

support provided by each approach as well as the steps needed to implement each

solution, whereas the second refers to characteristics concerning their execution.

Fig. 2. – The Comparison Framework Elements.

In addition to the separation between quantitative and qualitative evaluations, there

is another dimension to an evaluation: the way in which the evaluation is organised.

DESMET has identified three rather different ways of organising an evaluation

exercise, including: formal experiment (where many subjects are asked to perform a

variety of tasks using the different methods/tools under investigation), case study

(where each method/tool under investigation is tried out on a real project) or a survey

(where subjects that have used a specific method/tool on past are asked to provide

information about the method or tool). As mentioned before, as a case study we have

adopted the mediation scenario proposed by the SWS Challenge, where different

mediation approaches addressing the same real world problem scenario have been

peer reviewed and documented.

4 Data and Process Mediation Approaches

In this section, we briefly describe different approaches proposed to address the

mediation scenario offered by the SWS Challenge. Based on past studies, we have

selected four well-documented approaches which have shown some distinctions in

their realization.

4.1 WSMO, WSML and WSMX

The DERI (Galway and Innsbruck) team based its solution on the Web Service

Modelling eXecution environment (WSMX) [7]. WSMX is a reference

implementation of the Web Services Modelling Ontology (WSMO) [6] and operates

using the Web Services Modelling Language (WSML) [8]. The approach incorporates

four core elements that are needed to represent semantic web services and related

issues: ontologies, that provide the common terminology used by other WSMO

elements, services that are requested, provided, and agreed upon by requesters and

providers, goals that represents a desire that a client delegates (which should be

solved by services), and mediators, which deal with interoperability problems

between different WSMO elements.

During design time, the design and implementation of adapters, creation of WSMO

ontologies and services, rules for lifting/lowering, and mapping rules between

ontologies are carried out for the RosettaNet, OMS and CRM systems. The run-time

phase involves discovery, selection and execution of the appropriate services to

mediate the interaction between Blue and Moon systems. The general view of the

approach is shown in Figure 3.

Fig. 3. – General view of the approach

Initially, ontologies describing the information model used by each involved party

are manually designed, after careful analysis of the schemas for the RosettaNet

messages and the WSDL service descriptions offered by CRM and OMS systems. In

the given scenario, both Blue and Moon use different information models and the data

mediation is accomplished through mappings between RosettaNet and CRM/OMS

ontologies. In particular, a mapping can specify that classes from two ontologies are

equivalent while transformation rules use logical expressions to unambiguously

define how the data encapsulated in an instance of one class can be encapsulated in

instances of the second class. During run time, if there is a need for data to be

mediated, the source instances are provided to the data mediation component, which

has the role to derive the target data instances from the source data instances.

In WSMO, requestors of a service express their objectives as goals, which are high

level descriptions of concrete tasks. From this point of view, a WSMO goal

description consists of a requested capability and requested interfaces. The former

shall specify the objective to be achieved in terms of a capability from the client

perspective. The latter is intended to specify the communication behaviour for

automated Web service usage supported and required by the client. A goal template is

a generic objective description that is defined at design time and a goal instance

denotes a concrete client request that is created at runtime by instantiating a goal

template with concrete values. One advantage of this approach is that the requestor

only has to provide a declarative specification of what it wants, and does not need to

have a fixed relation with the Web Service or to browse through an UDDI registry for

finding Web Services that provide the appropriate capability.

In order for this goal to be accomplished, the requestor has to find an appropriate

Web Service which may fulfil the required task. Similar to the way the requestor

declares its goal, every Web Service has to declare its capability (that is, what it is

able to accomplish) in terms of its own ontology. A WSMO Web service description

consists of two central parts. At first, the capability describes the overall functionality

provided by a Web service in terms of pre-conditions, assumptions, post-conditions,

and effects; these are logical expressions, specified e.g. in WSML. Secondly, the

interfaces describe the interaction behaviour supported by a Web service. To cope

with impossibility of service requester and provider to communicate with each other

due to heterogeneity of their communication protocols, WSMO introduces the

mediator concept, which has the task of overcoming the heterogeneity problems, both

at data level and at behaviour level.

The WSMX process representation is similar with the WSMO choreography

definition, which representation is based on Abstract State Machines (ASM),

consisting of states and guarded transitions. A state is described by the WSMO

ontology and the guarded transitions (transition rules) are used to express changes of

states by means of transition rules. It falls into process execution based on underlying

rich knowledge base formalism where an ASM is used to abstractly describe the

behaviour of the mediator. In the utilized Abstract State Machines (ASM), the domain

ontology constitutes the underlying knowledge representation and transition rules

(specified in terms of logic formulas) describe how the state changes when a

transition is executed. For the purposes of the SWS Challenge, the provided solution

has the assumption that the invocation order is unimportant, but that is not the case:

there is an order in which the operations should be correctly invoked.

At this point, both Blue and Moon back-end systems have semantically rich

descriptions of the information models and behaviour (choreography) of both

systems. This, along with additional mappings between the ontologies of the Blue and

Moon systems, allows both choreographies to “connect” at run-time and resolve

process interoperability issues (mediate between both choreographies). One of the

main advantages of the WSMX-based integration is the strong partner de-coupling.

As opposed to traditional centralized solution (when a central workflow would solve

this integration problem), this approach enables the automatic adaptation when

changes to service descriptions are introduced. In contrast, solutions based on a

central workflow would additionally require changes to the workflow type definition.

4.2 SWE-ET: Semantic Web Engineering Environment and Tools

The team composed of Politecnico di Milano and CEFRIEL based its solution on the

SWE-ET [3] framework. SWE-TE is a framework for designing and developing

Semantic Web Service applications, based on existing models for the specification of

business processes (such as BPMN [4]) combined with Web engineering models for

designing Web applications (such as WebML [5]), with strong emphasis on graphical

process modelling.

The approach aims to lead the designer from the process modeling to the running

Web application by producing some intermediate artifacts (BPMN models, data

models, hypertext models). Such models are enriched by imported ontological

descriptions and transformed into a WSMO specification: the ontology is derived

from the process model, data model, and hypertext model; the service capability

description is derived from the hypertext model; and the choreography information is

derived from the process model and the hypertext model. Later, the execution is

delegated to a Semantic Execution Environment (e.g. WSMX). Figure 4 provides an

overall picture of the approach.

Fig. 4. – Overall picture of the approach.

The specification of the mediator consists of a set of models: the application data

model (an extended Entity-Relationship model), one or more hypertext models (i.e.,

providing different site views for different types of users), expressing the navigation

paths and the page composition of the Web application; and the presentation model,

describing the visual aspects of the pages.

Initially, the RosettaNet message schemas and the service descriptions offered by

Moon systems were analysed and a corresponding data model was manually obtained

from it. The WebML data model is the standard Entity-Relationship (E-R) model and

the conversion from RosettaNet messages is handled by Adapter units that use XSLT

for transforming messages in an XML format compatible with WebML’s internal data

format (WSML). In the same way conversion to and from Moon legacy messages are

handled by proper XSLT stylesheets that act as templates for SOAP messages and

that are then populated by runtime queries.

After modeling the data structures, a high level Business Process Modelling

Notation (BPMN) model is created representing the mediator. This model formalizes

the orchestration of the Moon Web services and defines states pertaining to the

mediation process as by the SWS Challenge specification. The BPMN notation allows

one to represent all the basic process concepts such as data and control flow, activity,

actor, conditional/split/join gateways, event and exception management, and others.

BPMN activities can be grouped into pools, and one pool contains all activities that

are to be enacted by a given process participant. The elements of the workflow model

(e.g., activity, names, and lanes) are extracted as semantic concepts and used as

additional piece of the ontology. If a lane is identified as a mediator at the BPMN

level, the basic information about the design of the mediation can be extracted from

high-level BPMN description of the interactions (in particular, basic information

about possible choreography, interface and parameters of the service).

Then, the BPMN model is used to automatically generate a WebML skeleton that

is manually refined. The WebML [5] service model allows one to define different

hypertexts (e.g., for different types of users or for different publishing devices), called

site views. A site view is a graph of pages, allowing users from the corresponding

group to perform their specific tasks. Pages consist of connected units, representing

publishing of atomic pieces of information, and operations for modifying the

underlying data or performing arbitrary business actions. Units are connected by

links, to allow navigation, parameter passing, and computation of the hypertext from a

unit to another. The WebML conceptual model offers standard workflow units to

model control flow and has been extended with Web service units to describe Web

services interactions. These units correspond to the WSDL classes of Web service

operations, including request-response and one-way operations. Distributed processes

can be obtained by combining the workflow units and Web services units. The

language is extensible, allowing for the definition of customized operations and units.

Once the business process has been designed, workflow constraints must be turned

into navigation constraints among the pages of the activities of the hypertext and into

data queries on the workflow metadata for checking the status of the process, thus

ensuring that the data shown by the application and user navigation respect the

constraints described by the specification.

Then, the WSMO description of the mediator can be derived from the WebML

diagrams. This specification can be used to generate a working Web Service

providing mediation between Blue and Moon Web Service.

4.3 jABC/jETI Framework

The jABC/jETI solution is realized within the jABC framework [9], an environment

for model-driven service orchestration based on lightweight process coordination.

jABC originated in the context of the verification of distributed systems and use SLGs

(Service Logic Graphs) as choreography models, allowing users to easily develop

services by composing reusable building blocks into (flow-)graph structures. These

basic building blocks are called SIBs (Service Independent Building Block) and the

development process is supported by an extensible set of plug-ins that provide

additional functionality.

SIBs have one or more edges (branches), which depend on the different outcomes

of the execution of the functionality represented by the SIB. Each SLG model can be

wrapped into a single coarser-grained SIB, and may be used on another hierarchical

level of modelling. Similarly, each SIB can be refined into an own model, showing a

more detailed view on the represented feature. The provided model driven design

tools allow modelling the mediator in a graphical high level modelling language and

supports the derivation of an executable mediator from these models. Figure 5 shows

an overview of the described approach.

Fig. 5. – Approach Overview.

Initially, the corresponding SIBs are automatically generated from the WSDL

descriptions of the web services provided by the Moon legacy system. At this step,

the SIB generator extracts the information about the functions defined in the WSDL

service descriptions and creates a SIB for each function. The structure prescribed by

the original WSDL service descriptions and RosettaNet Schemas is then mapped into

the structure of the SIB parameters, using the pre-existing graphical user interface of

the jABC. As a result, the messages are created within the SIBs according to the

structure prescribed by the original WSDL descriptions, which is reflected and

mapped into the hierarchical parameter structure of the SIBs.

These parameters and the SIB branch labels are visible to the model checker,

which allows automatically proving global compliance constraints on the business

logic of an SLG. These constraints are expressible in mu-calculus and its derivatives,

a family of modal (temporal) logics. Additionally, arbitrary relations between data

elements can be provided as local checking expressions, with the expressiveness of

Java. This facility allows expressing and checking pre and post conditions.

Next, the mediator is manually modelled as a workflow, by dragging and dropping

elements from the palettes of standard and generated SIBs. The modelling activity can

then be complemented by analysis, verification and simulation techniques, provided

by a set of plug-ins. At this point, the mediation model consists of a structured

coordination graph and is interpreted by the tracer plug-in as a flow graph with one or

more distinguished start nodes.

To export the mediator as a Web service, the composite and hierarchical SLG of

the mediator is first transformed into a single SIB, using the subgraph feature of the

jABC. This creates a Graph-SIB that represents the corresponding SLG. Its

implementation is the argument SLG, executable within the jABC Tracer, the

interpreter (or a virtual machine) for SLGs. The tracer is able to execute the mediation

model comparable to a standard debugger in run mode or step mode and using

breakpoints or pause to stop the execution. However, to provide a Web service

mediator that is completely independent of the jABC, the code generator plug-in is

used to obtain executable source code from the Graph-SIB. This code is then

deployed on a server using the AXIS framework, this way making the functionality

accessible to other users and generating a WSDL description that contains all the

necessary information to access the deployed service as a web service.

4.4 COSMO Framework

This approach proposes the use of the COSMO framework [12] for service modelling

and refinement in order to raise the level of abstraction at which problems such as

mediation and integration of legacy systems are usually solved. In terms of Model

Driven Architectures, this means that platform-specific (service) models (PSMs) of

Blue and Moon are transformed into platform-independent (service) models (PIMs)

by removing all platform-specific details. Next, the approach adds additional

semantics to the service PIMs of Blue and Moon in order to make them more precise

(e.g. the semantics of service requests and the relations among service operations are

explicit modelled). In this way, the solution of the mediation problem is captured in

the service PIM of the Mediator. In the final step, a concrete implementation (the

mediator PSM) is derived from this PIM by adding technology-specific details. The

approach is illustrated in Figure 6.

Fig. 6. – General view of the approach

First, to cope with the problem of data mismatches, the platform-independent

information models of the Blue and Moon, hereby referred to as domain-specific

ontologies and expressed in OWL, were partially derived using the types section of

the WSDL descriptions of Moon and Blue systems. The platform-independent

behaviour models are partly derived using the interface section of the WSDL

descriptions of Moon and Blue. These behaviour models are expressed using

Interaction System Design Language (ISDL) and the lifting of the interface section of

WSDL to ISDL is supported by an integrated editor and simulator for ISDL.

A WSDL types section defines only the syntax of the messages that are exchanged

between the service provider and its users. Therefore, some further manual work is

required to define the semantics of these messages (e.g. hidden assumptions should be

made explicit by defining new classes and relations among them). Next, mappings

between classes, properties and individuals from Blue’s and Moon’s domain-specific

ontologies are defined.

A WSDL interface section defines only its constituent messages and message

exchange patterns in a single operation. Hence, the complete behaviour model should

also define the relationships between the different operations. Since these

relationships are not part of the WSDL descriptions they have to be derived from the

informal textual descriptions as provided in the mediation scenario. In this way, the

integrated behaviour model, describing the possible message exchanges between

Blue’s and Moon’s services, is manually refined from combining concepts provided

by the COSMO framework and defining the relationships between their executions.

The core concept underlying the COSMO framework constitutes the interaction

concept, which represents an activity in which the involved systems produce some

common result in cooperation. An interaction is defined by a composition of two or

more interaction contributions, which represent the participation (or responsibility) of

each system involved in the interaction. Consequently, an interaction is considered an

atomic activity that either occurs and establishes the same result for all involved

systems, or does not occur for any of the systems and therefore does not establish a

(partial) result. Additionally, the action concept provided by the framework models an

activity performed by a single entity and the causality relations model how actions

and interaction contributions depends on other actions or interactions contributions.

Once the integration solution is specified at the business service layer, it can be

early subjected to various analysis and simulation techniques. This is done by

applying horizontal transformations to the service model, which are related to

transform the service behaviour into a formal specification, which can be then tested

and verified to assure the correctness of the derived design with respect to its

specification.

After the validation and simulation of the interaction models specified at the

business service layer, an IT integration solution can be semi-automatically derived

by applying a number of model transformations and refinements. In this step, the

behaviour model of the mediator is transformed into a BPEL specification. However,

before this mapping can be applied a preparatory step is needed in which the

behaviour model of the mediator is annotated with marks and possibly restructured.

Marks are used to add implementation details (e.g.: interaction contributions should

be marked to indicate whether they have to be mapped onto an invoke, receive or

reply activity in BPEL). Furthermore, information about partner links and invoked

web services (e.g., namespace URI and endpoint address) may have to be provided.

5 Comparison

Table 1 summarizes, according to our framework, the profiles of the proposed

solutions, which are commented and described in more detail below:

 WSMO WebML jABC COSMO

Design time
aspects

Ontologies
manually
created from

analyzing the
RosettaNet
messages and
WSDL service
descriptions.

Ontology to
Ontology
mappings.

ER-model
manually
created from

analyzing the
RosettaNet
messages and
WSDL service
descriptions.

XML to
Ontology
mappings.

SIBs and
hierarchical
parameters

automatically
generated from
WSDL service
descriptions.

XML to SIB
parameters
mapping.

Ontologies
partially
generated from

RosettaNet
messages and
WSDL service
descriptions.

Ontology to
Ontology
mappings

Data mediation

Runtime

aspects

Mappings

execution on
the instance
level.

Mappings

execution on
the instance
level.

Reflected into

the hierarchical
parameter
structure of the
SIBs.

Mappings

execution on
the instance
level.

Design time
aspects

Defining
services
capability,
choreography
interfaces and
goal templates.

Behaviour
modelled as
Abstract State

Machines by
means of
transformation
rules.

Defining BPMN
model,
hypertexts and
constraints.

Behaviour
specified at a

high level of
abstraction is
transformed
into a hypertext
model for
further manual
refinement.

Defining a
workflow
explicitly
describing the
behaviour of
the mediator.

Behaviour
modelled in
terms of control
flow graphs
based on
fork/join
parallelism.

Defining a
workflow
explicitly
describing the
behaviour of
the mediator.

Behaviour
modelled in
terms of
interactions,
operation calls
and causality
relations.

Process
mediation

Runtime
aspects

Execution
based on
abstract state
machines and
transformation
rules defined
by

choreography.

WebML model
is transformed
into a WSMO
specification
and execution
is delegated to
a Semantic

Execution
Environment
(WSMX).

Model-to-code
transformations
are defined to
generate the
implementation
code and the
execution tree

is defined as
the unfolding of
the marking
graph of the
mediator.

Simulator tool
able to execute
the behaviour
models. In
addition, the
Mediator was
transformed

into a BPEL
process and its
execution
delegated to a
BPEL engine.

Behaviour correctness
No explicit
support.

No explicit
support.

Formal
verification
capability
based on
temporal logic
formulas

expressed in
mu-calculus.

Formal
verification
capability
based on ISDL
techniques.

Suitability of design concepts

Appropriate
(mediators,
goals, services
and
ontologies).

Sufficient, but
not intuitive
(pages, units,
hypertexts, and
links).

Appropriate
(Service
Independent
Building Blocks
and
hierarchical
parameters).

Appropriate
(Goals,
operations and
Interactions).

Level of effort required to
drive changes*

*Assessed by peer reviews at the SWS
workshops.

Low
(level 3)

Low
(levels 3)

Medium
(level 2)

Not evaluated

Table 1: Comparison of the described approaches.

The profiles presented in Table 1 illustrate that, while the primary aim of the four

approaches summarized above is to solve the mediation problem described by the

SWS Challenge, their realization differ in several important aspects.

The WSMO approach reflects its four top elements by explicitly modelling goals,

mediators, services and ontologies. Ontology-to-ontology mediation is achieved

through the design and implementation of adapters specifying mapping rules between

ontologies. The approach stresses the importance of the mediators, treated as first

class citizens, as the core concepts to describe elements that overcome interoperability

problems. Goals are described as requested capability and requested interfaces. From

the perspective of a Goal description, the capability describes the functionality that

the owner of the Goal wishes to achieve from a Service. Analogously, the capability

of a Service describes the functionality offered by that service. The approach focus

was on modelling semantically enhancing Web Services description, services requests

(expressed as goals) and mediators. The adopted goal-oriented paradigm facilitates

the Web Service's discovery by a potential client, the selection of the most appropriate

service for a certain task, the actual invocation of a service and the composition of

multiple services for accomplishing a common task.

On the other hand, the other approaches focus more on the modelling of the

mediator internal logics. The WebML approach starts modelling a BPMN workflow,

specified at a high level of abstraction. This model is then transformed into hypertext

diagrams, representing the service execution chains, and need to be refined later by

the designer. The design concepts provided by the hypertext diagram, originally

developed in the context of conceptual modelling of Web pages and applications,

were adapted to the mediation purpose and showed to be sufficient to model a

mediation solution, but not in an intuitive way. The data mediation is handled by

Adapter units that are configured by a proper XSLT stylesheet that transforms

messages in an XML format compatible with WebML’s internal ontology format.

The jABC approach automatically imports basic service types (called SIBs,

Service-Independent Building Blocks) from the WSDL service descriptions. The

designer is then responsible for the specification of the behaviour models, defined as

SLGs (Service Logic Graphs), by composing the reusable building blocks into (flow-

)graph structures. Behavioural properties of the modelled business logic can be

expressed as logic formulas and the provided model, which describes the mediator

behaviour, can be analysed in early stages of the design process to check the

correctness with respect to its specification. Formal verification capability of the

service models is greatly appreciated since it simplifies debugging complex processes

directly on the model, possibly reducing development cycle time and increasing

robustness of the system. The approach handles data mediation by mapping the

structure prescribed by the original WSDL service description into hierarchical SIB

parameters (additional semantic properties attached to the SIBs). A derivation of an

executable mediator from these models is obtained by applying model-to-code

transformations.

Similarly to the WSMO approach, the COSMO approach employs ontologies as

the underlying information model. This allows for reasoning to assess whether the

relations defined between classes and properties are violated at the instance level or if

a common interaction result can be established by matching input and output services

parameters. Based on the selected match, the signature for the required data

transformation can be obtained automatically. In particular, the approach focuses in

applying reasoning techniques to automate parts of the mediator design process. The

mediator behaviour is specified as a workflow explicitly modelling interactions

between services, operation calls and causality relations between then. Formal

verification and analyse of the behaviour models is also supported. The simulator tool

is able to execute the behaviour models by performing real web service invocations

and incorporating the results that are returned by web services into the simulation. In

addition, the Mediator was transformed into a BPEL process and its execution

delegated to a BPEL engine.

The level of effort required to adapt each mediator solution to cope with the new

changes proposed to the mediator scenario has been assessed by peer reviews at the

SWS workshops. For practical reasons, these assessments were adopted and

incorporated in our comparison study. There are four possible levels of success that

evaluate the transition of the designed solution from one problem level to another.

The initial mediation scenario, described in section 2, corresponds to level 0 (static

mediation). On top of this static scenario were added various levels, each

corresponding to a general kind of problem, and each with sublevels of complexity. In

this sense, a higher evaluation success level indicates a better solution to the problem

level transition. Since the COSMO team only participated in the first edition of the

workshop, their solution has not been assessed by peer review yet.

6 Conclusion

In this paper, we have presented a framework for comparison of data and process

mediation approaches. The proposed framework establishes a common set of criteria

that provide basic guidelines for the evaluation process, enabling a more

comprehensive understanding of existing mediation approaches by exploring and

making more explicit their possibilities and limitations. In order to assess the features

and aspects defined in our framework, the DESMET method for Feature Analysis has

been used. This type of analysis identifies an evaluation as a quantitative or

qualitative evaluation. In particular, our framework involves both objective and

subjective elements and the assessment to which the approaches provide the required

features was based on literature review and personal opinion.

As a case study, we applied our framework to perform a comparative analysis of

four approaches aimed to solve the mediation problem described by the SWS

Challenge. The mediation scenario is pretty close to a real world integration problem

involving data and process mediation and has showed to be complex enough to stress

the compared solutions. In addition, by applying our framework, we could expose and

evidence the advantages and drawbacks of each approach and show that their

realization differs in several important aspects.

With our framework, we hope to help the SWS Challenge community by

describing and comparing these approaches and providing a comprehensive overview

about the underlying concepts, assumptions and promising practices of each

approach, including methods, principles and techniques involved in data and process

mediation tasks.

Acknowledgments

This work is part of the Freeband A-MUSE project. Freeband is sponsored by the

Dutch government under contract BSIK 03025.

References

1. Petrie, C., Margaria, T., Käuster, U., Lausen, H., Zaremba, M. (2007): SWS Challenge:

status, perspectives and lessons learned so far. In Proceedings of the 9th International

Conference on Enterprise Information Systems (ICEIS2007), Special Session on

Comparative Evaluation of Semantic Web Service Frameworks, Funchal, Madeira-

Portugal.

2. Kitchenham, B. (1996): DESMET: A method for evaluating Software Engineering

methods and tools Technical Report TR96-09. Department of Computer Science,

University of Keele, Staffordshire.

3. M. Brambilla, I. Celino, S. Ceri, D. Cerizza, E. Della Valle, F. M. Facca (2006): A
Software Engineering Approach to Design and Development of Semantic Web Service

Applications, In Proceedings of the 5th International Semantic Web Conference (ISWC

2006), Athens, GA, USA, 5-9 November 2006, LNCS 4273, pp. 172-186.

4. White S. A. (2004). Business Process Modeling Notation (BPMN), BPMI.org,

http://www.bpmi.org/ bpmi-downloads/BPMN-V1.0.pdf

5. S. Ceri, P. Fraternali, and M. Matera (2002): Conceptual Modeling of Data-Intensive web

Applications. IEEE Internet Computing, 6(4).

6. D. Roman, U. Keller, L. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres, C. Feier,

C. Bussler, and D. Fensel (2005): Web Service Modeling Ontology, Applied Ontologies,

vol. 1, pp. 77-106.

7. Mocan, A., Moran, M., Cimpian, E., and Zaremba, M. (2006): Filling the gap - extending
service oriented architectures with semantics. In ICEBE, pp. 594-601. IEEE Computer

Society.”

8. de Bruijn, J. , H. Lausen, A. Polleres, D. Fensel (2006) The Web Service Modeling

Language WSML: An Overview. In Proceedings of the 3rd European Semantic Web

Conference (ESWC 2006), Budva, Montenegro: Springer, LNCS 4011.

9. Steffen, B., Margaria, T., Nagel, R., Jörges, S., and Kubczak, C. (2006). Model-Driven
Development with the jABC. In Proceedings of Haifa Verification Conference, LNCS

N.4383. Springer Verlag.

10. Müller-Olm, M., Schmidt, D., and Steffen, B. (1999). Model-checking: A tutorial

introduction. In SAS, 6th In: Static Analysis Symposium, LNCS N.1694, pages 330–354.

Springer Verlag.

11. Dick A. Quartel , Maarten W. Steen , Stanislav Pokraev , Marten J. Sinderen (2007):

COSMO: A conceptual framework for service modelling and refinement, Information

Systems Frontiers, v.9 n.2-3, p.225-244.

