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Abstract. In this paper a suryey is given of the important steps in the de-
velopment of discontinuous Galerkin finite element methods for hyperbolic
partial differential equations. Special attention is paid to the application of
the discontinuous Galerkin method to the solution of the Euler equations
of gas dynamics in time-dependent flows domains and to techniques which
reduce the computational complexity of the DG method.

1. Introduction

Finite element methods provide a well developed mathematical framework
for the solution of elliptic partial differential equations. For an extensive
survey, see for instance (Ciarlet and Lions, 1991). This has motivated the
use of finite element methods also for the solution of hyperbolic partial dif-
ferential equations, but this is not as straightforward as for elliptic pde's. A
significant source of problems is caused by the fact that hyperbolic partial
differential equations can develop non-smooth solutions, even if the initial
data are very smooth. The standard Galerkin finite element discretization
for hyperbolic partial differential equations results in oscillatory solutions
around discontinuities and complicated stabilization and discontinuity cap-
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turing operators are necessary. These methods have resulted in Petrov-
Galerkin, streamline upwind Petrov Galerkin (SUPG), and more recently
Galerkin Least Squares (GLS) finite element methods. Important contri-
butions to the development of these methods can be found in the series
of papers of (Masud and Hughes, 1997; Shakib, Hughes and Johan, 19g1;
Hansbo and Johnson, 1995; Johnson, Szepessy, and Hansbo, 1990) and the
references therein.

Discontinuous Galerkin finite element methods provide an interesting
alternative to these methods and combine many of the advantages of finite
volume and finite element methods. The concept of discontinuous Galerkin
finite element methods has been known for quite some time, and dates
back to the early 70s for hyperbolic partial differential equations, but only
recently have discontinuous Galerkin methods been applied to real applica-
tions. The recent interest in discontinuous Galerkin methods is motivated
by the need to develop more accurate numerical discretizations on unstruc-
tured adaptive meshes, and to use higher order accurate discretizations
for acoustic problems and the direct and large eddy simulation of turbu-
lent flows. The growing interest in discontinuous Galerkin methods was one
of the motivations to have a special conference on this tooic in Newnort.
Rhode Island, 1999.

The recent interest in discontinuous Galerkin methods is motivated by
some interesting features of this discretization technique. Discontinuous
Galerkin finite element methods use a local polynomial representation of
the solution and test functions in each element, without requiring conti-
nuity across element faces. This results in equations for the polynomial
expansion coefficients of the solution which are uncoupled from neighbor-
ing elements. An important benefit of this approach is that for higher order
accuracy it is not necessary to use complicated reconstruction algorithms
to obtain pointwise data from cell averaged data for the flux calculation,
as is necessary for finite volume methods. Discontinuous Galerkin methods
result in a very local discretization and combine well with grid adaptation
using local grid refinement, and parallel computations.

Discontinuous Galerkin methods make it possible to incorporate suc-
cessful upwind schemes into finite element methods, because the discon-
tinuity in the polynomial representation at the element faces can be in-
terpreted as a Riemann problem, which is a Cauchy initial value problem
with two discontinuous initial states. The use of (approximate) Riemann
solvers makes it possible to incorporate important physical information into
the numerical discretization and results in a robust upwind scheme, which
has become very popular for upwind finite volume techniques. An excellent
survey of these methods can be found in (Toro, 1997). Another interesting
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feature of discontinuous Galerkin finite element discretizations is that they
result in an element-wise conservative scheme, whereas SUPG and Galerkin
least squares methods only result in globally conservative schemes.

The outline of this paper is as follows. First a survey is presented of
the main aspects of discontinuous Galerkin finite element methods for hy-
perbolic partial differential equations. An attempt will be made to give a
critical assessment of discontinuous Galerkin methods, but limited ,pr""
prevents discussing all aspects in great detail. Recent detailed surveys of
discontinuous Galerkin methods can be found in (Cockburn, 199g; cock-
burn, Karniadakis and shu, 2000; Barth, lggg). In the second part of this
paper it will be demonstrated how the discontinuous Galerkin finite element
method can be used to solve the Euler equations of gas dynamics in time-
dependent flow domains using translating-rotating reference frames. This
technique is useful to simulate aerodynamic problems, such as aircraft ma-
neuYer and propellers. The straightforward use of a discontinuous Galerkin
method results, however, in a prohibitively expensive numerical scheme and
special attention will be paid to techniques which significantly reduce the
computational complexity of discontinuous Galerkin methods and result
in a practical algorithm for computational fluid dynamics. The discussion
in this paper is mainly limited to discontinuous Galerkin discretizations
in space in combination with a Runge-Kutta time integration method. A
discussion of the time-discontinuous and space-time discontinuous Galerkin
methods is beyond the scope of the present paper.

2. Survey of Discontinuous Galerkin Methods

Discontinuous Galerkin finite element methods have been around for a long
time. Their application to elliptic second and fourth order problems already
started in the early 1960's, for a brief survey see (oden, Babuska, and Bau-
mann, 1998). The application to hyperbolic partial differential equations
started much later with the work of (Reed and Hill, 1923) for the neutron
transport equation for the flux of neutrons u(x) e R2:

div(pz) +ou:f ,

' t1, :0,

x€CICR2,

at E-Q,

with p a constant vector, d-Q the part of the boundary of) with p.n ( 0,
with n the outward normal vector at do, and o € R. This equation is linear
and can be solved by a marching scheme if the elements follow the char-
acteristic lines. The first theoretical analyses of the discontinuous Galerkin
method were presented by (Lesaint and Raviart, lgr4) and (Johnson and
Pitkardnta, 1986) for the neutron transport and linear advection equations.
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The application of discontinuous Galerkin methods to non-linear scalar
hyperbolic conservation laws:

01u * 0,f  (u) :  g,  (r , t )  e 'R x (0, 
")

is more complicated because the marching scheme cannot be applied in
general, since the direction of propagation (1, f'(")) is part of the solu-
tion. Chavent and Salzano (1982) presented the POPI-DG method for the
one-dimensional water flooding problem with gravity. This method uses a
piecewise constant polynomial representation in time and a linear repre-
sentation in space. This explicit scheme can be easily extended to more
spatial dimensions, but has a severe stability restriction and is not suitable
for practical calculations.

A significant step forward was made by (Chavent and Cockburn, 1989)
which introduced a monotonicity preserving slope limiter, similar to the
MUSCL scheme of (van Leer, 1974), and the use of a Godunov flux to
account for the discontinuities at element faces. They proved that the
scheme satisfies a maximum principle and is total variation bounded in
the means (TVBM). Linear stabiiity analysis however shows that the nu-
merical scheme is only stable if the CFL number satisfies the condition

cn = O(hi) as the element length h I 0.

This time step limitation can be alleviated by using the total vari-
ation diminishing Runge-Kutta schemes introduced by (Shu and Osher,
1988). This has been the topic of a series of papers by (Cockburn and
Shu. 1988; Cockburn and Shu, 1989a; Cockburn, Lin and Shu, 1989b;
Cockburn, Hou and Shu, 1990; Cockburn and Shu, 1991) in which they
studied the RI{A|IPk method. The .RKAIIPk method is a combination of a
TVD Runge-Kutta time integration method with a discontinuous Galerkin
finite element discretization in space using polynomials of degree k. The
local projection limiter AII is usbd to ensure monotonicity of the solution.
It was shown by (Cockburn and Shu, 1988; Cockburn and Shu, 1991) that
this method is stable and second order accurate in space and time for k : 1
when applied to scalar conservation laws and if the CFL number is cho-
sen in the range cfl e [0, ]]. Cockburn and Shu extended the analysis of

the ,RKAfIP& method to polynomials of degree k > 7 in (Cockburn and
Shu, 1989a) and showed that this method is TVBM and converges to the
entropy solution for the scalar conservation law. The order of accuracy of
the RKAIIPft method is k + 1, except at critical points. Special attention
is paid to the design of a TVB limiter in order to minimize the effects
of the limiter in smooth parts of the flow. The use of a TVB limiter for
practical applications is, howevet, not straightforward since it is difficult to
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estimate the coefficients in the limiter, which depend on the derivatives of
the solution and the mesh size.

The extension to one-dimensional systems is discussed in (cockburn,
Lin and shu, 1989b), where the application to the Euler equations of gas
dynamics is discussed in detail. Special attention was paid to the construc-
tion of the slope limiter and the most successful and robust approach uses
the characteristic decomposition, which essentially decouples the equations
in a system of scalar conservation laws. The theoretical framework of the
discontinuous Galerkin discretization for multi-dimensional scalar conser-
vation laws, in combination with the TVD Runge-Kutta time integration
method, was firmly established in (cockburn, Hou and shu, 1gg0). Their
main results can be summarized as:

- If the quadrature rules for the flux integrals over the element faces
and volumes in the discontinuous Galerkin discretization are exact for
polynomials of degree 2k + 1 and 2k, respectively, then the difference
between the discrete approximation L6(u7,.,th) of -divf(u) (including
the boundary operator yr) can be estimated as:

l l  Ln(un,^th) + divf(z) l l r -(n) < Chk+rl f  (u) ls,n+z*1a1,

with f the flux function in the multi-dimensional scalar conservation
law 0p + 0"f (u) : 0 and Wk'p(Q) the Sobolev seminorm, see for
instance (Ciarlet and Lions, 1gg1).

- Let the coefficients a41 of the Runge-Kutta time discretization be pos-
i t ive and such that Di=to, :  1,  fo l i  :  I , . . . ,k *  1.  Set u)h :
un* LtLn(un,jh), and suppose that the following maximum principle
is satisfied:

un,-yn e [a,  b]  ]  ton € [o -  Mh2 ,b + Mh\,  (1)

where M is some nonnegative parameter and a overbar denotes the
element mean value, then:

uft  e la -  (k + t )mM h2,b + (k + 1.)rnM h2l , form :0, . .  .  , f l .

if cfl e [0, cfls/l-*,,1{l Hln. The coefficients cfl6, os and bs are defined
AS:

cflo - sup_ 
--__ 

At# l l  f , .r,  l lz,-1,6,a61,
n-I , . . . ,Nie€6K;KeTn l1\ l

0o 
*€o,t€(01il1' ),".an{'o 

(*) 
' 
'Y(t'Y)} 

'
bo :  sup {,ro(*) , .y(t ,y)} ,

x€f),r€(0,t4+1),y€ar)
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with lel and lKl the length of the edges and the volume of element 1(
with unit outward normal vector n. This result shows that the com-
bination of a TVD Runge-Kutta time integration method and a slope
limiter satisfying a TVB condition results in a stable discretization
with a reasonable CFL number restriction. The use of a TVD Runge-
Kutta time integration method is essential and results in a very robust
discretization. If one uses Runge-Kutta schemes which are not TVD
then the numerical scheme will suffer from severe stabiiity restrictions.

- For a general class of triangulations (B-triangulations) a AlI7, projec-
tion was defined which satisfies the maximum principle (1).

The series of articles of (Cockburn and Shu, 1988; Cockburn and Shu,
1989a; Cockburn, Lin and Shu, 1989b; Cockburn, Hou and Shu, 1990;
Cockburn and Shu, 1991) give the discontinuous Galerkin finite element
method in combination with a TVD-Runge Kutta time integration method
a solid mathematical background. The first applications to two-dimensional
problems can be found in (Bey and Oden, 1991), which applied the method
to the supersonic flow about a compression corner and a forward facing
step. Special attention was paid to the local projection limiter for higher
order elements, but the limiter resulted in significant smearing of disconti-
nuities. (Lin and Chin, 1993) used a second order discontinuous Galerkin
discretization for the Euler and Navier-Stokes equations and applied the
method to the transonic flow in a channel with a circular bump and an
oscillating NACA 0012 profile.

The use of a discontinuous Galerkin finite element method to three-
dimensional problems, in particular in computational fluid mechanics, is
fairly recent. As mentioned in the introduction this is motivated by the
very local behavior of the discontinuous Galerkin discretization, which
makes it a good candidate for use on unstructured meshes. In a series
of articles (van der Vegt, 1995a; van der Vegt and van der Ven, 1995b;
van der Vegt and van der Ven, 1998a) demonstrated that the discontinu-
ous Galerkin method can be used for practical aerodynamic calculations in
combination with grid adaptation using local grid refinement. Calculations
on the ONERA M6 wing and a delta wing, both in transonic flow, showed
that significant improvement in the capturing of shocks and vortical struc-
tures can be obtained. Also, a face based dynamic data structure, suit-
able for an adaptive discontinuous Galerkin discretization, was discussed
and implemented. A general discontinuous Galerkin method for arbitrary
Lagrangian Eulerian hydrodynamics was developed by (Kershaw, Prasad,
Shaw and Milovich, 1998). Special attention was paid to the development
of a slope limiter and it was demonstrated that DG methods combine very
well with object oriented programming.

rs
bafi

flru

simDL

and
with p
flux
This

Tbnflid
the Euhrydd
accurate dmmm
degree ft = ,,umt



DISCONTINUOUS GALERKIN METHODS 991

Three-dimensional applications, both for the Euler and Navier_stokes
equations in combination with local grid refinement, are also demonstrated
by (Baumann, 1997; Baumann and oden, lggg), which studied the shuttle
orbiter at a Mach number of 7.4. The rnost important contribution in this
work is, however, the theoretical analysis of discontinuous Galerkin methods
using broken spaces and the extension to the Navier-stokes equations, see
also (oden, Babuska, and Baumann, 1g9g). This theoretical analysis is
closely linked to the work of (Bey and oden, 1996), which presented a very
complete a posteriori error estimate for the neutron transport equation.

The application of discontinuous Galerkin finite element methods to
three-dimensional problems requires, however, significant improvements in
computational efficiency in order to be practical. The most significant com_
putational expense is the use of Gauss quadrature rules for the calculation
of the element face and volume integrals, because this requires for each
Gauss quadrature point the calculation of the flux. Severai approaches to
alleviate this problem have been proposed. Ifonly second ordei accuracy is
required (van der vegt and van der ven, 199ga) demonstrated that using
special element and face averages, in combination with the exact calculation
of the geometric contributions, results in a practical second ord.er accurate
scheme. This method reduces the number of flux evaluations to one per
element face and is analyzed in (van der vegt and van der ven, 1g9ga:
van der vegt and van der ven, 2000; van der ven and van der vegt, 2000).

An alternative approach, which is not limited to second order accuracy,
is followed by (Atkins and shu, lggg). They expand the flux in terms of the
basis functions used to represent the solution and integrate this represen-
tation analytically. This results in a significant reduction in the number of
flux evaluations, but due to the non-linearity of the flux, and also because
contributions of p-r are required, it is not possible to obtain an exact rep-
resentation for the flux. Also, the use of more advanced. upwind schemesls
non-trivial and Atkins and Shu therefore limit themselves to the relatively
simple Lax-FYiedrichs flux. The flux integrals for the Euler equations of gas
dynamics can also be evaluated with the procedure used by (Lowrie, R"o",
and van Leer, 1995) which uses the parameter vector w : 

'/p(I,u, 
H)T',

with p the density, u the fluid velocity, and rl the total enthalpy. The
flux vector and conservative variables then are quadratic functions of w.
This method, however, requires a significant amount of storage for all the
coefficients and is also difficult to use for advanced upwind schemes.

The application of the Runge-Kutta discontinuous Galerkin method to
the Euler equations of gas dynamics in two-dimensions using a higher order
accurate discretization is investigated by several people. polynomials of
degree k : I and k : 2 are used by (Cockburn and Shu, lggga), which
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show that the discontinuous Galerkin discretization is capable of capturing
very fine details in the instability in the contact discontinuity inside a double
Mach reflection and also behind a forward facing step. Discretizations up
to fourth order accuracy were used by (Bassi and Rebay, 1997b), which also
demonstrated that a superparametric representation of the elements at the
boundary is necessary to prevent unphysical solutions. The use of higher
order accurate discontinuous Galerkin methods for acoustics is investigated
by (Hu, Hussaini, and Rasetarinera, 1999), which consider the dispersion
and dissipation properties of the DG method using Fourier analysis.

Recently, (Lowrie and Morel, 1999) demonstrated that discontinuous
Galerkin discretizations can be significantly more accurate than high res-
olution finite volume schemes for stiff hyperbolic systems. Discontinuous
Galerkin finite element methods also combine very well with parallel com-
putations as is demonstrated by (Biswas, Devine, and Flaherty, 1994; van
der Ven and van der Vegt, 1997; van der Ven and van der Vegt, 1998).

Despite the significant progress made in the development of discontinu-
ous Galerkin finite element methods there stil are a number of important
open issues. The two most important ones are the significant increase in
memory use for higher order discretizations and the effects of the limiter.
The use of a limiter prevents convergence to a steady state, because the
limited slopes do not satisfy the discretized equations and tend to grow
again, which results in limit cycle behavior. The limiter is also triggered by
small disturbances and tends to be active in large parts of the flow field,
causing a reduction in accuracy in smooth parts of the flow field. More
efficient stabilization techniques are still a topic of active research. The
memory use of DG methods rapidly increases with increasing order of the
polynomials. It can be reduced by using more sophisticated basis functions,
such as Legendre polynomials in one dimension, but for general elements
this still is an open issue.

3. Discontinuous Galerkin Discretization of the Euler Equations
in Moving Flow Domains

In the remaining part of this paper the discontinuous Galerkin finite el-
ement method will be applied to the Euler equations of gas dynamics in
three-dimpnsional time-dependent flow domains. The Euler equations of
gas dynamics are an important example of hyperbolic partial differential
equations, and the use of a discontinuous Galerkin finite element method is
non-trivial due to the occurrence of non-smooth solutions, such as shocks
and contact discontinuities.
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3.1. ALE WEAK FORMULATION OF THE EULER EQUATIONS

U_ ,  Et .  _
)  -J -

The calculation of the flow field in moving and deforming flow domains can
be done efficiently using an arbitrary Lagrangian Eulerian (ALE) formula-
tion. In this section we will discuss the ALE weak formulation for the Euler
equations of gas dynamics using translating-rotating coordinate systems.
This approach has important applications in several ur"ur, such as aircraft
maneuver and propellers. The ALE formulation, both for finite volume and
finite elements methods, is analyzed in detail by (Lesoinne and Farhat,
1996). special attention is paid to the geometric conservation law (GCL).
The GCL was formulated by (Thomas and l,ombard, 1gz9) and states that
a uniform flow field should remain uniform under mesh movement and de-
formation. This imposes restrictions on the way grid velocities are evaluated
in finite volume methods. For finite element discretizations the GCL condi_
tion can, however, be satisfied relatively easy if one calculates the element
integrals with sufficient accuracy.

The Euler equations of gas dynamics at a point (x, l) fixed in space and
time are defined as:

0U(x,  t )  EF;(U(x.  t ) )
a, * -- 

a"j

where the vectors with conserved flow variables u : .R3 x [t6, r] -+ Rs, and
the f lnxes Fi ,  ( j : I ,2,3);  F, : .R5 -+ -R5, are def ined as:

(:#) 0,r*:rr)
with i e {7,2,3}, and p, p, E denote the density, pressure, and specific total
energy' u6 the velocity component in the Cartesian coordinate direction r;
of the velocity vector u : f,) x [rs,z] J fi3, and d;; the Kronecker delta
symbol. The Euler equations are complemented with initial and boundarv
conditions:

U(x,  f6)  :  Uo(x),

U(x, t )  :  B( lJ, lJ. , t ) ,

x € f,)(ro),

te[ ts,?] ,x€dCI(f) ,

with rJ, the boundary operator, and the equation of state for an ideal gas
p : ('y - \)p(E - iuu), with 7 the ratio of specific heats at constant
pressure and volume.

Introduce a translating-rotating coordinate system orxrytzrrelative
to the inertial coordinate system osxlyszq. The relation between between
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points in both coordinate systems is:

x(r)  :  c(c)  x(1) *  r ( r ) ,  (2)

with C the rotation matrix between the inertial and rotating reference
frame, and r the position of the origin of the coordinate system OtXtYtZt
relative to OsXsYsZs. The superscript (1) indicates that a vector has com-
ponents relative to the coordinate systems OtXtYtZt, otherwise the com-
ponents are always with respect to O6XsYsZ0. The Jacobian of the trans-
formation between the two coordinate systems is equal to one. The flow
domain fl(l) becomes independent of time when expressed relative to the
translating-rotating reference frame OlXlYrh and is denoted 0(1). The
ALE weak formulation of the Euler equations can be obtained from the
general ALE weak formulation discussed by (Lesoinne and Farhat, 1996)
using the coordinate transformation (2):

Find a U e lI1(CI)lu, such that for all w € [C1(fr)]t, we have:

wr (x(1) )u(x(1), r)df)(1)

+ I  w"1x{1);1n*(x(r) ,  r )Ffr(U) -  n(x(1),  t )  .s( ; (1) ,  r )  U(x( i ) ,  f ) )d(0O(1);
J aetr)

- t  
awilX(1))1rr(u)ce*(r) - 

"[ ')1x(1),r) u(x(i),t))do(l) :  0. (3)
J0(1) 0"rr ' ,

The components of the normal vector n and grid velocity s : dxldt in

both coordinates systems are related urt 
"r[t) 

: Citeni utta 
"f;) 

: Cjnsj.The
use of a mixed formulation, with vectors having components in both the
inertial and the translating-rotating reference frame, has as main benefit
that the conservation form is maintained and no source terms, such as the
Coriolis and centrifugal forces, appear.

3.2. DISCONTINUOUS GALERKIN FINITE ELEMENT DISCRETIZATION

The flow domain 9(t) ir discretized using a triangulation fi, with elements
K. As basic elements in Tn we use hexahedrons and each of the elements
K e Tn is related to the cubic master element k : l-7,1]t by means of
the isoparametric transformation F6:

Fy :  * . :  (€,r t ,C)"  e lT -+ *(1) e 1{ :  x(1) (€,r t , ) :  f f  * j t )xo(*) ,  (4)
i-1

with rn6 : 8 for hexahedrons and X1 the standard tri-linear basis functions.
The discontinuous Galerkin discretization is now obtained using a sequence
a function spaces:

It is
are
the
witL
U1
the
to 4a

that '

wi th:

and th

with the

The eleroenm, n,nrrru

to the I"1 :llmlrrilllll"
discret ize: *rq::,llun

meanar ' ia i r , r l l r t t t l '



DISCONTINUOUS GALERKIN METHODS 995

- Define Pk @) as the space of polynomial functions of desree ( k on the
master element K: Pk(K):  span{/y,  j  :0, . . .  ,M}.  t r ,  t t i .  prp",  Uf
is restricted to 3, so the four basis functiors /1 ur", $i - 1,4, n,C,(j :
0, . . . ,3) .

- Define Pk 6) as the space of functions associated to functions in
Pk(k) through the mappinS Fx: pk@): span{fu :  6j  o F,I ,  j  :
0," ' '3) .

- Define Vh@) : {P(lf) : (pt,. . . ,ps)r I n; e er 1Xyy.
It is important to realize that the polynomial expansions in each element
are purely local without any connection to neighboring elements. This is
the main difference of the discontinuous Galerkin finite element method
with standard node based Galerkin methods. The approximate flow field
rJ6 can be defined using the basis functions fi, but for the definition of
the slope limiter and the multigrid convergence acceleration it is beneficial
to split rJ6 into an element mean rJl, and a fluctuation tlr.'ttir can be
accomplished bv splitting vl(ta) into two spaces: vBrzrl ana vl(r<), such
that:

vL@): Vfl(n) evl1x\,

VB(tr)  :  {p(1()  :  (pt , . . . ,ps)r lpt€ p0(K)} ,

vl f l r l  :  {p( t f )  :  (pt , . . .  ,ps)r l  l * roo* 
:0,pr € p1(K)} .

The element mean flow field oi, e vB(r) a ct[0,?] can now be defined
AS:

unft) :+/ t (* , ' , , t )d,K,
I I \ I  JK

and the flow field fluctuations U7, e VLIXI B Ci [0, ?] as:

un1*tr l ,  r)  :  u7,(x{r),r)  -  Ua(r) :  i  t^(K,t)rb^(*(r)) ,
nt:1

with the basisfunctio\s 4)* € P|6) defined as:

with :

The element mean and fluctuating flow fields are orthogonal with respect
to the ,L2 inner product, and this relation can be used to simplify the
discretized equations. The test functions W7, are also split into an element
mean and a fluctuating part, Wr, € VontXl and W7, € V;(K).

, ,b^6@): 4-1x(r) ;  -  
# f  *0, {*r ' r )o*,  m: r ,2,J.



The discontinuous Galerkin finite element discretization for the Euler
equations in a translating-rotating reference frame is obtained if we intro-
duce the polynomial representations for O7, and fl7r, and the equivalent
expressions for the test functions W6 and W6, into the weak formulation
(3),

, , . ,  d(J;(K) f
lKl . . ; -  :  -  

Jun@nFe*(Un) 
-  npspUa)d(?K) :  -Re(K) (5)

^r  
d,U*t(K) _ f

, , ,n,n 
dt  

-  -  
Ju*6n(nrFin(Un) 

-  nnsnUt)d(?K)

. [.- y#(ro,1vn1c,t (t) - "f)uo)ax + ]rm^o41x1,J K 6rt ' t  
t '  ,  l / t l

(6)

with the matrix 14 E Psx3 defined as:

J.J.W, VAN DER VEGT ET AL.

6"d,.dK.

The equation for the element mean flow field Un (5) is identical to the
equations for a finite volume discretization and is only weakly coupled with
the equation for the flow field fluctuations (6). The mass matrix of the mov-
ing elements in the translating-rotating flow domain needs to be calculated
only once since the grid is not deforming. An analytic expression for the
mass matrix can be found in (van der Vegt and van der Ven, 1998a). For use
in the time integration method and the multigrid convergence acceleration
scheme it is beneficial to express (5) and (6) symbolically as:
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M,^(K):  I
JK

I4+u, :  R*( lJ i l )  m: 0,  " '  ,3
dt

with M 6 Paxa defined as:

(7)

M:l lKl  o l' t 'L-  |  o Ml '

4. Flux Calculation

The discontinuous Galerkin discretization results in expressions for the flow
field U7, and test functions W7, which are discontinuous at element faces.
This discontinuity can be interpreted as a Riemann problem from gas dy-
namics and can be used to give a suitable definition for the flux at the

lu**
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element boundary dr{. This is accomplished by replacing the flux func-
tion with a numerical flux. Any of the well-known (approximate) Riemann
solvers, such as those from Godunov, Roe, Lax-Friedrichs or osher, can be
used in the definition of the numerical flux. For an overview of (approxi-
mate) Riemann solvers for gas dynamics, see (Toro, lggz). This procedure
introduces upwinding into the discontinuous Galerkin formulation and does
not require the design of elaborate stabilization and discontinuity capturing
operators.

In this paper the osher scheme is used because it is a very accurate
upwind scheme with good shock capturing capabilities. More details can
be found in (osher and chakravarthy, 19g3). The main difference in calcu_
lating the osher flux for moving elements in comparison with non-moving
elements is that the eigenvalues used in determining the path integrals ii
phase space must be corrected for the grid velocity. Mor" details can be
found in (van der Vegt and van der ven, 2000). Th; osher flux for moving
element faces can be split into the standard osher flux for non-moving grids
H and a part directly related to the grid velocity:

Hc(Uft(r() ,  U;. t (r())  :  t ( , r i . r (") ,1-1.e"t(n);  _ n .s G(U; ' I (K),  U;. t(r()) ,

where the flux vector G is obtained bv replacing the normal flux vector
n4F6(U) in the Osher flux with U7,.

If only second order accuracy is required then the flux integration does
not require Gauss quadrature rules and can be done using special face and
element flux averages, after which the geometric contributions can be calcu_
lated analytically or numerically. This method was proposed and analyzed
by (van der vegt and van der ven, 1g9ga; van der vegi and .,ran de. i/err,
2000) and is briefly described below. The main benefit of this method is that
only one flux calculation for each element face is necessary and relatively
simple and exact relations for the geometric contributions are obtained,
which automatically satisfy the GCL.

The integral of the numerical flux If" over the
approximated using the following approximation to
the element boundarv E1{:

element faces can be
the flux integrals at

fu* o^t"oo =;("r(uil','); + rr1uff,(i())) 
lu* d^,id(aK) -

;(; |,,@ntar) 1,.o"d@K) -

c(u;'t(r(), U;,.t(fr')) 
Iu* d,n . s d(LK).
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The integral along lo uses a path in phase space betw"un Ui"t(^) urrd

U;.t(r(). For details, see (Osher and Chakravarthy, 1983). The flow states

Uitt"l and Ufft(n) in th" element face are defined as:

1

oi't(rl : #(unt*)+ t rJ,n,x [^,,r1,,,,*a{an)l1{ '1.  
^- : t  

JaK

.3

uf,. ' (r t  :  +(un4')+ t ' -  
t  "^-- ' \

r , t ( l \  
^7rum'K'Ju*! tm'K'd\o6)) '

with K/ the index of the element connected to element K at the 0K. The
suffices K and K' of ,b*1*tr)l refer to the limit of r/-(x(t); taken from the
interior and exterior of element K at the boundary 0K, respectively.

Analytic expressions for the element face moments ,[u^ $nnidK are
given in (van der Vegt and van der Ven, 1998a). The flux contribution
at element faces which is related to the body motion is evaluated using the
representation for the velocity of a point in the moving reference frame:

s(t)  :  
#:"Al  +u(t)  X 16: ' ' r ( r ) ( t )  +t . l ( l ) ( t )  x 

" !1) ,

with v the velocity vector of the origin of the moving reference frame, ur the
angular velocity vector of the moving reference frame, and 16 : X-Xb a vec-

tor pointing from the center of rotation x6 in coordinate system O1XyY121
to a point x in this reference system. Introducing the representation for the
grid velocity s into the approximation of the element face flux integrals we
obtain:

The volume flux integrals in (6) are calculated analogously:

1.ffi.s(1)ui,dK = u6(.,[1) I-ffioK +uo) . I*,t' " ffiax)
The advantage of this splitting is that we can calculate the contribution of
the grid velocity to the fluxes exactly and therefore automatically satisfy
the geometric conservation law. The geometric integrals can be calculated
analytically or can be found in (van der Vegt, 1998b).

5. Slope Limiter

The discontinuous Galerkin finite element method requires a slope limiting

algorithm to obtain monotone solutions. A local projection limiter, which
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guarantees monotonicity for multi-dimensional scalar equations, was de_
rived by (Cockburn, Hou and Shu, 1990). Several alternative multi-dimension-
al limiters have also been proposed which attempt to minimize the loss in
accuracy caused by the limiting process, but they are difficult to apply to
hexahedral elements. In this paper the Barth and Jespersen slope limiter
with the modifications proposed by (venkatakrishnan, lggs), is used., be-
cause it results in a robust formulation and is easy to apply to hexahedral
elements. The limiting_operator na(ur,) € [0,1] is applied directly to the
flow field fluctuations LJlr, because the element mean flow field uTr lemains
unchanged by the limiter: IIr,(Or,) : Un.

6. Implicit Time Integration

Calculations of unsteady flows frequently suffer from a large disparity be-
tween the physically relevant time scales and the time step limitations
imposed by the stability constraints of explicit time integration methods.
These limitations can be alleviated for the discontinuous Galerkin method
presented in this paper by using a three-point backward implicit time in-
tegration method to integrate the semi-discrete equations (z) in time. The
resulting set of non-linear equations is solved by augmenting these equa-
tjo_ns with a pseudo-time derivative of the flow field expansion coefficients
?u*l0r and marching the solution to a steady state in pseudo-time:

ATT

T: L^(t^,v?^,uk-'),
with:

L,n(t 
^,fi?,,uk't ) 

: R^(rJ il - M (|tt ̂  
- zuk + !u|-t) 1 xt,

and Af the global time step. At steady state the new solution then is
equal to vT'.This technique was first proposed by (Jameson, 1gg1), and
made unconditionally stable by (Melson, Sanetrik and Atkins, lgg3) for the
Jameson scheme.

The equations in pseudo-time r are integrated using the third order ac-
curate TVD Runge-Kutta time integration method from (Shu and osher,
1e88):

1. Set Ufl) : Ul,
2. Foli : 1,2,3 compute the intermediate Runge-Kutta stages:

oL4

(8)

: 
" 

(I @*vH * gnar;^ru},vk,ttn-')))
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3. Uh+t: Oi"
The coefficients in the TVD Runge-Kutta scheme are equal to: o1s :
I ,azo _ | ,or ,  :  t ,oso :  1,o",  :  l ,pn :  l ,gzr :  i ,gsz:  J-Lnd
zero otherwise. This Runge-Kutta scheme is stable for CFL numbeis less
than one, but all calculations discussed in this paper have been done us-
ing a cFL number of 0.7. The convergence to steady state is accelerated
using the FAS multigrid scheme proposed by (Brandt, 7977). The restric-
tion operator uses volume weighted averages and the prolongation operator
pure injection. The FAS algorithm is only applied to the element mean flow
field. The application of the FAS scheme to the equations for the flow field
fluctuations has not been successful, because the corrections in the flow
field fluctuation expansion coefficients caused by the limiter disturb the
multigrid process. Also, the restriction and prolongation operators are con-
siderably more complicated for the flow field fluctuations for hexahedral
elements.

7. Applications

The discontinuous Galerkin finite element discretization is tested by sim-
ulating the unsteady flow field about a generic wing, called simple strake
wing (SIS). The wing consists of two parts, an outer part and a strake
connected to it and represents a generic model for a fighter aircraft. The
mesh used for the calculations consists of 189184 grid points with hex-
ahedral elements. The wing is oscillating in pitch with a mean angle of
attack a : 6.1.57" and amplitude Aa : 2.741" . The oscillating frequency is
w : 0.241 and the free stream Mach number M* :0.899. The simulations
were started by first calculating the steady flow field at an angle of attack
a : 8.298", see Fig. 1. The flow field has a shock close to the trailing edge
and a lambda shock from the junction of the strake with the leading edge
of the wing to the wing tip. Both the strake and outer wing generate a
vortex system, which merge in the far wake. This vortex system produces
significant additional lift. The hysteresis curves of both the lift coefficient
Cr and the drag coefficient Cp are plotted in Fig.2. In these fi.gures also
the results of experiments and the effect of different time steps (20 and 40
time steps per period), mesh size (one time coarsened:C and fine:M) in
the simulation are plotted.

Figure 2 shows that the hysteresis effects are small for this specific
condition. The comparison of the induced drag force with the experiments
is good, whereas the lift force in the calculations is slightly overpredicted,
as can be expected from inviscid flow simulations. Fig. 3 shows the zeroth
harmonic and the real and imaginary part of the first harmonic of the
pressure coefficient at the spanwise location ylb:0.5, with b the wing
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Figure 1. Steady pressure field on Simple Strake wing and total pressure loss in the
wake (a : 8.298", M* - 0.899).

span, for both the experiments and the numerical results for different time
steps At and mesh size (one time coarsened:C and fine:M). Apart from
the position of the shock the agreement is generally good. These simulations
show that discontinuous Galerkin finite element discretization can be used
for practical aerodynamic calculations, which until now have been done only
in a few cases) see (van der Vegt, 1g95a; van der Vegt and van der Ven,
1995b; van der Vegt and van der Ven, 1998a1 Baumann, IggT; Baumann
and Oden, 1999).

8. Conclusions

Discontinuous Galerkin methods combine many of the nice features of finite
volume and finite element methods and can be developed into algorithms
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21i! r520

Figure 2- Hysteresis curves for lift force Cr and drag force Co (a : g.2gg.,
M- :0.899).

Figure 3. Position of cross-section and zeroth harmonic and real and imaginary part
of first harmonic of the pressure coeficient Cr, (o : 6.152", La : 2.1,47" ,"u :"0.b4I,
M* :0.899).

suitable for complicated CFD calculations. In this paper only hyperbolic
partial differential equations have been discussed, but presently there is
also a significant development of DG methods for elliptic and parabolic
partial differential equations. Extensions of the DG method to the solution
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of the Navier-Stokes equations can for instance be found in (Cockburn and
C.-W. Shu, 1998b; Bassi and Rebay lggZa; Oden, Babuska, and Baumann,
1998). Discontinuous Galerkin methods have been shown to combine well
with local grid refinement and parallel computing, but several important
issues remain. The most important ones are the use of a slope limiter, which
prevent convergence to steady state, and the significant memory use of DG
methods. These issues will have to be addressed in the near future in order
to develop DG methods into truly efficient CFD algorithms.
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