
Optimization of Product Instantiation using Integer
Programming

Pim van den Broek
Department of Computer Science

University of Twente
Enschede, the Netherlands
pimvdb@ewi.utwente.nl

Abstract—We show that Integer Programming (IP) can be used
as an optimization technique for the instantiation of products of
feature models. This is done by showing that the constraints of
feature models can be written in linear form. As particular IP
technique, we use Gomory cutting planes. We have applied this
technique to a test suite of feature models from the literature, and
found that the Gomory cutting planes can be used to improve the
feature models. We discuss a number of applications: analysis of
feature models, resolving configuration errors and optimization
of product instantiation.

Keywords-feature models; integer programming; product
instantiation; linear constraints

I. INTRODUCTION

To analyze properties of software product lines which are
specified by feature models, it is customary to map feature
models to other data structures: Benavides et al. [1] use
Constraint Satisfaction Problems, Batory [2] uses Logic Truth
Maintenance Systems and Satisfiability Solvers, Czarnecki and
Kim [3] use Binary Decision Diagrams and Van den Broek and
Galvão [4] use Generalized Feature Trees. A recent survey of
these analysis methods has been given by Benavides et al. [5].
When one wants to obtain an optimal product of the feature
model, i.e. a product that best suits a number of criteria, each of
the approaches mentioned above supports the possibility to
iterate through the set of all products; however, none of them
supports optimization without iterating through all products.
This means that optimization is not possible when the number
of products is prohibitively high. In [1], for instance, it is
reported that for some moderate-sized feature models it is
impossible to determine the number of products by just
counting them. Therefore, there is a need for finding optimal
products by an optimization procedure which does not iterate
through all products.

The main contribution of this paper is the observation that
the constraints of feature models can be written in a linear
form. This opens up the possibility of optimization using
integer programming [6]. Integer programming (IP) is an
extension of linear programming (LP), where the additional
constraint is added that the solutions are binary, i.e. the
variables take only the values 0 and 1. In this paper, we
consider the method of Gomory cutting planes [7]. When we
apply the simplex algorithm to obtain an optimal solution of a

linear programming problem, and we obtain a solution which is
non-integer, Gomory cutting plane method provides a new
constraint which is satisfied by all integer solutions, but cuts
off the obtained non-integer solution. The simplex algorithm
(or, more efficiently, its dual) may then proceed to find a new
optimal solution which also satisfies the cutting plane
constraint. This process continues until, in a finite number of
steps, an integer solution is found.

We have applied this procedure to the test suite of feature
models given by Segura et al. [8]. We applied the simplex
algorithm to obtain the products with maximum resp. minimum
number of features. For 21 of the 24 feature models the simplex
algorithm obtained both optimal products, or found that no
products do exist. For 3 of the 24 models the simplex algorithm
obtained a non-integer solution; a single Gomory cutting plane
was sufficient to obtain the optimal products. Remarkably, in
all three cases the cutting planes gave information with which
the feature model could be "improved". For the improved
feature models the simplex algorithm obtained the optimal
products. So, after improving the feature models, the simplex
algorithm did not give any non-integer solution.

We will give several possible applications of our approach.
We will show how to obtain the set of dead features and the set
of fully mandatory features of a feature model. We will show
how the method of White et al. [9], which determines the
smallest set of changes which transforms an incorrect
specification into a valid product, can be improved. As a new
application, we discuss how, using our approach, an optimizing
product configurator can be designed.

This paper is organized as follows. In the next section we
present the linear form of the constraints of feature models. In
section 3 we present our approach to derive optimal products of
feature models using IP with Gomory cutting planes. In section
4 we apply our approach to the test suite of feature models in
[8]. Section 5 discusses applications and section 6 concludes
the paper.

II. LINEAR CONSTRAINTS FOR FEATURE MODELS

In this section we discuss linear constraints for feature
models. An overview is given in table 1. The column labeled
CSP in this table shows the conventional mapping of feature
models to Constraint Satisfaction Problems, taken from [5].

 relationship CSP Linear constraints

m
an

da
to

ry

P = C P = C
op

tio
na

l

IF (P = 0) C = 0 C  P

or

IF (P > 0)
1  i Ci  n

ELSE
C1 = C2 = .. = Cn = 0

i[1..n]: Ci  P
i Ci  P

al
te

rn
at

iv
e

IF (P > 0) i Ci = 1
ELSE

C1 = C2 = .. = Cn = 0
i Ci = P

re
qu

ir
es

If (A > 0) B > 0 A  B

ex
cl

ud
es

If (A > 0) B = 0 A + B  1

TABLE I. MAPPING FROM FEATURE MODELS TO LINEAR CONSTRAINTS

The last column shows our mapping of feature models to
linear constraints. To each feature there corresponds a binary
variable; a product of the feature model corresponds to a
valuation of this set of variables; a value 1 indicates that the
feature is present in the product, a value 0 indicates that the
feature is not present in the product.

 Mandatory features: Since a mandatory child C of parent P
is present if and only if P is present, the constraint is P = C.

 Optional features: The only constraint on the presence of a
child C is the presence of its parent P; this can be linearly
expressed as C  P.

 Or group of features: The constraints for an or-group of n
features can be expressed in linear form by C1P,

C2P,..,CnP and C1+C2+..+Cn  P. The first n constraints
state that if the parent P is absent (P = 0), all children
should be absent. The last constraint states that if the
parent P is present (P = 1) then at least one of the children
C1,C2,..,Cn should also be present.

 Alternative group of features: The condition for an
alternative-group of features can be expressed in linear
form by C1+C2+..+Cn = P. It states that if the parent P is
not present (P = 0) none of the children should be present,
and that if the parent is present (P = 1), exactly one of the
children should be present.

 Requires constraint: The linear constraint A  B expresses
that if A is present, B is present as well.

 Excludes constraint: The linear constraint A + B  1
expresses that A and B cannot be both present.

Using these rules, a feature model can be mapped to a set of
linear constraints. To this set the constraint R = 1, where R is
the root feature, should be added; this expresses that the root
feature should be present in every product. The products of the
feature model correspond to the binary solutions (0 or 1) for the
feature variables.

III. INTEGER PROGRAMMING

Given a set of linear constraints of a feature model and a
linear expression in the feature variables which is called the
goal-function, the problem of finding the binary solution of the
constraints for which the goal-function is maximal (or minimal)
is an integer programming problem. The problem which arises
by ignoring the condition that the solution be binary, is called
the linear relaxation (LR) of the problem, and is a LP problem.
The LR can be solved using the Simplex Algorithm. This
algorithm provides the optimal value of the goal-function, and
a set of values for the feature variables for which this optimal
value is attained. These values of the feature variables will be
non-negative, but not necessarily equal to 0 or 1.

Due to the feature model constraints, for each feature F we
have F  1. This is because the value of the root is equal to 1,
and C  P for each child feature C of a parent feature P.

If the solution of the LR is an integer solution, then this
solution is the optimal solution of the IP problem. If the
solution of the LR is a non-integer solution, then there are
multiple ways to proceed [6]. We have chosen for Gomory's
cutting plane method [7]. Given a non-integer solution of the
LR, this method provides a new constraint, called a Gomory
cutting plane, such that all integer solutions satisfy it, but the
obtained non-integer solution does not. This new constraint,
can then be added to the set of constraints. The simplex
algorithm (or, more efficiently, its dual) may then proceed to
find a new optimal solution which satisfies the updated
constraint set. This process continues until, in a finite number
of steps, an integer solution is found; this integer solution is the
opimal solution of the original IP problem. An example of a
Gomory cutting plane is given in the next section.

IV. APPLICATION TO A TEST SUITE

We have applied our approach to a test suite of 24 feature
models in [8]. These feature models are meant to test whether
an analysis method correctly determines whether feature
models are void or non-void. To test the voidness of a feature
model with IP, any goal-function can be used. We chose to
maximize the goal-function GF = F1+..+FN, so we determine, if
the feature model has products, the product with the maximum
number of features. It turns out that the LR gives the correct
result for 22 feature models, and that for 2 feature models it
gives a fractional result. For both cases where a fractional
result was obtained, we determined a Gomory cutting plane[7];
after adding it to the constraints, the correct (non-fractional)
result was obtained.

We then performed the same test by minimizing the given
goal function, i.e. by determining the product with the lowest

number of features. Again there were fractional solutions in
two cases, for which one Gomory cutting plane was needed. In
total 3 feature models led to fractional solutions in the two
tests. They are depicted in figure 1.

Figure 1. The feature models of the test suite with fractional solutions

What is apparent, is that all three feature models contain
redundancies. In all cases, the Gomory cutting plane could be
used to simplify the feature model. The simplified feature
models are shown in figure 2.

Figure 2. The simplified feature models of figure 1

So, the disadvantage of IP that the LR may give fractional
solutions, is turned into an advantage, in that fractional
solutions are used to obtain information to improve the feature
model. It remains to be determined whether this just happens to
be true for the small feature models in the test suite, or whether
this is true in general.

We performed the tests with our own implementation of the
simplex algorithm in the functional programming language
Miranda [10]. We implemented Bland's rule [11], which
guarantees termination; we used unbounded integers and
rational numbers instead of real numbers, which guarantees
exact computations.

It will be instructive to consider one of the cases in more
detail. We consider the first of the feature models in figure 1,
which is the only feature model which gave fractional results
for both tests. The constraints for this feature model are:

A = 1
A – B – C = 0
B – C  0

The first step toward their solution is to introduce an
auxiliary variable D, with D  0, defined by D = C–B, and to
write the constraints as equalities:

A = 1
A – B – C = 0
B – C + D = 0

The simplex algorithm, when maximizing the goal-function
GF = A + B + C, transforms these into

A = 1
B + D/2 = 1/2
C – D/2 = 1/2

From this form of the constraints the fractional optimal
solution A=1, B=1/2, C=1/2, D=0 is obtained. From the second
constraint, since B must be integer, it follows that D/2 – 1/2
must be integer. Since D is non-negative we obtain the Gomory
cutting plane D/2 – 1/2  0, which can be written as D  1. This
constraint can be added to the constraint set, and cuts off the
earlier fractional optimal solution. However, instead of
continuing with the simplex algorithm, we turn to the feature
model and find that the new constraint reads C–B  1 which
implies C = 1 and B = 0; so B is a dead feature and C is a
mandatory feature. The improved feature model is the first
feature model in figure 3.

In the same way the other two feature models of figure 3
are obtained as improvements of the feature models of figure 2.
For the second feature model we obtain the Gomory cutting
plane A–2C  –1, from which we conclude that C=1; for the
second feature model we obtain the Gomory cutting plane
B  0, which implies B = 0. When in the test suite of 24 feature
models the feature models of figure 2 are replaced by the
feature models of figure 3, the LR for the two tests give the
correct solution in all cases.

V. APPLICATIONS

In this section we present some possible applications of our
approach.

A. Analysis of Feature models

Suppose for some feature model we want to determine the
set of dead features, i.e. the set of features which do not occur
in any product. We maintain a set Candidates of features which
might eventually be dead. We initialize this set to contain all
features. As goal-function, we take the sum of all feature-
variables of the set Candidates, and obtain the product for
which this goal-function is maximal. The features of this
product are not dead, and they are deleted from the set
Candidates. This is repeated until the optimal value equals 0 or
Candidates is empty. The features which are still in Candidates
are the dead features. In pseudo-code:

Set Candidates := set of all features
REPEAT
 Goal G = sum of variables of features in
 Candidates;
 Product P = product for which G is maximal;
 Boolean Stop = Optimal Value = 0 OR Candidates = 
 IF Not Stop THEN
 Set Features = set of features of P
 Candidates := Candidates –– Features
UNTIL Stop

Likewise we can determine the set of fully mandatory
features, i.e. the set of features which occur in every product:

Set Candidates := set of all features
REPEAT
 Goal G = sum of variables of features in
 Candidates;
 Product P = product for which G is minimal;
 Set Features = set of features of P
 Set Remaining = Candidates -- Features
 Boolean Stop = #Candidates = #Remaining
 IF Not Stop THEN
 Candidates := Remaining
UNTIL Stop

B. Configuration Errors

White et al. [9] have given a method to determine the
smallest set of changes to an incorrect configuration which
turns it into a correct one. Here a change is either the selection
of a non-selected feature or the deselection of a selected
feature. The authors formulate the problem as a constraint
satisfaction problem, where for each feature they introduce 3
new variables and 2 new constraints (in a simplified version,
they introduce for each feature 2 new variables and 1 new
constraint).

Using IP, the problem can be solved without introduction of
new variables and new constraints. Let F1, .. , Fk be the features
which are selected in the incorrect configuration, and let Fk+1, ..
, FN be the non-selected features. Let the goal-function be GF =
F1 + ..+ Fk – Fk+1 – . .– FN. Maximizing this goal-function with
IP gives the product which resembles the incorrect
specification as good as possible, i.e. the incorrect
configuration can be changed into it with a minimal number of
changes.

In [8], a sequence of 71 feature models with configurations
are given, as a test sequence to test the correctness of
algorithms which determine the validity of the configurations.
We have applied IP to this test sequence, not just to determine
the validity of the configuration, but to determine the most
resembling product, using the goal-function mentioned above.
With this approach, the LR obtained the correct result in all
cases except for the feature models of figure 2, which required,
again, the addition of one Gomory cutting plane.

C. Optimization of Product Instantiation

State-of-the-art product configurators perform a dialogue
with a user, who can choose which features he/she wants as
part of his/her product [12,13,14]. The configurators take care
not to present the user with options which cannot be realized
anymore, due to constraints from previous choices. Also, the
user may undo decisions when they prevent other choices to be
made [15].

What is not possible, up to now, is to take into account the
importance for the user of the decisions he makes. Some
features he might want to have more than others, and some he
wants more to be absent than others. Here we envisage a
configurator which determines the importance for the user of
the presence/absence of features, and then determines the
optimal configuration, i.e. the configuration which matches the
user's wishes as good as possible. No configuration errors can
arise in this approach; however, the configured product may
not satisfy all the user's wishes, but the deviation will be as low
as possible. The problem being an optimization problem, the
best way to attack is, of course, with an optimization approach,
like the one advocated in this paper.

Let F be equal to 1 if the user wants feature F in the
product, and equal to –1 if he/she does not want the feature in
the product. Let F denote the degree of importance the user
assigns to the product conforming to his wish (either presence
or absence) regarding feature F. This degree of importance
may range from 0, denoting indifference, to 1, denoting
maximal importance. Let the goal-function be

GF(F1,..,Fn) = F1 * F1 * F1 + .. + Fn * Fn * Fn.

Applying IP to maximize the goal-function GF will yield
the product which matches the user's wishes as good as
possible.

Not every feature needs to be present in the goal-function;
absence of a feature F means that the user is indifferent about
the presence of F (F = 0). If the user wants feature F, then the
presence of F in the product contributes F to the goal function,
and if the user does not want feature F, then the presence of F
in the product contributes –F to the goal function. To elicitate
the proper degrees of importance of the features from the user,
techniques from the field of multi-criteria decision making [16]
can be used.

VI. CONCLUSION

An optimization problem is a problem of determination the
maximum (or minimum) of a function of several variables
subject to a number of constraints. In the case of feature
models, determination of an optimal product is such an
optimization problem. Up till now, to the best of our
knowledge, the only optimization procedures which have been
applied to feature models are procedures which cycle through
the whole set of products, as for instance in [9]. In this paper,
we have shown that the constraints of feature models can be
written in linear form, which opens the possibility to apply
optimization procedures from the domain of integer
programming to feature models. Application on a test suite of
(small) feature models has revealed that relaxation to linear
programming gives immediate solutions in most cases and that
in the cases where non-integer optimal solutions are obtained,
Gomory cutting planes can be used to improve the feature
models. We have discussed several applications: analysis of
feature models, resolving configuration errors and optimization
of product instantiation.

REFERENCES
[1] D. Benavides, P. Trinidad and A. Ruiz-Cortés, "Automated Reasoning

on Feature Models", in: O. Pastor and J. Falcão e Cunha (Eds.): CAiSE
2005, Lecture Notes in Computer Science 3520, Springer-Verlag Berlin
Heidelberg, pp. 491-503, 2005.

[2] D. Batory, "Feature Models, Grammars, and Propositional Formulas",
in: H. Obbink and K. Pohl (eds.): Software Product Lines Conference
2005, Lecture Notes in Computer Science 3714, Springer-Verlag Berlin
Heidelberg, pp. 7-20, 2005.

[3] K. Czarnecki and P. Kim, "Cardinality-based Feature Modeling and
Constraints: A Progress Report", in: Proceedings of the International
Workshop on Software Factories, OOPSLA 2005.

[4] P. van den Broek and I. Galvão, "Analysis of feature models using
generalised feature trees". In: D. Benavides, A. Metzger and U.
Eisenecker (eds.), 3th International Workshop on Variability Modelling
of Software-intensive Systems, ICB-Research Report 29, University of
Duisburg-Essen, pp. 29-36, 2009.

[5] D. Benavides, S. Segura and A. Ruiz-Cortés, "Automated analysis of
feature models 20 years later: a literature review". Information Systems,
in press, 2010.

[6] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial
Optimization, Wiley, New York, 1988.

[7] R.E. Gomory, "Outline of an Algorithm for Integer Solutions to Linear
Programs", Bulletin of the American Mathematical Society 64, pp. 275-
278, 1958.

[8] S. Segura, D. Benavides and A. Ruiz-Cortés, "FaMa test suite v1.2",
Technical Report ISA-10-TR-01, Applied Software Engineering group,
University of Seville, Spain, 2010.

[9] J. White, D. Benavides, D.C. Schmidt, P. Trinidad, B. Dougherty and A.
Ruiz-Cortés, "Automated Diagnosis of Feature Model Configurations",
Journal of Systems and Software 83, pp 1094-1107, 2010.

[10] D. Turner, "Miranda: a non-strict functional language withpolymorphic
types", in: Functional Programming Languages and Computer
Architecture, Lecture Notes in Computer Science Vol 201, J.-P.
Jouannaud (ed.), Springer-Verlag, pp. 1-16, 1985.

[11] R. Bland, "New finite pivoting rules for the simplex method",
Mathematics of Operations Research 2, pp. 103-107, 1977.

[12] R. Buhrdorf, D. Churchett, C. Krueger, "Salion’s Experience with a
Reactive Software Product Line Approach". In: Proceedings of the 5th
International Workshop on Product Family Engineering, Lecture Notes
in Computer Science Vol. 3014, Springer-Verlag, pp. 317-322, 2004.

[13] D. Beuche, "Variant Management with Pure:: variants". Tech. rep., Pure-
Systems GmbH, http://www.pure-systems.com, 2003.

[14] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés, "FAMA:
Tooling a framework for the automated analysis of feature models". In:
Proceedings of the First International Workshop on Variability
Modelling of Software-intensive Systems (VAMOS2007), 2007.

[15] A. Nöhrer and A. Egyed, "Conflict resolution strategies during product
configuration". In: Proceedings of the First International Workshop on
Variability Modelling of Software-intensive Systems (VAMOS2010),
2010.

[16] E. Triantaphyllou, Multi-criteria decision making methods: a
comparative study, Kluwer Academic Publishers, 2000.

