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Abstract—We show that Integer Programming (IP) can be used 
as an optimization technique for the instantiation of products of 
feature models. This is done by showing that the constraints of 
feature models can be written in linear form. As particular IP 
technique, we use Gomory cutting planes. We have applied this 
technique to a test suite of feature models from the literature, and 
found that the Gomory cutting planes can be used to improve the 
feature models. We discuss a number of applications: analysis of 
feature models, resolving configuration errors and optimization 
of product instantiation. 
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I.  INTRODUCTION 

To analyze properties of software product lines which are 
specified by feature models, it is customary to map feature 
models to other data structures: Benavides et al. [1] use 
Constraint Satisfaction Problems, Batory [2] uses Logic Truth 
Maintenance Systems and Satisfiability Solvers, Czarnecki and 
Kim [3] use Binary Decision Diagrams and Van den Broek and 
Galvão [4] use Generalized Feature Trees. A recent survey of 
these analysis methods has been given by Benavides et al. [5]. 
When one wants to obtain an optimal product of the feature 
model, i.e. a product that best suits a number of criteria, each of 
the approaches mentioned above supports the possibility to 
iterate through the set of all products; however, none of them 
supports optimization without iterating through all products. 
This means that optimization is not possible when the number 
of products is prohibitively high. In [1], for instance, it is 
reported that for some moderate-sized feature models it is 
impossible to determine the number of products by just 
counting them. Therefore, there is a need for finding optimal 
products by an optimization procedure which does not iterate 
through all products. 

The main contribution of this paper is the observation that 
the constraints of feature models can be written in a linear 
form. This opens up the possibility of optimization using 
integer programming [6]. Integer programming (IP) is an 
extension of linear programming (LP), where the additional 
constraint is added that the solutions are binary, i.e. the 
variables take only the values 0 and 1. In this paper, we 
consider the method of Gomory cutting planes [7]. When we 
apply the simplex algorithm to obtain an optimal solution of a 

linear programming problem, and we obtain a solution which is 
non-integer, Gomory cutting plane method provides a new 
constraint which is satisfied by all integer solutions, but cuts 
off the obtained non-integer solution. The simplex algorithm 
(or, more efficiently, its dual) may then proceed to find a new 
optimal solution which also satisfies the cutting plane 
constraint. This process continues until, in a finite number of 
steps, an integer solution is found. 

We have applied this procedure to the test suite of feature 
models given by Segura et al. [8]. We applied the simplex 
algorithm to obtain the products with maximum resp. minimum 
number of features. For 21 of the 24 feature models the simplex 
algorithm obtained both optimal products, or found that no 
products do exist. For 3 of the 24 models the simplex algorithm 
obtained a non-integer solution; a single Gomory cutting plane 
was sufficient to obtain the optimal products. Remarkably, in 
all three cases the cutting planes gave information with which 
the feature model could be "improved". For the improved 
feature models the simplex algorithm obtained the optimal 
products. So, after improving the feature models, the simplex 
algorithm did not give any non-integer solution.  

We will give several possible applications of our approach. 
We will show how to obtain the set of dead features and the set 
of fully mandatory features of a feature model. We will show 
how the method of White et al. [9], which determines the 
smallest set of changes which transforms an incorrect 
specification into a valid product, can be improved. As a new 
application, we discuss how, using our approach, an optimizing 
product configurator can be designed. 

This paper is organized as follows. In the next section we 
present the linear form of the constraints of feature models. In 
section 3 we present our approach to derive optimal products of 
feature models using IP with Gomory cutting planes. In section 
4 we apply our approach to the test suite of feature models in 
[8]. Section 5 discusses applications and section 6 concludes 
the paper. 

II. LINEAR CONSTRAINTS FOR FEATURE MODELS 

In this section we discuss linear constraints for feature 
models. An overview is given in table 1. The column labeled 
CSP in this table shows the conventional mapping of feature 
models to Constraint Satisfaction Problems, taken from [5].  
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If (A > 0) B = 0 A + B  1 

TABLE I.  MAPPING FROM FEATURE MODELS TO LINEAR CONSTRAINTS 

The last column shows our mapping of feature models to 
linear constraints. To each feature there corresponds a binary 
variable; a product of the feature model corresponds to a 
valuation of this set of variables; a value 1 indicates that the 
feature is present in the product, a value 0 indicates that the 
feature is not present in the product. 

 Mandatory features: Since a mandatory child C of parent P 
is present if and only if P is present, the constraint is P = C. 

 Optional features: The only constraint on the presence of a 
child C is the presence of its parent P; this can be linearly 
expressed as C  P. 

 Or group of features: The constraints for an or-group of n 
features can be expressed in linear form by C1P, 

C2P,..,CnP and C1+C2+..+Cn  P. The first n constraints 
state that if the parent P is absent (P = 0), all children 
should be absent. The last constraint states that if the 
parent P is present (P = 1) then at least one of the children 
C1,C2,..,Cn should also be present. 

 Alternative group of features: The condition for an 
alternative-group of features can be expressed in linear 
form by C1+C2+..+Cn = P. It states that if the parent P is 
not present (P = 0) none of the children should be present, 
and that if the parent is present (P = 1), exactly one of the 
children should be present. 

 Requires constraint: The linear constraint A  B expresses 
that if A is present, B is present as well. 



 Excludes constraint: The linear constraint A + B  1 
expresses that A and B cannot be both present.  

Using these rules, a feature model can be mapped to a set of 
linear constraints. To this set the constraint R = 1, where R is 
the root feature, should be added; this expresses that the root 
feature should be present in every product. The products of the 
feature model correspond to the binary solutions (0 or 1) for the 
feature variables. 

III. INTEGER PROGRAMMING 

Given a set of linear constraints of a feature model and a 
linear expression in the feature variables which is called the 
goal-function, the problem of finding the binary solution of the 
constraints for which the goal-function is maximal (or minimal) 
is an integer programming problem. The problem which arises 
by ignoring the condition that the solution be binary, is called 
the linear relaxation (LR) of the problem, and is a LP problem. 
The LR can be solved using the Simplex Algorithm. This 
algorithm provides the optimal value of the goal-function, and 
a set of values for the feature variables for which this optimal 
value is attained. These values of the feature variables will be 
non-negative, but not necessarily equal to 0 or 1.  

Due to the feature model constraints, for each feature F we 
have F  1. This is because the value of the root is equal to 1, 
and C  P for each child feature C of a parent feature P.  

If the solution of the LR is an integer solution, then this 
solution is the optimal solution of the IP problem. If the 
solution of the LR is a non-integer solution, then there are 
multiple ways to proceed [6]. We have chosen for Gomory's 
cutting plane method [7]. Given a non-integer solution of the 
LR, this method provides a new constraint, called a Gomory 
cutting plane, such that all integer solutions satisfy it, but the 
obtained non-integer solution does not. This new constraint, 
can then be added to the set of constraints. The simplex 
algorithm (or, more efficiently, its dual) may then proceed to 
find a new optimal solution which satisfies the updated 
constraint set. This process continues until, in a finite number 
of steps, an integer solution is found; this integer solution is the 
opimal solution of the original IP problem. An example of a 
Gomory cutting plane is given in the next section. 

IV. APPLICATION TO A TEST SUITE 

We have applied our approach to a test suite of 24 feature 
models in [8]. These feature models are meant to test whether 
an analysis method correctly determines whether feature 
models are void or non-void. To test the voidness of a feature 
model with IP, any goal-function can be used. We chose to 
maximize the goal-function GF = F1+..+FN, so we determine, if 
the feature model has products, the product with the maximum 
number of features. It turns out that the LR gives the correct 
result for 22 feature models, and that for 2 feature models it 
gives a fractional result. For both cases where a fractional 
result was obtained, we determined a Gomory cutting plane[7]; 
after adding it to the constraints, the correct (non-fractional) 
result was obtained.  

We then performed the same test by minimizing the given 
goal function, i.e. by determining the product with the lowest 

number of features. Again there were fractional solutions in 
two cases, for which one Gomory cutting plane was needed. In 
total 3 feature models led to fractional solutions in the two 
tests. They are depicted in figure 1. 

 

Figure 1.  The feature models of the test suite with fractional solutions 

What is apparent, is that all three feature models contain 
redundancies. In all cases, the Gomory cutting plane could be 
used to simplify the feature model. The simplified feature 
models are shown in figure 2.  

 

Figure 2.  The simplified feature models of figure 1 

So, the disadvantage of IP that the LR may give fractional 
solutions, is turned into an advantage, in that fractional 
solutions are used to obtain information to improve the feature 
model. It remains to be determined whether this just happens to 
be true for the small feature models in the test suite, or whether 
this is true in general. 

We performed the tests with our own implementation of the 
simplex algorithm in the functional programming language 
Miranda [10]. We implemented Bland's rule [11], which 
guarantees termination; we used unbounded integers and 
rational numbers instead of real numbers, which guarantees 
exact computations. 

It will be instructive to consider one of the cases in more 
detail. We consider the first of the feature models in figure 1, 
which is the only feature model which gave fractional results 
for both tests. The constraints for this feature model are: 

A = 1 
A – B – C = 0 
B – C  0 

The first step toward their solution is to introduce an 
auxiliary variable D, with D  0, defined by D = C–B, and to 
write the constraints as equalities: 

A = 1 
A – B – C = 0 
B – C + D = 0 

The simplex algorithm, when maximizing the goal-function 
GF = A + B + C, transforms these into 

A = 1 
B + D/2 = 1/2 
C – D/2 = 1/2 



From this form of the constraints the fractional optimal 
solution A=1, B=1/2, C=1/2, D=0 is obtained. From the second 
constraint, since B must be integer, it follows that D/2 – 1/2 
must be integer. Since D is non-negative we obtain the Gomory 
cutting plane D/2 – 1/2  0, which can be written as D  1. This 
constraint can be added to the constraint set, and cuts off the 
earlier fractional optimal solution. However, instead of 
continuing with the simplex algorithm, we turn to the feature 
model and find that the new constraint reads C–B  1 which 
implies C = 1 and B = 0; so B is a dead feature and C is a 
mandatory feature. The improved feature model is the first 
feature model in figure 3. 

In the same way the other two feature models of figure 3 
are obtained as improvements of the feature models of figure 2. 
For the second feature model we obtain the Gomory cutting 
plane A–2C  –1, from which we conclude that C=1; for the 
second feature model we obtain the Gomory cutting plane       
B  0, which implies B = 0. When in the test suite of 24 feature 
models the feature models of figure 2 are replaced by the 
feature models of figure 3, the LR for the two tests give the 
correct solution in all cases. 

V. APPLICATIONS 

In this section we present some possible applications of our 
approach. 

A. Analysis of Feature models 

Suppose for some feature model we want to determine the 
set of dead features, i.e. the set of features which do not occur 
in any product. We maintain a set Candidates of features which 
might eventually be dead. We initialize this set to contain all 
features. As goal-function, we take the sum of all feature-
variables of the set Candidates, and obtain the product for 
which this goal-function is maximal. The features of this 
product are not dead, and they are deleted from the set 
Candidates. This is repeated until the optimal value equals 0 or 
Candidates is empty. The features which are still in Candidates 
are the dead features. In pseudo-code: 

Set Candidates := set of all features 
REPEAT 
 Goal G = sum of variables of features in 
   Candidates; 
 Product P = product for which G is maximal; 
 Boolean Stop = Optimal Value = 0 OR Candidates =  
 IF Not Stop THEN  
  Set Features = set of features of P  
  Candidates := Candidates –– Features 
UNTIL Stop 

Likewise we can determine the set of fully mandatory 
features, i.e. the set of features which occur in every product:  

Set Candidates := set of all features 
REPEAT 
 Goal G = sum of variables of features in 
   Candidates; 
 Product P = product for which G is minimal; 
 Set Features = set of features of P  
 Set Remaining = Candidates -- Features 
 Boolean Stop = #Candidates = #Remaining 
 IF Not Stop THEN  
  Candidates := Remaining 
UNTIL Stop 

B. Configuration Errors 

White et al. [9] have given a method to determine the 
smallest set of changes to an incorrect configuration which 
turns it into a correct one. Here a change is either the selection 
of a non-selected feature or the deselection of a selected 
feature. The authors formulate the problem as a constraint 
satisfaction problem, where for each feature they introduce 3 
new variables and 2 new constraints (in a simplified version, 
they introduce for each feature 2 new variables and 1 new 
constraint). 

Using IP, the problem can be solved without introduction of 
new variables and new constraints. Let F1, .. , Fk be the features 
which are selected in the incorrect configuration, and let Fk+1, .. 
, FN be the non-selected features. Let the goal-function be GF = 
F1 + ..+ Fk – Fk+1 – . .– FN. Maximizing this goal-function with 
IP gives the product which resembles the incorrect 
specification as good as possible, i.e. the incorrect 
configuration can be changed into it with a minimal number of 
changes. 

In [8], a sequence of 71 feature models with configurations 
are given, as a test sequence to test the correctness of 
algorithms which determine the validity of the configurations. 
We have applied IP to this test sequence, not just to determine 
the validity of the configuration, but to determine the most 
resembling product, using the goal-function mentioned above. 
With this approach, the LR obtained the correct result in all 
cases except for the feature models of figure 2, which required, 
again, the addition of one Gomory cutting plane. 

C. Optimization of Product Instantiation 

State-of-the-art product configurators perform a dialogue 
with a user, who can choose which features he/she wants as 
part of his/her product [12,13,14]. The configurators take care 
not to present the user with options which cannot be realized 
anymore, due to constraints from previous choices. Also, the 
user may undo decisions when they prevent other choices to be 
made [15]. 

What is not possible, up to now, is to take into account the 
importance for the user of the decisions he makes. Some 
features he might want to have more than others, and some he 
wants more to be absent than others. Here we envisage a 
configurator which determines the importance for the user of 
the presence/absence of features, and then determines the 
optimal configuration, i.e. the configuration which matches the 
user's wishes as good as possible. No configuration errors can 
arise in this approach; however, the configured product may 
not satisfy all the user's wishes, but the deviation will be as low 
as possible. The problem being an optimization problem, the 
best way to attack is, of course, with an optimization approach, 
like the one advocated in this paper.  

Let F be equal to 1 if the user wants feature F in the 
product, and equal to –1 if he/she does not want the feature in 
the product. Let F denote the degree of importance the user 
assigns to the product conforming to his wish (either presence 
or absence) regarding feature F. This degree of  importance 
may range from 0, denoting indifference, to 1, denoting 
maximal importance. Let the goal-function be  



GF(F1,..,Fn) = F1 * F1 * F1 + .. + Fn * Fn * Fn.  

Applying IP to maximize the goal-function GF will yield 
the product which matches the user's wishes as good as 
possible. 

Not every feature needs to be present in the goal-function; 
absence of a feature F means that the user is indifferent about 
the presence of F (F = 0). If the user wants feature F, then the 
presence of F in the product contributes F to the goal function, 
and if the user does not want feature F, then the presence of F 
in the product contributes –F to the goal function. To elicitate 
the proper degrees of importance of the features from the user, 
techniques from the field of multi-criteria decision making [16] 
can be used.  

VI. CONCLUSION 

An optimization problem is a problem of determination the 
maximum (or minimum) of a function of several variables 
subject to a number of constraints. In the case of feature 
models, determination of an optimal product is such an 
optimization problem. Up till now, to the best of our 
knowledge, the only optimization procedures which have been  
applied to feature models are procedures which cycle through 
the whole set of products, as for instance in [9]. In this paper, 
we have shown that the constraints of feature models can be 
written in linear form, which opens the possibility to apply 
optimization procedures from the domain of integer 
programming to feature models. Application on a test suite of 
(small) feature models has revealed that relaxation to linear 
programming gives immediate solutions in most cases and that 
in the cases where non-integer optimal solutions are obtained, 
Gomory cutting planes can be used to improve the feature 
models. We have discussed several applications: analysis of 
feature models, resolving configuration errors and optimization 
of product instantiation. 

REFERENCES 
[1] D. Benavides, P. Trinidad and A. Ruiz-Cortés, "Automated Reasoning 

on Feature Models", in: O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 
2005, Lecture Notes in Computer Science 3520, Springer-Verlag Berlin 
Heidelberg, pp. 491-503, 2005. 

[2] D. Batory, "Feature Models, Grammars, and Propositional Formulas", 
in: H. Obbink and K. Pohl (eds.): Software Product Lines Conference 
2005, Lecture Notes in Computer Science 3714, Springer-Verlag Berlin 
Heidelberg, pp. 7-20, 2005. 

[3] K. Czarnecki and P. Kim, "Cardinality-based Feature Modeling and 
Constraints: A Progress Report", in: Proceedings of the International 
Workshop on Software Factories, OOPSLA 2005. 

[4] P. van den Broek and I. Galvão, "Analysis of feature models using 
generalised feature trees". In: D. Benavides, A. Metzger and U. 
Eisenecker (eds.), 3th International Workshop on Variability Modelling 
of Software-intensive Systems, ICB-Research Report 29, University of 
Duisburg-Essen, pp. 29-36, 2009. 

[5] D. Benavides, S. Segura and A. Ruiz-Cortés, "Automated analysis of 
feature models 20 years later: a literature review". Information Systems, 
in press, 2010. 

[6] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial 
Optimization, Wiley, New York, 1988. 

[7] R.E. Gomory, "Outline of an Algorithm for Integer Solutions to Linear 
Programs", Bulletin of the American Mathematical Society 64, pp. 275-
278, 1958. 

[8] S. Segura, D. Benavides and A. Ruiz-Cortés, "FaMa test suite v1.2", 
Technical Report ISA-10-TR-01, Applied Software Engineering group, 
University of Seville, Spain, 2010. 

[9] J. White, D. Benavides, D.C. Schmidt, P. Trinidad, B. Dougherty and A. 
Ruiz-Cortés, "Automated Diagnosis of Feature Model Configurations", 
Journal of Systems and Software 83, pp 1094-1107, 2010. 

[10] D. Turner, "Miranda: a non-strict functional language withpolymorphic 
types", in: Functional Programming Languages and Computer 
Architecture, Lecture Notes in Computer Science Vol 201, J.-P. 
Jouannaud (ed.), Springer-Verlag, pp. 1-16, 1985. 

[11] R. Bland, "New finite pivoting rules for the simplex method", 
Mathematics of Operations Research 2, pp. 103-107, 1977. 

[12] R. Buhrdorf, D. Churchett, C. Krueger, "Salion’s Experience with a 
Reactive Software Product Line Approach". In: Proceedings of the 5th 
International Workshop on Product Family Engineering, Lecture Notes 
in Computer Science Vol. 3014, Springer-Verlag, pp. 317-322, 2004. 

[13] D. Beuche, "Variant Management with Pure:: variants". Tech. rep., Pure-
Systems GmbH, http://www.pure-systems.com, 2003. 

[14] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés, "FAMA: 
Tooling a framework for the automated analysis of feature models". In: 
Proceedings of the First International Workshop on Variability 
Modelling of Software-intensive Systems (VAMOS2007), 2007. 

[15] A. Nöhrer and A. Egyed, "Conflict resolution strategies during product 
configuration". In: Proceedings of the First International Workshop on 
Variability Modelling of Software-intensive Systems (VAMOS2010), 
2010. 

[16] E. Triantaphyllou, Multi-criteria decision making methods: a 
comparative study, Kluwer Academic Publishers, 2000. 

 


