
Multi-core symbolic bisimulation minimisation

Tom van Dijk? and Jaco van de Pol

Formal Methods and Tools, University of Twente, The Netherlands
{dijkt,vdpol}@cs.utwente.nl

Abstract. Bisimulation minimisation alleviates the exponential growth
of transition systems in model checking by computing the smallest sys-
tem that has the same behavior as the original system according to some
notion of equivalence. One popular strategy to compute a bisimulation
minimisation is signature-based partition refinement. This can be per-
formed symbolically using binary decision diagrams to allow models with
larger state spaces to be minimised.
This paper studies strong and branching symbolic bisimulation for la-
beled transition systems, continuous-time markov chains, and interactive
markov chains. We introduce the notion of partition refinement with par-
tial signatures. We extend the parallel BDD library Sylvan to parallelize
the signature refinement algorithm, and develop a new parallel BDD al-
gorithm to refine a partition, which conserves previous block numbers
and uses a parallel data structure to store block assignments. We also
present a specialized BDD algorithm for the computation of inert transi-
tions. The experimental evaluation, based on benchmarks from the liter-
ature, demonstrates a speedup of up to 95x sequentially. In addition, we
find parallel speedups of up to 17x due to parallelisation with 48 cores.
Finally, we present the implementation of these algorithms as a versa-
tile tool that can be customized for bisimulation minimisation in various
contexts.

Keywords: multi-core, parallel, binary decision diagrams, bisimulation
minimisation, labeled transition systems, continuous-time markov chains,
interactive markov chains

1 Introduction

One core challenge in model checking is the state space explosion problem. The
space and time requirements of model checking increase exponentially with the
size of the models. Bisimulation minimisation computes the smallest equivalent
model (maximal bisimulation) under some notion of equivalence, which can sig-
nificantly reduce the number of states. This technique is also used to abstract
models from internal behavior, when only observable behavior is relevant.

The maximal bisimulation of a model is typically computed using partition
refinement. Starting with an initially coarse partition (e.g. all states are equiva-
lent), the partition is refined until states in each equivalence class can no longer
? The first author is supported by the NWO project MaDriD, grant nr. 612.001.101

be distinguished. The result is the maximal bisimulation with respect to the ini-
tial partition. Blom et al. [3] introduced a signature-based method for partition
refinement, which assigns states to equivalence classes according to a character-
izing signature. This method easily extends to various types of bisimulation.

Another well-known method to deal with very large state spaces is sym-
bolic model checking, where sets of states are represented by their characteristic
function, which is efficiently stored using binary decision diagrams (BDDs). In
the literature, symbolic methods have been applied to bisimulation minimisa-
tion in several ways. Bouali and De Simone [5] refine the equivalence relation
R ⊆ S × S, by iteratively removing all “bad” pairs from R, i.e., pairs of states
that are no longer equivalent. For strong bisimulation, Mumme and Ciardo [19]
apply saturation-based methods to compute R. Wimmer et al. [25,26] use signa-
tures to refine the partition, represented by the assignment to equivalence classes
P : S → C. Symbolic bisimulation based on signatures has also been applied to
Markov chains by Derisavi [11] and Wimmer et al. [23,24].

The symbolic representation of the maximal bisimulation, when effective, of-
ten tends to be much larger than the original model. One particular application
of symbolic bisimulation minimisation is as a bridge between symbolical models
and explicit-state analysis algorithms. Such models can have very large state
spaces that are efficiently encoded using BDDs. If the minimised model is suffi-
ciently small, then it can be analyzed efficiently using explicit-state algorithms.

These techniques mainly reduce the memory requirements of model checking.
To take advantage of computer systems with multiple processors, developing
scalable parallel algorithms is the way forward. In [12,14], we implemented the
multi-core BDD package Sylvan, applying parallelism to symbolic model check-
ing. Parallelization has also been applied to explicit-state bisimulation minimisa-
tion. Blom et al. [2,3] introduced a parallel, signature-based algorithm for various
types of bisimulation, especially strong and branching bisimulation. Also, [17]
proposed a concurrent algorithm for bisimulation minimisation which combines
signatures with the approach by Paige and Tarjan [20]. Recently, Wijs [22] imple-
mented highly parallel strong and branching bisimilarity checking on GPGPUs.
As far as we are aware, no earlier work combines symbolic bisimulation minimi-
sation and parallelism.

In the current paper, we study bisimulation minimisation for labeled transi-
tion systems (LTSs), continuous-time Markov chains (CTMCs) and interactive
Markov chains (IMCs), which combines the features of LTSs and CTMCs. These
allow the analysis of quantitative properties, e.g. performance and dependability.

We concentrate on strong bisimulation and branching bisimulation. Strong
bisimulation preserves both internal behavior (τ -transitions) and observable be-
havior, while branching bisimulation abstracts from internal behavior. The ad-
vantage of branching bisimulation compared to other variations of weak bisimu-
lation is that it preserves the branching structure of the LTS, thus preserving
certain interesting properties such as CTL* without next-state operator [9].

The current paper contains the following contributions. We introduce the
notion of partition refinement with partial signatures in Section 3. Section 4 dis-

2

cusses how we extend the multi-core BDD package Sylvan to parallelize signature-
based partition refinement. In particular, we develop two specialized BDD algo-
rithms. We implement a new refine algorithm, that refines a partition according
to a signature, but maximally reuses the block number assignment of the previ-
ous partition (Section 4.3). This algorithm improves the operation cache use for
the computation of the signatures of stable blocks, and enables partition refine-
ment with partial signatures. We also present the inert algorithm, which, given
a transition relation and a partition, removes all transitions that are not inert
(Section 4.4). This algorithm avoids an expensive intermediate result reported in
the literature [26]. Section 5 discusses experimental data based on benchmarks
from the literature to demonstrate a speedup of up to 95x sequentially. In addi-
tion, we find parallel speedups of up to 17x due to parallelisation with 48 cores.
Finally, we present the implementation of these algorithms as a versatile tool
that can be customized for bisimulation minimisation in various contexts.

2 Preliminaries

We recall the basic definitions of partitions, of LTSs, of CTMCs, of IMCs, and
of various bisimulations as in [3,15,25,26,27].

Definition 1. Given a set S, a partition π of S is a subset π ⊆ 2S such that⋃
C∈π

C = S and ∀C,C ′ ∈ π : (C = C ′ ∨ C ∩ C ′ = ∅).

If π′ and π are two partitions, then π′ is a refinement of π, written π′ v π,
if each block of π′ is contained in a block of π. The elements of π are called
equivalence classes or blocks. Each equivalence relation ≡ is associated with a
partition π = S/≡. In this paper, we use π and ≡ interchangeably.

Definition 2. A labeled transition system (LTS) is a tuple (S,Act,→), consist-
ing of a set of states S, a set of labels Act that may contain the non-observable
action τ , and transitions →⊆ S × Act× S.

We write s a→ t for (s, a, t)∈→. and s τ9 when s has no outgoing τ -transitions.
We use a∗→ to denote the transitive reflexive closure of a→. Given an equivalence
relation ≡, we write a→

≡
for a→ ∩ ≡, i.e., transitions between equivalent states,

called inert transitions. We use a∗→
≡

for the transitive reflexive closure of a→
≡
.

Definition 3. A continuous-time Markov chain (CTMC) is a tuple (S,⇒), con-
sisting of a set of states S and Markovian transitions ⇒⊆ S × R>0 × S.

We write s λ⇒ t for (s, λ, t) ∈⇒. The interpretation of s λ⇒ t is that the
CTMC can switch from s to t within d time units with probability 1−e−λ·d. For
a state s, let R(s)(s′) =

∑
{λ | s λ⇒ s′} be the rate to move from state s to state

s′, and let R(s)(C) =
∑
s′∈C R(s)(s′) be the cumulative rate to reach a set of

states C ⊆ S from state s.

3

Definition 4. An interactive Markov chain (IMC) is a tuple (S,Act,→,⇒),
consisting of a set of states S, a set of labels Act that may contain the non-
observable action τ , transitions →⊆ S × Act × S, and Markovian transitions
⇒⊆ S × R>0 × S.

An IMC basically combines the features of an LTS and a CTMC. One feature
of IMCs is the maximal progress assumption. Internal interactive transitions, i.e.
τ -transitions, can be assumed to take place immediately, while the probability
that a Markovian transition executes immediately is zero. Therefore, we may
remove all Markovian transitions from states that have outgoing τ -transitions:
s
τ→ implies R(s)(S) = 0. We call IMCs to which this operation has been applied

maximal-progress-cut (mp-cut) IMCs.
For LTSs, strong and branching bisimulation are typically defined as fol-

lows [26]:

Definition 5. An equivalence relation ≡S is a strong bisimulation on an LTS
if for all states s, t, s′ with s ≡S t and for all s a→ s′, there exists a state t′ with
t
a→ t′ and s′ ≡S t′.

Definition 6. An equivalence relation ≡B is a branching bisimulation on an
LTS if for all states s, t, s′ with s ≡B t and for all s a→ s′, either
– a = τ and s′ ≡B t, or
– there exist states t′, t′′ with t τ∗→ t′

a→ t′′ and t ≡B t′ and s′ ≡B t′′.

For CTMCs, strong bisimulation is defined as follows [11,23]:

Definition 7. An equivalence relation ≡S is a strong bisimulation on a CTMC
if for all (s, t) ∈ ≡S and for all classes C ∈ S/≡S, R(s)(C) = R(t)(C).

For mp-cut IMCs, strong and branching bisimulation are defined as fol-
lows [15,27]:

Definition 8. An equivalence relation ≡S is a strong bisimulation on an mp-cut
IMC if for all (s, t) ∈≡S and for all classes C ∈ S/≡S
– s

a→ s′ for some s′ ∈ C implies t a→ t′ for some t′ ∈ C
– R(s)(C) = R(t)(C)

Definition 9. An equivalence relation ≡B is a branching bisimulation on an
mp-cut IMC if for all (s, t) ∈≡B and for all classes C ∈ S/≡B
– s

a→ s′ for some s′ ∈ C implies
• a = τ and (s, s′) ∈≡B, or
• there exist states t′, t′′ ∈ S with t τ∗→ t′

a→ t′′ and (t, t′) ∈≡B and t′′ ∈ C.
– R(s)(C) > 0 implies
• R(s)(C) = R(t′)(C) for some t′ ∈ S such that t τ∗→ t′

τ9 and (t, t′) ∈≡B.
– s

τ9 implies t τ∗→ t′
τ9 for some t′

4

3 Signature-based Bisimulation

Blom and Orzan [3] introduced a signature-based approach to compute the maxi-
mal bisimulation of an LTS, which was further developed into a symbolic method
by Wimmer et al. [26]. Each state is characterized by a signature, which is the
same for all equivalent states in a bisimulation. These signatures are used to
refine a partition of the state space until a fixed point is reached, which is the
maximal bisimulation.

In the literature, multiple signatures are sometimes used that together fully
characterize states, for example based on the state labels, based on the rates of
continous-time transitions, and based on the enabled interactive transitions. In
the current paper, these multiple signatures are considered elements of a single
signature that fully characterizes each state.

Definition 10. A signature σ(π)(s) is a tuple of functions fi(π)(s), that to-
gether characterize each state s with respect to a partition π.

Two signatures σ(π)(s) and σ(π)(t) are equivalent, if and only if for all fi,
fi(π)(s) = fi(π)(t).

The signatures of five bisimulations from Section 2 are known from the liter-
ature. For all actions a ∈ Act and equivalence classes C ∈ π, we define

– T(π)(s) = {(a,C) | ∃s′ ∈ C : s
a→ s′}

– B(π)(s) = {(a,C) | ∃s′ ∈ C : s
τ∗→
π

a→ s′ ∧ ¬(a = τ ∧ s ∈ C)}
– Rs(π)(s) = C 7→ R(s)(C)

– Rb(π)(s) = C 7→ max({R(s′)(C) | ∃s′ : sτ∗→
π
s′

τ9})

The five bisimulations are associated with the following signatures:

Strong bisimulation for an LTS (T) [26]
Branching bisimulation for an LTS (B) [26]
Strong bisimulation for a CTMC (Rs) [23]
Strong bisimulation for an mp-cut IMC (T,Rs) [27]
Branching bisimulation for an mp-cut IMC (B,Rb, s

τ∗→ τ9) [27]

Functions T and B assign to each state s all actions a and equivalence classes
C ∈ π, such that state s can reach C by an action a either directly (T) or via
any number of inert τ -steps (B). Rs equals R but with the domain restricted
to the equivalence classes C ∈ π, and represents the cumulative rate with which
state s can go to states in C. Rb equals Rs for states s τ9, and takes the highest
“reachable rate” for states with inert τ -transitions. In branching bisimulation
for mp-cut IMCs, the “highest reachable rate” is by definition the rate that all
states s τ9 in C have. The element sτ∗→ τ9 distinguishes time-convergent states
from time-divergent states [27], and is independent of the partition.

For the bisimulations of Definitions 5–9, we state:

Lemma 1. A partition π is a bisimulation, if and only if for all s and t that
are equivalent in π, σ(π)(s) = σ(π)(t).

5

For the above definitions it is fairly straightforward to prove that they are
equivalent to the classical definitions of bisimulation. See e.g. [3,26] for the bisim-
ulations on LTSs and [27] for the bisimulations on IMCs.

3.1 Partition refinement

The definition of signature-based partition refinement is as follows.

Definition 11 (Partition refinement with full signatures).

sigref(π, σ) ··= {{t ∈ S | σ(π)(s) = σ(π)(t)} | s ∈ S}
π0 ··= {S}

πn+1 ··= sigref(πn, σ)

The algorithm iteratively refines the initial coarsest partition {S} according
to the signatures of the states, until some fixed point πn+1 = πn is obtained.
This fixed point is the maximal bisimulation for “monotone signatures”:

Definition 12. A signature is monotone if for all π, π′ with π v π′, whenever
σ(π)(s) = σ(π)(t), also σ(π′)(s) = σ(π′)(t).

For all monotone signatures, the sigref operator is monotone: π v π′ implies
sigref(π, σ) v sigref(π′, σ). Hence, following Kleene’s fixed point theorem, the
procedure above reaches the greatest fixed point.

In Definition 11, the full signature is computed in every iteration. We pro-
pose to apply partition refinement using parts of the signature. By definition,
σ(π)(s) = σ(π)(t) if and only if for all parts fi(π)(s) = fi(π)(t).

Definition 13 (Partition refinement with partial signatures).

sigref(π, fi) ··= {{t ∈ S | fi(π)(s) = fi(π)(t) ∧ s ≡π t} | s ∈ S}
π0 ··= {S}

πn+1 ··= sigref(πn, fi) (select fi ∈ σ)

We always select some fi that refines the partition π. A fixed point is reached
only when no fi refines the partition further: ∀fi ∈ σ : sigref(πn, fi) = πn. The
extra clause s ≡π t ensures that every application of sigref refines the partition.

Theorem 1. If all parts fi are monotone, Def. 13 yields the greatest fixed point.

Proof. The procedure terminates since the chain is decreasing (πn+1 v πn),
due to the added clause s ≡π t. We reach some fixed point πn, since ∀fi ∈
σ : sigref(πn, fi) = πn implies sigref(πn, σ) = πn. Finally, to prove that we get
the greatest fixed point, assume there exists another fixed point ξ = sigref(ξ, σ).
Then also ξ = sigref(ξ, fi) for all i. We prove that ξ v πn by induction on n.
Initially, ξ v S = π0. Assume ξ v πn, then for the selected i, ξ = sigref(ξ, fi) v
sigref(πn, fi) = πn+1, using monotonicity of fi.

6

There are several advantages to this approach due to its flexibility. First, for
any fi that is independent of the partition, refinement with respect to that fi
only needs to be applied once. Furthermore, refinements can be applied accord-
ing to different strategies. For instance, for the strong bisimulation of an mp-cut
IMC, one could refine w.r.t. T until there is no more refinement, then w.r.t. Rs

until there is no more refinement, then repeat until neither T nor Rs refines the
partition. Finally, computing the full signature is the most memory-intensive op-
eration in symbolic signature-based partition refinement. If the partial signatures
are smaller than the full signature, then larger models can be minimised.

4 Symbolic signature refinement

This section describes the parallel decision diagram library Sylvan, followed by
the (MT)BDDs and (MT)BDD operations required for signature-based partition
refinement. We describe how we encode partitions and signatures for signature-
based partition refinement. We present a new parallelized refine function that
maximally reuses block numbers from the old partition. Finally, we present a
new BDD algorithm that computes inert transitions, i.e., restricts a transition
relation such that states s and s′ are in the same block.

4.1 Decision diagram algorithms in Sylvan

In symbolic model checking [7], sets of states and transitions are represented
by their characteristic function, rather than stored individually. With states
described by N Boolean variables, a set S ⊆ BN can be represented by its char-
acteristic function f : BN → B, where S = {s | f(s)}. Binary decision diagrams
(BDDs) are a concise and canonical representation of Boolean functions [6].

An (ordered) BDD is a directed acyclic graph with leaves 0 and 1. Each
internal node has a variable label xi and two outgoing edges labeled 0 and 1.
Variables are encountered along each path according to a fixed variable order-
ing. Duplicate nodes and nodes with two identical outgoing edges are forbidden.
It is well known that for a fixed variable ordering, every Boolean function is
represented by a unique BDD.

In addition to BDDs with leaves 0 and 1, multi-terminal binary decision
diagrams have been proposed [1,8] with leaves other than 0 and 1, representing
functions from the Boolean space BN onto any finite set. For example, MTBDDs
can have leaves representing integers (encoding BN → N), floating-point numbers
(encoding BN → R) and rational numbers (encoding BN → Q). Partial functions
are supported using a terminal leaf ⊥.

Sylvan [12,14] implements parallelized operations on decision diagrams using
parallel data structures and work-stealing. Work-stealing [4,13] is a load balanc-
ing method for task-based parallelism. Recursive operations, such as most BDD
operations, implicitly form a tree of tasks. Independent subtasks are stored in
queues and idle processors steal tasks from the queues of busy processors.

7

1 def apply(x, y, F):
2 if (x, y,F) ∈ cache : return cache[(x, y,F)] /* get from cache */
3 if x and y are terminals : return F(x, y) /* apply operator F */
4 v = topVar(x,y)
5 low ← apply(xv=0, yv=0, F) /* execute in parallel */
6 high ← apply(xv=1, yv=1, F)
7 result ← BDDnode(v, low, high) /* compute result */
8 cache[(x, y,F)] ← result /* put in cache */
9 return result

Algorithm 1: Generic algorithm that applies a binary operator F to BDDs x and y.

Algorithm 1 describes the implementation of a generic binary operation F.
BDD operations mainly consist of consulting an operation cache, performing
some recursive step, and creating new BDD nodes using a unique table. The op-
eration cache is required to reduce the time complexity of BDD operations from
exponential to polynomial in the size of the BDDs. Sylvan uses a single shared
unique table for all BDD nodes and a single shared operation cache for all oper-
ations. To obtain high performance in a multi-core environment, the datastruc-
tures for the BDD nodes and the operation cache must be highly scalable. Sylvan
implements several non-blocking datastructures to enable good speedups [14].

To compute symbolic signature-based partition refinement, several basic oper-
ations must be supported by the BDD package (see also [26]). Sylvan implements
basic operations such as ∧ and if-then-else, and existential quantification ∃.
Negation ¬ is performed in constant time using complement edges. To com-
pute relational products of transition systems, there are operations relnext (to
compute successors) and relprev (to compute predecessors and to concatenate
relations), which combine the relational product with variable renaming. Simi-
lar operations are also implemented for MTBDDs. Sylvan is designed to support
custom BDD algorithms. We present two new algorithms below.

4.2 Encoding of signature refinement

We implement symbolic signature refinement similar to [26]. Unlike [26], we do
not refine the partition with respect to a single block, but with respect to all
blocks simultaneously. We use a binary encoding with variables s for the current
state, s′ for the next state, a for the action labels and b for the blocks. We order
BDD variables a and b after s and s′, since this is required to efficiently replace
signatures (a, b) by new block numbers b (see below). Variables s and s′ are
interleaved, which is common in the context of transition systems.

To perform symbolic bisimulation we represent a number of sets by their
characteristic functions. See also Figure 1.

– A set of states is represented by a BDD S(s);
– Transitions are represented by a BDD T (s, s′, a);
– Markovian transitions are represented by an MTBDD R(s, s′), with leaves

containing rational numbers (Q);

8

s, s′

a

BDD T (s, s′, a)

s

a

b

BDD σT (s, a, b)

s

b

MTBDD σR(s, b)

s

b

BDD P(s, b)

Fig. 1. Schematic overview of the BDDs in signature refinement

– Signatures T and B are represented by a BDD σT (s, a, b);
– Signatures Rs and Rb are represented by an MTBDD σR(s, b).

In the literature, three methods have been proposed to represent π.

1. As an equivalence relation, using a BDD E(s, s′) = 1 iff s ≡π s′ [5,19].
2. As a partition, by assigning each block a unique number, encoded with vari-

ables b, using a BDD P(s, b) = 1 iff s ∈ Cb [11,26,27].
3. Using k = dlog2 ne BDDs P0, . . . ,Pk−1 such that Pi(s) = 1 iff s ∈ Cb and

the ith bit of b is 1. This requires significant time to restore blocks for the
refinement procedure, but can require less memory [10].

We choose to use method 2, since in practice the BDD of P(s, b) is smaller
than the BDD of E(s, s′). Using P(s, b) also has the advantage of straight-forward
signature computation. The logarithmic representation is incompatible with our
approach, since we refine all blocks simultaneously. Their approach involves
restoring individual blocks to the P(s, b) representation, performing a refinement
step, and compacting the result to the logarithmic representation. Restoring all
blocks simply computes the full P(s, b).

We represent Markovian transitions using rational numbers, since they offer
better precision than floating-point numbers. The manipulation of floating-point
numbers typically introduces tiny rounding errors, resulting in different results
of similar computations. This significantly affects bisimulation reduction, often
resulting in finer partitions than the maximal bisimulation [23].

4.3 The refine algorithm

In this section, we present a new BDD algorithm to refine partitions according
to a signature, which maximally preserves previously assigned block numbers.

Partition refinement consists of two steps: computing the signatures and com-
puting the next partition. Given the signatures σT and/or σR for the current
partition π, the new partition can be computed as follows.

9

1 def refine(σ, P):
2 if (σ,P, iter) ∈ cache : return cache[(σ,P, iter)]
3 v = topVar(σ, P)
4 if v equals si for some i :

match paths on s in σ and P
5 low ← refine(σsi=0, Psi=0)
6 high ← refine(σsi=1, Psi=1)
7 result ← BDDnode(si, low, high)
8 else:

σ now encodes the state signature
P now encodes the previous block

9 B ← decodeBlock(P)
try to claim block B if still free

10 if blocks[B].sig = ⊥ : cas(blocks[B].sig,⊥, σ)
11 if blocks[B].sig = σ : result ← P
12 else:
13 B ← search_or_insert(σ,B)
14 result ← encodeBlock(B)
15 cache[(σ,P, iter)] ← result
16 return result

Algorithm 2: refine, the (MT)BDD operation that assigns block numbers to signa-
tures, given a signature σ and the previous partition P.

Since the chosen variable ordering has variables s, s′ before a, b, each path in
σ ends in a (MT)BDD representing the signature for the states encoded by that
path. For σT , every path that assigns values to s ends in a BDD on a, b. For σR,
every path that assigns values to s ends in a MTBDD on b with rational leaves.

Wimmer et al. [26] present a BDD operation refine that “replaces” these sub-
(MT)BDDs by the BDD representing a unique block number for each distinct
signature. The result is the BDD of the next partition. They use a global counter
and a hash table to associate each signature with a unique block number. This
algorithm has the disadvantage that block number assignments are unstable.
There is no guarantee that a stable block has the same block number in the
next iteration. This has implications for the computation of the new signatures.
When the block number of a stable block changes, cached results of signature
computation in earlier iterations cannot be reused.

We modify the refine algorithm to use the current partition to reuse the
previous block number of each state. This also allows refining a partition with
respect to only a part of the signature, as described in Section 3. The modification
is applied such that it can be parallelized in Sylvan. See Algorithm 2.

The algorithm has two input parameters: the (MT)BDD σ which encodes the
(partial) signature for the current partition, and the BDD P which encodes the
current partition. The algorithm uses a global counter iter, which is the current
iteration of partition refinement. This is necessary since the cached results of the
previous iteration cannot be reused. It also uses and updates an array blocks,

10

s, s′ s

b

s, s′s

b

match s′ = smatch s = s

same block

T Ps′Ps inert

Fig. 2. Schematic overview of the BDDs in the inert algorithm

which contains the signature of each block in the new partition. This array is
cleared between iterations of partition refinement.

The implementation is similar to other BDD operations, featuring the use of
the operation cache (lines 2 and 15) and a recursion step for variables in s (lines 3–
7), with the two recursive operations executed in parallel. refine simultaneously
descends in σ and P (lines 5–6), matching the valuation of si in σ and P. Block
assignment happens at lines 9–14. We rely on the well-known atomic operation
compare_and_swap (cas), which atomically compares and modifies a value in
memory. This is necessary so the algorithm is still correct when parallelized. We
use cas to claim a block number for the signature (line 10). If the block number
is already used for a different signature, then this block is being refined and we
call a method search_or_insert to assign a new block number.

Different implementations of search_and_insert are possible. We imple-
mented a parallel hash table that uses a global counter for the next block number
when inserting a new pair (σ,B), similar to [26]. An alternative implementation
that performed better in our experiments integrates the blocks array with a
skip list. A skip list is a probabilistic multi-level ordered linked list. See [21].

4.4 Computing inert transitions

To compute the set of inert τ -transitions for branching bisimulation, i.e., s τ→
π
s′,

or more generally, to compute any inert transition relation →∩≡ where ≡ is
the equivalence relation corresponding to π computed by E(s, s′) = ∃b : P(s, b)∧
P(s′, b), the expression T (s, s′) ∧ ∃b : P(s, b) ∧ P(s′, b) must be computed. [26]
writes that the intermediate BDD of ∃b : P(s, b) ∧ P(s′, b), obtained by first
computing P(s′, b) using variable renaming from P(s, b) and then ∃b : P(s, b) ∧
P(s′, b) using and_exists, is very large. This makes sense, since this intermediate
result is indeed the BDD E(s, s′), which we were avoiding by representing the
partition using P(s, b).

The solution in [26] was to avoid computing E by computing the signatures
and the refinement only with respect to one block at a time, which also enables
several optimizations in [25].

11

1 def inert(T , Ps, Ps′):
2 if (T ,Ps,Ps′) ∈ cache : return cache[(T ,Ps,Ps′)]

find highest variable, interpreting si in Ps′ as s′i

3 v = topVar(T , Ps, Ps′)
4 if v equals si for some i :

match si in T with Ps

5 low ← inert(Tsi=0, Ps
si=0, Ps′)

6 high ← inert(Tsi=1, Ps
si=1, Ps′)

7 result ← BDDnode(si, low, high)
8 elif v equals s′i for some i :

match s′i in T with si in Ps′

9 low ← inert(Ts′i=0, Ps, Ps′
si=0)

10 high ← inert(Ts′i=1, Ps, Ps′
si=1)

11 result ← BDDnode(s′i, low, high)
12 else:

match the blocks Ps and Ps′

13 if Ps 6= Ps′ : result ← False
14 else: result ← T
15 cache[(T ,Ps,Ps′] ← result
16 return result

Algorithm 3: Computes the inert transitions of a transition relation T according to
the block assignments to current states (Ps) and next states (Ps′).

We present an alternative solution, which computes →∩≡ directly using a
custom BDD algorithm. The inert algorithm takes parameters T (s, s′) (T may
contain other variables ordered after s, s′) and two copies of P(s, b): Ps and Ps′ .
The algorithm matches T and Ps on valuations of variables s, and T and Ps′

on valuations of variables s′. See Algorithm 3, and also Figure 2 for a schematic
overview. When in the recursive call all valuations to s and s′ have been matched,
with Ss, Ss′ ⊆ S the sets of states represented by these valuations, then T is the
set of actions that label the transitions between states in Ss and Ss′ , Ps is the
block that contains all Ss and Ps′ is the block that contains all Ss′ . Then if
Ps 6= Ps′ , the transitions are not inert and inert returns False, removing the
transition from T . Otherwise, T (which may still contain other variables ordered
after s, s′, such as action labels), is returned.

5 Experimental evaluation

5.1 Tool support

We implemented multi-core signature-based partition refinement in a tool called
SigrefMC, using the (MT)BDD-package Sylvan [12,14].

The tool supports LTSs, CTMCs and IMCs delivered in two input formats,
the XML format used by the original Sigref tool, and the BDD format that the

12

tool LTSmin [16] generates for various model checking languages. SigrefMC
supports both the floating-point and the rational representation of rates in
continuous-time transitions.

One of the design goals of this tool is to encourage researchers to extend it
for their own file formats and notions of bisimulation, and to integrate it in other
toolsets. Therefore, SigrefMC is freely available online1 and licensed with the
MIT license. Documentation is available and instructions for extending the tool
for different input/output formats and types of bisimulation are included.

5.2 Experiments

To study the improvements presented in the current paper, we compared our
results (using the skip list variant of refine) to Sigref 1.5 [25] for LTS and
IMC models, and to a version of Sigref used in [23] for CTMC models. For the
CTMC models, we used Sigref with rational numbers provided by the GMP
library and SigrefMC with rational number support by Sylvan. For the IMC
models, version 1.5 of Sigref does not support the GMP library and the version
used in [23] does not support IMCs. We used SigrefMC with floating points
for a fairer comparison, but the tools give a slightly different number of blocks.

In the current paper, we restrict ourselves to the models presented in [23,26]
and an IMC model that is part of the distribution of Sigref. These models have
been generated from PRISM benchmarks using a custom version of the PRISM
toolset [18]. We refer to the literature for a description of these models.

We perform experiments on the three tools using the same 48-core machine,
containing 4 AMD OpteronTM 6168 processors with 12 cores each. We measure
the runtimes for partition refinement using Sigref, SigrefMC with only 1
worker, and SigrefMC with 48 workers.

Note that apart from the new refine and inert algorithms presented in the
current paper, there are several other differences. The first is that the original
Sigref uses the CUDD implementation of BDDs, while SigrefMC obviously
uses Sylvan, along with some extra BDD algorithms that avoid explicitly com-
puting variable renaming of some BDDs. The second is that Sigref has several
optimizations [25] that are not available in SigrefMC.

5.3 Results

See Table 1 for the results of these experiments. These results were obtained by
repeating each benchmark at least 15 times and taking the average. The timeout
was set to 3600 seconds. The column “States” shows the number of states before
bisimulation minimisation, and “Blocks” the number of equivalence classes after
bisimulation minimisation. We show the wallclock time using Sigref (Tw), using
SigrefMC with 1 worker (T1) and using SigrefMC with 48 workers (T48). We
compute the sequential speedup Tw/T1, the parallel speedup T1/T48 and the
total speedup Tw/T48.
1 https://github.com/utwente-fmt/sigrefmc

13

https://github.com/utwente-fmt/sigrefmc

Sigref time (s)
0

25

50

75

100

0 5 10 15 20 25
IterSigrefMC-1 time (s)

0

10

20

30

0 5 10 15 20 25
IterNew blocks
per iteration

0

50,000

100,000

Iteration

Fig. 3. Time per iteration for Sigref and Si-
grefMC (1 worker), and the number of new
blocks per iteration for strong bisimulation of
the kanban04 LTS model.

Due to space constraints, we do
not include all results, but restrict
ourselves to larger models. We refer
to the full experimental data that is
available online2. In the full set of re-
sults, excluding executions that take
less than 1 second, SigrefMC is al-
ways faster sequentially and always
benefits from parallelism.

The results show a clear advan-
tage for larger models. One interest-
ing result is for the p2p-7-5 model.
This model is ideal for symbolic bi-
simulation with a large number of
states (235) and very few blocks after
minimisation (336). For this model,
our tool is 95x faster sequentially
and has a parallel speedup of 8x, re-
sulting in a total speedup of 767x.
The best parallel speedup of 17x was
obtained for the kanban05 model.

In almost all experiments, the
signature computation dominates
with 70%–99% of the execution time
sequentially. We observe that the
refinement step sometimes benefits
more from parallelism than signa-
ture computation, with speedups up
to 29.9x. We also find that reusing block numbers for stable blocks causes a
major reduction in computation time towards the end of the procedure. The
kanban LTS models and the larger polling CTMC models are an excellent case
study to demonstrate this. See Figure 3.

6 Conclusions

Originally we intended to investigate parallelism in symbolic bisimulation min-
imisation. To our surprise, we obtained a much higher sequential speedup using
specialized BDD operations, as demonstrated by the results in Table 1 and Fig-
ure 3. The specialized BDD operations offer a clear advantage sequentially and
the integration with Sylvan results in decent parallel speedups. Our best result
had a total speedup of 767x. Similar to our experiments in symbolic reachabil-
ity [14], further parallel speedups might be obtained by disjunctively partitioning
the transition relations.
2 https://github.com/utwente-fmt/sigrefmc-tacas16

14

https://github.com/utwente-fmt/sigrefmc-tacas16

LTS models (strong) Time Speedups
Model States Blocks Tw T1 T48 Seq. Par. Total

kanban03 1024240 85356 92.16 10.09 0.88 9.14 11.52 105.29
kanban04 16020316 778485 1410.66 148.15 11.37 9.52 13.03 124.06
kanban05 16772032 5033631 – 1284.86 73.57 – 17.47 –
kanban06 264515056 25293849 – – 2584.23 – – –

LTS models (branching) Time Speedups
Model States Blocks Tw T1 T48 Seq. Par. Total

kanban04 16020316 2785 8.47 0.52 0.24 16.39 2.11 34.60
kanban05 16772032 7366 34.11 1.48 0.43 22.98 3.47 79.81
kanban06 264515056 17010 118.19 3.87 0.83 30.55 4.65 142.20
kanban07 268430272 35456 387.16 8.83 1.66 43.86 5.31 232.71
kanban08 4224876912 68217 1091.67 17.91 2.98 60.96 6.02 366.72
kanban09 4293193072 123070 3186.48 34.23 5.51 93.10 6.21 578.59

CTMC models Time Speedups
Model States Blocks Tw T1 T48 Seq. Par. Total

cycling-4 431101 282943 220.23 26.72 2.60 8.24 10.29 84.84
cycling-5 2326666 1424914 1249.23 170.28 19.42 7.34 8.77 64.34
fgf 80616 38639 71.62 8.86 0.88 8.08 10.04 81.20
p2p-5-6 230 336 750.29 26.96 2.99 27.83 9.03 251.24
p2p-6-5 230 266 248.17 9.49 1.21 26.15 7.82 204.47
p2p-7-5 235 336 2280.76 24.01 2.97 94.99 8.08 767.12
polling-16 1572864 98304 792.82 118.50 10.18 6.69 11.64 77.85
polling-17 3342336 196608 1739.01 303.65 22.58 5.73 13.45 77.03
polling-18 7077888 393216 – 705.22 49.81 – 14.16 –
robot-020 31160 30780 28.15 3.21 0.60 8.78 5.36 47.04
robot-025 61200 60600 78.48 6.78 0.95 11.58 7.11 82.39
robot-030 106140 105270 174.30 12.26 1.47 14.21 8.33 118.44

IMC models (strong) Time Speedups
Model States Blocks Tw T1 T48 Seq. Par. Total

ftwc01 2048 1133 1.26 1.14 0.2 1.11 5.76 6.38
ftwc02 32768 16797 154.55 102.07 15.85 1.51 6.44 9.75

IMC models (branching) Time Speedups
Model States Blocks Tw T1 T48 Seq. Par. Total

ftwc01 2048 430 1.12 0.77 0.13 1.45 6.07 8.83
ftwc02 32786 3886 152.9 50.39 4.89 3.03 10.3 31.26

Table 1. Results for the benchmark experiments. Each data point is an average of at
least 15 runs. The timeout was 3600 seconds.

15

References

1. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A.,
Somenzi, F.: Algebraic decision diagrams and their applications. In: Lightner, M.R.,
Jess, J.A.G. (eds.) ICCAD. pp. 188–191. IEEE Computer Society / ACM (1993)

2. Blom, S., Haverkort, B.R., Kuntz, M., van de Pol, J.: Distributed Markovian Bisi-
mulation Reduction aimed at CSL Model Checking. ENTCS 220(2), 35–50 (2008)

3. Blom, S., Orzan, S.: Distributed Branching Bisimulation Reduction of State Spaces.
ENTCS 89(1), 99–113 (2003)

4. Blumofe, R.D.: Scheduling multithreaded computations by work stealing. In: FOCS.
pp. 356–368. IEEE Computer Society (1994)

5. Bouali, A., de Simone, R.: Symbolic Bisimulation Minimisation. In: Computer
Aided Verification, 4th Int. Workshop. LNCS, vol. 663, pp. 96–108. Springer (1992)

6. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Computers C-35(8), 677–691 (aug 1986)

7. Burch, J., Clarke, E., Long, D., McMillan, K., Dill, D.: Symbolic model checking
for sequential circuit verification. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 13(4), 401–424 (apr 1994)

8. Clarke, E.M., McMillan, K.L., Zhao, X., Fujita, M., Yang, J.: Spectral Transforms
for Large Boolean Functions with Applications to Technology Mapping. In: DAC.
pp. 54–60 (1993)

9. De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation. J. ACM
42(2), 458–487 (1995)

10. Derisavi, S.: A Symbolic Algorithm for Optimal Markov Chain Lumping. In:
TACAS 2007. LNCS, vol. 4424, pp. 139–154. Springer (2007)

11. Derisavi, S.: Signature-based Symbolic Algorithm for Optimal Markov Chain
Lumping. In: QEST 2007. pp. 141–150. IEEE Computer Society (2007)

12. van Dijk, T., Laarman, A.W., van de Pol, J.C.: Multi-Core BDD Operations for
Symbolic Reachability. In: 11th Int. Workshop on Parallel and Distributed Meth-
ods in verifiCation. ENTCS, Elsevier (2012)

13. van Dijk, T., van de Pol, J.C.: Lace: Non-blocking Split Deque for Work-Stealing.
In: 7th Int. Euro-Par Workshop on Multi-/Many-core Computing Systems. LNCS,
vol. 8806, pp. 206–217. Springer (2014)

14. van Dijk, T., van de Pol, J.C.: Sylvan: Multi-Core Decision Diagrams. In: TACAS
2015. pp. 677–691 (2015)

15. Hermanns, H., Katoen, J.: The How and Why of Interactive Markov Chains. In:
8th Intl. Symp. Formal Methods for Components and Objects. LNCS, vol. 6286,
pp. 311–337. Springer (2009)

16. Kant, G., Laarman, A., Meijer, J., van de Pol, J.C., Blom, S., van Dijk, T.: LTSmin:
High-Performance Language-Independent Model Checking. In: TACAS 2015. pp.
692–707 (2015)

17. Kulakowski, K.: Concurrent bisimulation algorithm. CoRR abs/1311.7635 (2013)
18. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilis-

tic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV. LNCS, vol.
6806, pp. 585–591. Springer (2011)

19. Mumme, M., Ciardo, G.: An efficient fully symbolic bisimulation algorithm for
non-deterministic systems. Int. J. Found. Comput. Sci. 24(2), 263–282 (2013)

20. Paige, R., Tarjan, R.E.: Three Partition Refinement Algorithms. SIAM J. Comput.
16(6), 973–989 (1987)

16

21. Pugh, W.: Skip lists: A probabilistic alternative to balanced trees. Commun. ACM
33(6), 668–676 (1990)

22. Wijs, A.: GPU Accelerated Strong and Branching Bisimilarity Checking. In: Baier,
C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 368–383. Springer (2015)

23. Wimmer, R., Becker, B.: Correctness Issues of Symbolic Bisimulation Computation
for Markov Chains. In: MMB&DFT. LNCS, vol. 5987, pp. 287–301. Springer (2010)

24. Wimmer, R., Derisavi, S., Hermanns, H.: Symbolic partition refinement with au-
tomatic balancing of time and space. Perform. Eval. 67(9), 816–836 (2010)

25. Wimmer, R., Herbstritt, M., Becker, B.: Optimization techniques for BDD-based
bisimulation computation. In: 17th GLSVLSI. pp. 405–410. ACM (2007)

26. Wimmer, R., Herbstritt, M., Hermanns, H., Strampp, K., Becker, B.: Sigref- A
Symbolic Bisimulation Tool Box. In: ATVA. LNCS, vol. 4218, pp. 477–492. Springer
(2006)

27. Wimmer, R., Hermanns, H., Herbstritt, M., Becker, B.: Towards Symbolic Stochas-
tic Aggregation. Tech. rep., SFB/TR 14 AVACS (2007)

17

	Multi-core symbolic bisimulation minimisation

