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Abstract. In a context where graph transformation is used to explore
a space of possible solutions to a given problem, it is almost always nec-
essary to inspect candidate solutions for relevant properties. This means
that there is a need for a flexible mechanism to query not only graphs
but also their evolution. In this paper we show how to use Prolog queries
to analyse graph exploration. Queries can operate both on the level of
individual graphs and on the level of the transformation steps, enabling
a very powerful and flexible analysis method. This has been implemented
in the graph-based verification tool groove. As an application of this
approach, we show how it gives rise to a competitive analysis technique
in the domain of feature modelling.
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1 Introduction

The practical value of graph transformation (GT) is especially determined by the
fact that graphs are a very general, widely applicable mathematical structure.
Virtually every artefact can be understood in terms of entities and relations
between them, which makes it a graph; and consequently, changes in such an
artefact can be specified through GT rules.

On the other hand, capability does not automatically imply suitability. For
instance, though it is possible to express structural properties as (nested) graph
conditions – see, for instance, [19, 13] – in practice, if one wants to query a given
structure, writing graphical conditions to express and test for such queries is
not always the most obvious or effective way to go about it. This is particularly
true if the queries have not been predefined but are user-provided. Instead, there
are dedicated languages suitable for querying relational structures, such as, for
instance, SQL or Prolog.
? The work of this author is supported by the GRAIL project, funded by NWO (Grant
612.000.632).



The need for a powerful and flexible query language becomes even more clear
when one wants to combine static (structural) properties with dynamic ones, so
as to include the future or past evolution of the structure. For instance, temporal
logic has been especially introduced to express dynamic properties and check
them efficiently (see [2] for an overview). However, besides lacking accessibility,
temporal logic is propositional, meaning that it takes structural properties as
basic building blocks; there is very little work on logics that can freely mix
static and dynamic aspects of a system.

An example domain that requires this combination of static and dynamic as-
pects is feature modelling. A feature model is a graph in which nodes represent
possible features (of some system under design) and edges express that one
feature requires another, is in conflict, or is related in some other way. Graph
transformation can be used to actually select features (in such a way that the
constraints are met). The outcome is a (partially) resolved model, the quality
of which is not only determined by the choices actually made but also by the
possible choices still remaining. Thus, one would like to query a feature model
for both its static properties (the choices actually made) and for its dynamic
properties (the potential further transformation steps).

In this paper, we describe how one can use Prolog to query static and dynamic
properties of graphs, simultaneously and uniformly. Besides the transformed
graphs this requires a graph transition system (GTS), which is itself a graph
with nodes corresponding to state graphs and edges to rule applications. The
basic building block of Prolog is a predicate, which expresses a relation between
its arguments. Example predicates in our setting are:

– The relation between a graph and its nodes or edges;
– The relation between an edge and its source or target node, or its label;
– The relation between a state of the GTS and its corresponding graph;
– The relation between one state of the GTS and the next.

A collection of Prolog predicates forms a knowledge-base, which is queried during
the analysis of a GTS. Using an extension of the transformation tool groove
that supports Prolog queries, we demonstrate the capabilities of this approach
on a case study based on feature modelling. This domain was chosen due to its
applicability on the development process of software industries.

The paper is organised as follows. We first present the basic concepts for querying
graphs using Prolog (Section 2); then we describe the application to feature
modelling in Section 3. An analysis of the results can be found in Section 4.
Conclusion and ideas for future work are given in Section 5.

2 Prolog in groove

The Prolog programming language [7] is the de facto representative of the logic
programming paradigm. Unlike imperative languages, Prolog is declarative: a
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Fig. 1. Example GTS with three states and two transitions.

Prolog program is composed of predicates about objects and their relations,
and computations are performed by running queries over predicates. Given a
query asking whether a predicate holds for a certain (given) object, the Prolog
interpreter uses a resolution procedure that yields a yes or no answer. On the
other hand, if a query has free variables, the Prolog engine will enumerate all
objects which can be assigned to the variables so as to make the predicate true.

groove [22, 11] is a graph transformation tool set which can recursively
explore and collect all possible rule applications over a start graph: this is referred
to as the exploration of the state space of a graph grammar. The state space
is stored as a graph transition system (GTS), where each state of the system
contains a graph and each transition is labelled by a rule application. groove
has a graphical interface called the Simulator, for editing graphs and rules, and
for exploring and visualising the GTS. The main technical contribution of this
paper is the integration of a Prolog interpreter into the groove Simulator.

2.1 Functionality Overview

Before executing Prolog queries, the standard groove functionality is used to
perform a state space exploration of the graph grammar under analysis. The
exploration produces a GTS, which can then be inspected in queries. At this
point it is important to stress the difference between states and state graphs. A
state is an element of the GTS; it is implemented as an object with an unique
identity and an associated state graph. A state graph is a host graph over which
the transformation rules are applied.

We illustrate the Prolog functionality on the basis of a very small example.
Figure 1 shows a GTS with three states, represented by dashed boxes: the start
state s0 and two successor states s1 and s2. Each of the states contains a state
graph, consisting of two nodes connected by an e-labelled edge. The state graph
of s1 is obtained from the state graph of s0 by applying rule a2b (not shown
here) which renames an A-node to a B-node. Analogously, the state graph of s2
is produced by applying rule a2c. Now consider the following Prolog query:

?− state(X), state_graph(X,GX), has_node_type(GX,’A’),
state_next(X,Y), state_graph(Y,GY), has_node_type(GY,’C’).

The query is composed of six predicates, interpreted conjunctively from left to
right (the meaning of characters + and ? will be discussed in Section 2.2):

• state(?State) iterates over the states of the currently explored GTS.
• state_graph(+State, ?Graph) binds the state graph of the given state to the

second argument; i.e., it retrieves the state graph associated with the given
state.
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• has_node_type(+Graph, +Type) succeeds if the given graph has at least one
node of the given type.

• state_next(+State, ?NextState) iterates over all successors of the given state.

The purpose of the query is to search for a state (variable Y) with a graph (GY)
that has at least one node of type C and that has a predecessor state (X) whose
graph (GX) contains a node of type A. Running this query produces the following
result, which correctly binds Y to state s2:

X = s0
GX = Nodes: [n0, n1]; Edges: [n0−−A−−>n0, n1−−D−−>n1, n0−−e−−>n1]
Y = s2
GY = Nodes: [n0, n1]; Edges: [n0−−C−−>n0, n1−−D−−>n1, n0−−e−−>n1]
Yes
More?
No

The output also shows the bindings for the other variables in the query. The
values printed for variables GX and GY are the toString representations of the
bound graphs, which show their internal structure – this explains the edge lists
with three elements3. In the last two lines of the listing above, the user asked
the interpreter if there are more results for the query. Since there are no other
states that satisfy the query constraints, the answer is negative. If the GTS
had more states satisfying the query, continuing the execution would eventually
produce all of them. This is a consequence of the Prolog resolution procedure,
which backtracks to predicate state_next, binding Y with other successors of X,
as well as to state, binding X with other states of the GTS.

In addition to using the built-in groove predicates, users can also define
their own Prolog predicates. This ability to expand the Prolog knowledge-base
(illustrated on Section 3.3) improves the extensibility of the framework.

2.2 Implementation Overview

Figure 2 shows the main elements of the integration of Prolog into the Simu-
lator. groove is written in Java, so in order to ease the coupling, we chose
the GNU Prolog for Java library4 [10] as our Prolog interpreter. The Simulator
state in Figure 2 stands for the current snapshot of the Simulator configuration
in memory. It contains Java objects that represent, among others, host graphs,
transformation rules, and the GTS. The main block of Figure 2 is the glue code,
which connects the Prolog interpreter to the rest of the Simulator. The glue code
registers itself in the interpreter and is called back when a Prolog query is run.
When called, the glue code inspects the Simulator state and tries to bind the
Java objects with terms (variables) of the query.
3 groove uses an internal graph representation where nodes have very little structure;
node types and flags are stored as special self-edges.

4 http://www.gnu.org/software/gnuprologjava/
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Fig. 2. Integration of the Prolog interpreter in the groove Simulator.

Built-in predicates. Each built-in groove predicate requires some glue code,
written partly in Prolog and partly in Java. When the Prolog interpreter is cre-
ated, an initialisation phase registers the built-in predicates with the interpreter.
For instance, gts(−GTS) is a built-in predicate that binds the Java GTS object
to a Prolog variable. Predicate registration is done with the following query:

:− build_in(gts/1, ’groove.prolog.builtin.Predicate_gts’).

Predicate build_in is a special interpreter command for creating new predicates.
The first argument specifies the predicate name and arity, the second one gives
the name of the Java class that implements the predicate functionality. Here is
a simplified listing for the Java Predicate_gts class.

1 public class Predicate_gts extends PrologCode {
2 public int execute(Interpreter interpreter, boolean backtracking, Term[] args) {
3 GTS gts = getSimulatorState().getGTS();
4 if (gts == null) {
5 return FAIL;
6 }
7 return interpreter.unify(args[0], gts);
8 }
9 }

When gts(X) is evaluated in a query, the interpreter calls execute of Predicate_gts.
The third argument of the method is an array of Prolog terms that corresponds
to the arguments of the predicate — in this case, X. The method first inspects
the Simulator state to retrieve the GTS object (line 3). If the object is null the
query fails, otherwise the object is bound to X (line 7).

Argument modes. In the above, we have specified predicate signatures in
which the parameter names were prefixed with special characters. These indicate
the interaction of the Prolog interpreter with arguments at that position:
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+ Input parameter: the argument must already be bound to an object of the
appropriate type. For example, has_node_type(+Graph,+Type) succeeds if the
given graph has a node of the given type.

– Output parameter: the argument should be free, i.e., not bound to an object;
it will receive a value through the query. For example, gts(−GTS) assigns the
object that represents the current GTS of the Simulator.

? Bidirectional parameter: can be used either as input or as output. For exam-
ple, state(?State) may be used in two ways. If the argument is already bound
to a state, the predicate either succeeds or fails depending on whether that
state is part of the current GTS or not. If the argument is free, it will be
bound to a state; backtracking will iterate over the remaining states.

Backtracking. The Prolog resolution procedure is a search for valid bindings,
in the course of which it may backtrack and re-evaluate predicates to retrieve
further solutions. This implies that the implementation of the built-in predicates
must handle backtracking. For example, the following is the Java glue code for
predicate state_next.

1 public class Predicate_state_next extends PrologCode {
2 public int execute(Interpreter interpreter, boolean backtracking, Term[] args) {
3 PrologCollectionIterator it;
4 if (backtracking) {
5 it = interpreter.popBacktrackInfo();
6 } else {
7 State state = getSimulatorState().getState(args[0]);
8 it = new PrologCollectionIterator(state.getNextStateSet(), args[1]);
9 interpreter.pushBacktrackInfo(it);
10 }
11 return it.nextSolution();
12 }
13 }

The backtracking flag (line 2) is used by the interpreter to indicate if the predicate
is being evaluated for the first time in a query or if it is being called again
after backtracking. During the first run, the else block (lines 7–9) is executed.
First the state object is retrieved along with its set of successor states (call
to state.getNextStateSet()). This set is put into a special iterator along with the
argument to be bound (line 8), which is then passed to the interpreter and
stored as backtrack information (line 9). When the method is called again during
backtracking, the same iterator is retrieved from the interpreter (line 5) and the
next solution is returned.

3 Application to Feature Modelling

Feature models [15] are commonly used to support the configuration of products
in software product lines [18]. They model variability by expressing commonali-
ties, variations and constraints between the different features that could be part
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Fig. 3. A type graph for feature models.

of a product. A feature usually represents an aspect of the software in an early
phase of the software life cycle, and the impact of the combination of features is
propagated across the phases until the actual product is implemented.

The analysis of feature models [5, 25] is mostly concerned with verifying their
static properties with respect to allowed specifications and valid configurations
of the model. However, the specification of feature models and their configura-
tion process go beyond the information in the model: they often involve multiple
groups with distinct interests and expertise, which informally express extra prop-
erties of the features. Moreover, the definition of possible products depends on
forces like market demands, user preferences, and the availability of assets at a
specific time (such as the software components for the related products). Thus,
feature modelling is a domain which can strongly profit from the ability to define
and query static and dynamic properties of models, leading to richer analysis
techniques. In particular, we can identify the following tasks in the analysis:

1. Model additional knowledge about features;
2. Define domain properties independently on the models, in a declarative way;
3. Simulate the configuration process;
4. Query for valid configurations with respect to conditions not expressed in

the feature model;
5. Analyse alternative configuration paths and investigate the evolution of con-

figuration stages.

We proceed to show how the Prolog extension for groove can be used to im-
plement these tasks. First we give an overview of the relevant concepts in terms
of a type graph, some example rules and a small example model; then we focus
on the use of Prolog to query the resulting state space of the grammar.

3.1 Feature Model Type Graph

Figure 3 shows a type graph for feature models (in groove), based on the
definitions given in [25]. The type FeatureModel represents a feature model
composed of two parts: a FeatureTree whose nodes represent Features, and a set
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Fig. 4. Examples of graph production rules for feature model configuration. groove
rules are represented in a single graph, with different colours and line strokes used
to distinguish different elements: black (continuous thin) elements are matched and
preserved, and red (dashed fat) elements are Negative Application Conditions (NACs).
Node flags preceded by a character have especial roles: + indicates flag creation; − is
flag deletion, and ! is a NAC on the flag.

of explicit Constraints between these features. The constraint Requires indicates
that if the target node of feature1 is selected for a product, then the target
node of feature2 should be selected as well. The constraint Excludes indicates
that the target nodes of feature1 and feature2 cannot be both selected for the
same product. Type Feature has three subtypes: MandOpt, Or and Alt. The
edges from each of these subtypes to a Feature indicate which kinds of child
features each subtype can have. Leaf features of the tree are MandOpt features
without children. Finally, the flags configured , violated , and selected in the type
graph are used in GT rules to assist the configuration process and to enforce the
identification of valid configurations.

3.2 Product Configuration

A specific feature model is a graph instantiating Figure 3, initially without any
flags. The model is then configured using GT rules that encode the following
constraints (some of which were discussed above):

1. The root feature must be selected first;
2. When a MandOpt is selected, all mandatory children must also be selected;
3. When an Or is selected, at least one of its children must also be selected;
4. When an Alt is selected, exactly one of its children must also be selected;
5. When a non-root feature is selected, its parent feature must also be selected.

Child features are selected on demand and violations of constraints are checked
at each step. This applies both to the implicit conditions of the FeatureTree
and to the explicit Requires and Excludes constraints in the model.

Each of the steps above is performed by a combination of graph transforma-
tion rules. For example, Figure 4(a) shows a rule used to detect a violation on
the selection of a child feature of an Or (step 3); the rule in Figure 4(b) selects
a feature which is required by another, previously selected one and removes the
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Fig. 5. A valid configuration of the feature model.

violation of the Requires constraint; and the rule in Figure 4(c) checks the con-
ditions for the complete feature model to be correctly configured and marks it
as configured . A valid configuration of the feature model is found when neither
the constraints nor the feature tree are violated. Note that a tree violation is
modelled independently of the violation of explicit constraints between pair of
features. A tree has a violation when one of the requirements listed above is not
satisfied, e.g., when the root feature is not selected. Each valid configuration
selects a set of features that gives rise to a potential product of the product line.

Starting from the initial feature model, state space exploration generates a
GTS resulting from all possible interleavings of rule applications. Each state rep-
resents the feature model with a partial selection of features, some of which may
form valid configurations. Figure 5 shows a completely configured feature model,
immediately after the application of the rule shown in Figure 4(c) (named Fea-
tureModelConfiguration in the grammar). This configuration has a set of selected
features and no constraint violations (violated flags). Note that the mandatory
part of feature EnergySaving does not have to be selected since the feature itself,
which is optional, was not selected. Once generated, the GTS can be queried
using Prolog.
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3.3 Querying the State Space

We now come to the main point of the example, which is how Prolog may be
used to analyse the state space. For instance, the following user-defined predicate
extracts completely configured products:

product(Product) :−
rule(’FeatureModelConfiguration’, Rule), % Get the rule object
% Get the graph resulting from rule application
rule_application_result(Rule, Graph),
% Collect all features selected to compose the product.
findall(Feature, selected_feature(Graph, Feature), Product).

The predicate searches for graphs resulting from the application of rule Feature-
ModelConfiguration and then collects all selected features in this graph (using
findall, which is a higher-order predicate provided by GNU Prolog). Successive
calls of product generate all valid models. For the initial, unconfigured version of
the feature model this yields 50 products, including the one shown in Figure 5
(composed of features HomeAuto, Surveil, AccidentDet, AlarmAuto, Alarm, and
Bell). Predicate product uses the following auxiliary predicate, which consults
information of the GTS.

rule_application_result(Rule, Graph) :−
state(Source), % Get a source state
state_transition(Source, Transition), % Get a transition from source state
transition_event(Transition, Event), % Get the rule application event of the transition
ruleevent_rule(Event, Rule), % Ensure that the given rule is the one that was applied
transition_target(Transition, Target), % Get the target state of the transition
state_graph(Target, Graph). % Get the graph of target state

This predicate uses the rule application event associated with transitions of
the GTS to ensure that the given rule is the one that was indeed applied in
the Transition. It is important to note that the GTS has a total of 312 states,
representing all intermediate states that lead to one of the 50 configured feature
models. These intermediate states allow the analysis of different evolution paths
(formed by different rule application sequences) that lead to the same solution.
Furthermore, the grammar contains rules to re-validate constraint violations,
making it possible to reach a valid configuration even if a constraint was violated
in an intermediate state.

Another useful capability provided by the Prolog extension is the possibility to
define a knowledge base of additional model-related information. As an exam-
ple, suppose that we are interested in products that satisfy a certain budget
constraint. The following Prolog code sets the costs for each feature of the model
and defines what it means for a product to be within budget.

% Extra facts about feature costs.
cost(’HomeAuto’, 1). cost(’Surveil’, 0). cost(’WhiteGoodsCtrl’, 10).
cost(’AlarmAuto’, 10). cost(’EnergySaving’, 5). cost(’Siren’, 15).
cost(’AccidentDet’, 25). cost(’ClimateCtrl’, 10). cost(’Bell’, 10).
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cost(’MotionDet’, 25). cost(’Alarm’, 5). cost(’SmartCtrl’, 10). cost(’Remote’,10 ).

% Computes the cost of a product.
sum_costs([], 0).
sum_costs([H|T], Total) :− sum_costs(T, CT), cost(H, CH), Total is CH+CT.

% Checks if the given product is within the given budget.
within_budget(Budget, Product) :− sum_costs(Product, Cost), Cost =< Budget.

The following query returns products with total cost smaller or equal to 70:

?− product(P), within_budget(70, P).

For our running example, this gives 11 products within the budget constraint.

4 Discussion and Related Work

In the previous section we showed how the Prolog extension for groove supports
the graph-based representation of feature models, how extra model attributes can
be specified as Prolog predicates and how state space exploration can be used
to search for feature model configurations. Going back to the list of tasks in
Section 3 (page 7), we see that, in fact, all of them are fulfilled.

4.1 Performance

There are two major points of evaluation regarding run-time performance of
the tool set: (i) the time used to explore the state space and store the GTS;
and (ii) the time needed to run the Prolog queries on a given GTS. Item (i)
covers the standard functionality of groove, for which an extensive body of
work exists [21, 20, 8, 12], comprising performance evaluations of several aspects
of groove implementation and also comparisons with other tools. Item (ii)
concerns the functionality introduced by the Prolog extension, which requires a
new analysis.

For the running example of Section 3 the time necessary for building the GTS
and performing the Prolog queries is negligible (around 2 milliseconds in total),
since the state space is small. To properly exercise the tool, we used a grammar
implementing a solution for the leader election case study [16] proposed at the
GraBaTs 2009 tool contest. The purpose of this case is to verify a protocol for the
election of a leader among a ring of processes. The state space size is exponential
on the number of processes, giving rise to very large transition systems.

The results of the experiments are given in Table 1. Column # States shows
the GTS size for an increasing number of processes. Columns Exploration
Time and Query Time give the time in milliseconds needed to explore the
state space and run the Prolog queries, respectively. We used a query similar to
the one given in Section 3.3, that collects all states of the GTS where a leader has
been elected. The last column lists the number of results returned by the query.
From the times given in Table 1 it can be seen that the bulk of the running time
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Table 1. Performance Comparison of Prolog queries against state space size.

Growth Exploration Growth Query Growth
# States Ratio Time (ms) Ratio Time (ms) Ratio # Results

10 251 < 1 2
52 5.2 347 1.4 3 4.1 10

473 9.1 1,000 2.9 30 9.0 84
6,358 13.4 6,001 6.0 294 9.9 1,008

113,102 17.8 140,961 23.5 12,238 41.6 15,840

is spent on building the GTS, unsurprisingly. From the growth ratios we see that
the query time increases linearly over the GTS size until the second-to-last line.
However, at the last line of the table, the query time exhibits a larger growth,
which can be explained by the large amount of backtracking done by the Prolog
interpreter while running the query.

Although further experimentation is certainly in order, we consider these
initial performance results of the Prolog extension satisfactory.

4.2 Related Feature Modelling Approaches

The analysis of feature models is useful for several reasons, such as to efficiently
resolve the configuration constraints and to optimise the configuration calcula-
tion. This analysis is the object of research in many directions, which differ in the
expressiveness of the models and in the configuration strategies. For example,
generalised feature trees [25], propositional formulas [4] and constraint satisfac-
tion problems [5] have been used for the purpose of analysing feature models.
Although some of these algorithms are known to be quite efficient, the major
drawback of such approaches is the rigidity of the analysis method. A review
of the current techniques for the automated analysis of feature models is given
in [6].

Extra feature attributes can be modelled in our approach in at least two ways:
first, by adding new attributes to the graphs; or secondly, by defining predicates
in Prolog that represent such attributes. We chose the last form because the
values of the attributes used can be quite volatile in this application domain.
Again, it is possible to annotate the graph with all kinds of information, but this
would hamper the flexibility of the approach.

We want to draw attention to the issue of staged configuration of product lines. A
stage corresponds to the elimination of a set of configuration options; the selec-
tion of features is deferred through stages until no variability is left. Czarnecki et
al. [9] handle staged configuration using a feature model notation that supports
the definition of feature cardinality. They explore the variability in a feature
model per stage, which contains the features that can be selected. Hubaux et
al. [14] propose a way to guide the configuration process using workflows which
enforce the staged configuration in a certain order. Both approaches also han-
dle inter-related feature models, in which the configuration order matters but is
predefined and fixed over the whole configuration process.
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We are able to generate all configuration stages of a feature model, as graph
states, and to inspect these stages in several ways: by querying in which order
the features (especially the variable features) are selected, or also by making
several kinds of inspections in these stages. For example, our groove solution
supports the analysis of configuration contexts in which a constraint has been
violated. We can also add extra constraints which are combinations of conditions
in previous stages.

4.3 Related Tools

The progress specification language [23] has the so-called path expressions: el-
ements that form a declarative query language suitable for inspecting the struc-
ture of a graph. These expressions have a similar role to our Prolog predicates for
formulating structural graph constraints and also additional graph attributes.

Among other tools for the verification of graph transformation (GT) systems
we can cite Augur2 [17] and enforce [1]. Augur2 uses abstraction to verify
GT grammars with infinite state spaces. enforce acts as proof checker for the
correctness high-level programs written as graph transformations. While both
these tools could be used to analyse the evolution of a graph to some degree,
the explicit-state model checking approach of groove gives an advantage, since
it provides a simpler representation of intermediate states that eases the under-
standability for the layman user. For a more comprehensive comparison between
groove and other GT tools see [11].

Concerning other existing combinations of graph transformation tools with
Prolog, as far as we are aware, there are only two similar approaches, embodied
by viatra2 [26] and vmts [27], both of which are GT-based tools for model
transformation.

viatra2. Varró and Balogh [3] describe how viatra2 and Prolog can be used to
implement their so called Model Transformation by Example (MTBE) approach.

The purpose of MTBE is to semi-automatically derive model transformation
rules from example relations between source and target model elements. These
example relations are represented in viatra2 using a mapping model, formed by
the source and target meta-models and a reference meta-model to interconnect
them. The mapping model is translated to Prolog clauses and an inductive learn-
ing program is run, producing Prolog inference rules representing hypothesis that
are satisfied under the given clauses. These inference rules are then translated
back to a viatra2 representation and give rise to model transformation rules
that can operate on instances of the source and target meta-models, following
the example relations given in the mapping model. This process can be repeated
in order to iteratively refine the rules produced.

From the above, it should be clear that the intended use of Prolog in the
setting of viatra2 is quite different from ours, and hence there is little basis for
a deeper comparison.
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vmts. At the GraBaTs 2009 tool contest, Siroki et al. [24] presented a solution
to the leader election case study using vmts and Prolog.

The goal of their approach is to check if the outcome of a set of model trans-
formation rules applied to a given input model complies to certain properties.
To perform this analysis, first the input model, the transformation rules and
the control flow graph specifying the order for rule applications are all trans-
lated from the vmts format to a Prolog representation. Subsequently, the Prolog
resolution procedure is used to enumerate the possible output models of the
transformation. Finally, these output models are checked by Prolog predicates
that express the properties one wants to assert.

Their use of Prolog resolution plays the same role as the state space explo-
ration functionality of groove. However, their approach suffers from the need
to translate vmts objects to Prolog. The Prolog resolution procedure is not ad-
equate for the exploration of a graph-based state space and therefore gives poor
performance. Another consequence of the translation is the low readability of
the generated Prolog clauses.

5 Conclusions and Future Work

Summarising, the highlights of the approach described in this paper are:

– Prolog is tightly integrated with graph-based state space exploration;
– Queries can uniformly combine static and dynamic aspects of graphs;
– The framework supports user-defined Prolog facts and predicates.

We have demonstrated these advantages by applying the approach in the domain
of feature modelling, where it gives rise to a competitive alternative to existing,
more rigid frameworks.

We have implemented the above as an extension to groove. Although many
of the examples given in this paper could have been solved in groove using other
means, the Prolog-based solutions are more convenient and elegant. Therefore,
the extension improves usability, which is a key factor for success.

On a more general level, this paper shows that there is much to be gained
when graph transformation is connected to other techniques, and that this con-
nection can be done in a simple, uniform way.

Future work. There are two main points planned as future work.

– Prolog-based application conditions. One can associate Prolog queries to indi-
vidual GT rules, to play the role of additional application conditions. When
a rule with a query is matched, the query is executed in the Prolog inter-
preter, and only if the query succeeds the rule is applied. This functionality
is orthogonal to other application conditions already present in groove,
such as NACs, and would give another option for controlling the flow of rule
applications, in addition to rule priorities and control programs.
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– Prolog-based state space exploration. One can also extend the groove explo-
ration strategies with a condition based on a Prolog query. Every time a new
state is produced, the query is run, and if the query is successful the state
is added to the GTS. The effect is comparable to a global post-application
condition.

Availability. The Prolog extension described in this paper is implemented in
groove version 4.4.0, available at http://groove.cs.utwente.nl. The gram-
mar for the solution given in Section 3 can also be downloaded at the same
address.

Acknowledgement. The integration of Prolog into groove is originally due to
Michiel Hendriks.
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