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Abstract

— Control architectures may not be the hottest topic in robotics research but without a
solid and powerful control architecture the hottest topics cannot be tackled. —

Numerous demanding robotics applications and research projects employing commercial ma-
nipulators require high-rate low-level interfaces to the robot hardware. Often the perfor-
mance of robotic systems and the quality of research results can be improved significantly
by employing an appropriate low-level control interface to the robot hardware instead of
the original controller. The controllers provided by manufacturers often lack high-rate low-
latency communication interfaces – if a low-level control interface and sufficient computing
power are provided at all. Modifying commercial robot controllers or even developing open
robot controllers for commercial manipulators requires expert knowledge in several fields.
Unfortunately, concrete implementations are hardly described in the literature and thus this
endeavor poses a high obstacle for many research groups who are not primarily concerned
with electronics and control engineering.

These workshop proceedings provide hands-on advice on how to implement open control
interfaces for commercial manipulators of several popular manufacturers – respecting legal re-
strictions. Moreover, they address both hardware and software issues such as interface design,
suitable control approaches, and the lower layers of control architectures, which significantly
influence the performance.
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Development Group, Motion and Control, Comau Robotics SpA

• Low-Level Control of Robot Manipulators: Distributed Open Real-Time Control Archi-
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Model-Driven Robot-Software Design Using Template-Based Target
Descriptions

Jan F. Broenink*, Marcel A. Groothuis*, Peter M. Visser**, Maarten M. Bezemer*

Abstract— This paper is about using templates and passing
model-specific information between tools via parameterized to-
kens in the generated, high-level code, to get a better separation
of design steps. This allows for better quality of the models
and more reuse, thus enhancing the efficiency of model-driven
design for the (industrial) end user. This is illustrated by the
realization of the embedded software of a real system.

We conclude that reuse is easier. However, the presented
method can be generalized more, as to connect to other tools
and platforms.

I. INTRODUCTION

Designing embedded control software is often done using
models from which code is generated (i.e. model-driven).
Besides models of the embedded control software, also
models of the dynamic behavior of the robot mechanism to
be controlled, are used for design and verification purposes.

We use a layered architecture for the design of the
embedded control software, whereby parts are specified as
re-usable, configurable building blocks (See Fig. 1). This
supports separation of design activities in the different design
steps, thus stimulating focus per design step, and allowing
different design steps be conducted simultaneously. It fur-
thermore enhances efficiency, as generic parts need to be
coded only once (as code templates), and used many times.

As a result of the usage of multiple models and tools for
the design the embedded control software, the code genera-
tion and integration phase becomes a bit complicated without
proper measures. The desired goal is a full code generation
path, which does not require manual adaptation/additions to
the generated code in order to make it suitable to run on a
specific robot target. Therefore the used tools are chained to
support step-wise and partial code generation.

Other design flows, like Matlab / Simulink / Real-Time
Workshop xPC target [1] or Labview Robotics [2], are re-
stricted to vendor-specific tools and targets, and do not follow
the strict separation between development steps, resulting in
models polluted with target-hardware-specific information.

This contribution explains the usage of code templates
together with token replacement techniques and a supporting
toolchain as means to generate the implementation code from
the design models and to run this code on a variety of own
designed and industrial hardware platforms.

* Faculty of Electrical Engineering, Mathematics and Computer Sci-
ence, University of Twente, 7500 AE Enschede, The Netherlands. e-
mail: {j.f.broenink, m.a.groothuis, m.m.bezemer}
@utwente.nl

** Controllab Products B.V., Enschede, The Netherlands. e-mail:
info@controllab.nl

The toolchain is designed in such a way that it allows
a flexible interconnection of various tools (both commercial
and academic) used for different design steps, while ensuring
the separation of conecerns between these steps.

Section II presents some background knowledge on the
formalisms, techniques, and tools used. In Section III, we
present the method (details are in [3]), and in Section IV,
we briefly illustrate it with an example. Section V combines
discussion and conclusions.

II. BACKGROUND

A typical mechatronic system like a robot consists of a
combination of a mechanical (physical) system, mixed-signal
and power electronics, and an embedded (motion) control
system (ECS). The combination of a mechanical setup and
its ECS software requires a multi-disciplinary and synergistic
approach for its design, because the dynamic behavior of the
mechanics influences the behavior of the software and vice-
versa (also known as cyber physical systems). Therefore we
adhere a mechatronic or systems approach for the design of
the physical system and its software, because they should be
designed together (co-design approach) to find an optimal
and dependable realization.

A. Formalisms

Formalisms are the languages and syntax used for em-
bedded control systems modelling. Two main core Mod-
els of Computation (MoC) are used to describe the total
mechatronic system behavior (plant, control, software and
I/O): a continuous-time MoC (dynamic system, control) and
a discrete-event MoC (software). The modelling language
used for the continuous-time MoC is the bond-graph nota-
tion, which is a domain-independent notation for describing
dynamic systems behavior [4], [5]. The used modelling
formalism for the embedded software is a layered data-
flow driven architecture modeled in the Communicating
Sequential Processes (CSP) algebra [6], [7]. The CSP algebra
allows us to provide a mathematical proof of the correctness
of our software designs with respect to deadlocks, livelocks
and refinements.

B. Tools

The commercial modeling and simulation tool 20-sim
[8] is used to model dynamic systems and for controller
design (the continuous time part). 20-sim supports multi-
disciplinary modeling with library components for many en-
gineering disciplines and also supports the domain indepen-
dent bond-graph notation. It also supports model checking
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and has an extensive control toolbox and has a customizable
template-based C-code synthesis facility for automatic code
synthesis of whole models or submodels (e.g. only the con-
troller) with a strict separation between model dependent and
target dependent code. For the design of the embedded soft-
ware architecture in which the controllers will be integrated
(discrete-event part), we have developed a graphical CSP
drawing tool, gCSP [9]. This tool is based on the CSP process
algebra and allows us to explictly define both communication
(rendezvous data-flow), composition (sequential, parallel,
concurrent execution), timing and priorities of the designed
process network in a single model. It has animation facilities
for verification purposes and code generation facilities for
both CSP formal checking, using the CSP model checker
FDR2 [10], and C/C++ for the final implementation on
a CPU or an FPGA (programmable hardware with real
parallelism).

C. Techniques

To support separation of concerns between design steps
and to support a

To accomodate partial code generation and a smooth
chaining of tools, each modeling tool uses a template-based
code generation mechanism, with tokens to mark the places
where the model-specific information must be added. The
used approach is similar to the pipe and filter pattern [11,
Ch. 2].

These code-templates are building blocks containing to-
kens that represent model-specific information. The model-
to-code transformation uses token replacement to generate a
piece of code (e.g. only a control algorithm). We call this
partial code generation, because the generated code is in
general not finished, i.e. not all tokens are replaced in one
run: The token replacement is used as step-wise refinement
technique, where tool A generates code for tool B that is
not necessarily complete. In the incomplete sections, tokens
are placed that can be refined by tool B. Tool B may insert
additional tokens and only replace some of the tokens in the
code from tool A. Tool C can be used for the next refinement
and this process needs to be continued until all tokens are
replaced.

Typically a token in code has a distinct separate syntax de-
notation to reflect that is not yet complete code. For instance,
in C-code, a token can be denoted as %TOKEN NAME%. This
notation is invalid C-code and the C-code will not compile
without errors if the token is not replaced, serving as a check
on completeness of the token replacement activities.

III. METHOD

A. General Approach

We use a model-driven design method for designing the
embedded control software (ECS), with a close cooperation
between the involved disciplines. For the ECS, we use a
layered architecture, inspired by [12] with layers for: user-
interfacing, supervisory control, sequence control (order of
actions), loop control (control law and motion profiles),
safety purposes and measurement and actuation. See Fig.

1. The ECS is a combination of an event-driven part and
a time-triggered part with different and often challenging
(real-)time requirements for the different layers. Hard real-
time behavior is for example required for the last two layers.
The control laws for the loop control layer require a periodic
time schedule with hard deadlines in which jitter and latency
are undesirable.
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Fig. 1. Embedded control system and its software architecture

Concurrent design techniques are used to shorten the total
time from idea to realization. In general, the continuous-time
part (loop control, M&A, physical system, see Fig. 1) and
the discrete event part (supervisory, sequence control, UI)
are designed concurrently and in different tools, as the MoC
are quite different [13]. Of course, the interfaces between
these parts need jointly be specified. The design process
of each part consists of a stepwise refinement process and
a alternatives checking process (design space exploration)
which are applied alternately until the model has sufficient
detail, such that for the software parts, all code can be
generated.

While designing the loop controllers, the starting point
is a physical system model (a model of dynamic behavior
of the robot mechanism). From this model, the control
engineer derives the required control algorithm, based on
the assumption of an ideal target, in for instance 20-sim [8].
The next step is to incorporate target behavior (discrete time,
AD/DA effects, signal delay, scaling) via stepwise refinement
into the design before the loop controllers can be integrated
in the ECS design.

B. Embedded Control Software Implementation

The next step after the control law design step, is a further
refinement of the controllers towards code. The essence is
to strictly separate these design steps. By doing so, in the
loop controller design models, no artifacts dealing with the
specific computer target (i.e. interfacing connections) ap-
pear. However, generic computer implementation issues, like
discrete-time computation for the control laws, continuous-
time to discrete-time connection points and rough estimations
of I/O delays, are needed, as these influence the control
algorithm.

This strict separation implies that the models in each
step only consist information needed for the specific step
only. The advantage of this is that (1) reuse of models /
model parts becomes easier; (2) testing different targets to
implement one set of controllers is straightforward to do;
(3) updates of targets can be tested easily; (4) using virtual
prototypes and test equipment (i.e. rapid prototyping with
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mostly more powerful target computers) can now be done
quite systematically.

The Way of Working of the ECS implementation and
testing is as follows:

1) High-level code generation: The control algorithm is
translated into C-code. (also called “Synthesis Ex-
port”).

2) Connect: The inputs and outputs of the controller need
to be connected to the inputs and outputs of the target.

3) Compile: The code must be (cross-)compiled into an
executable application. This is sometimes called “back-
end compilation” (C to embedded), to distinguish it
from the earlier compilation phase.

4) Deploy: send the “application” to the target.
5) Run: start the application (Also stopping and pausing

may be required.)
6) Monitor: For validation purposes, it should be possible

to compare the on-target results with the simulation.
Hence monitoring and data logging capabilities are
needed.

7) Modify: Altering (controller) parameters on-the-fly:
during test runs it should be possible to allow for the
last fine-tuning in combination with the plant.

8) Import run-time data: Signal log data and execution
traces can be imported in the modeling tools for
validation purposes and further analysis.

This Way of Working is one cycle in the iteration of rapid
prototyping, and the Run - Monitor - Modify is a iteration
cycle on itself.

The Connect activity is the crucial step to ensure the
strict separation between the controller design and ECS
implementation phases.

This strict separation is supported by our tool chain. The
connection of input / output variables of the controller spec-
ification to the output / input signals of the target hardware
is done in a separate tool (a target connector), i.e. outside
the modeling, simulation and controller design tool (see Fig.
2). This requires that the ECS generated by the design tool
contains tokens recognized by the target connector. These
tokens are specified in the code templates of the modeling
tool, as indicated in Fig. 2. Furthermore, the target connector
needs the interface specification of the target (i.e. which input
and output signals are available). In the target connector we
use (20-sim 4C, [8]), in which the interface specification is
available via the target template (i.e. a target configuration
file). The C-code generated from the modeling tool (20-sim)
has tokens, which are interpeted by the target connector.

After connecting the model variables to the hardware I/O
signals, the code can be generated by the target connector
(i.e. the tokens produced by 20-sim are substituted by the
connection information), cross-compiled and loaded onto the
target. Note that this is the second code generation activity.

In our case, the target connector relies on a small daemon
process running on the target, which transfers commands
between the ECS running on the target and a command
interface running on a (development) workstation, which is
part of the target connector tool. Besides starting / stopping
the ECS, it has facilities to monitor and log signals on the
target. As such, it is a rapid prototyping tool, and provides
steps 2 to 7 of the Way of Working.

Note, that the approach we use here is in principle tool-
independent. However, the code generation facility of a tool
must provide means to generate the tokens. These tokens are
specific keywords or keyword – value pairs, delimited with
a specific character (currently a %). The target connector
interprets these keywords and fills in the choices the user
has made when connecting the model variables to the target
signals.

IV. EXAMPLE: CARTESIAN PLOTTER DESIGN

This section describes the stepwise realization of the
ECS for a real system, to show how we use the desribed
method, techniques and tooling in practice. The example is
a Cartesian plotter (see Figure 3). More information about
this plotter can be found in [13] The steps from models to
the final ECS target realization are shown in Fig. 4.

Fig. 5 show the top-level 20-sim model that is used for
the controller design and dynamics simulations. It contains
simple setpoints (e.g. square and circle drawing), the control
algorithms, basic knowlegde about the I/O and a model of
the plotter dynamics. Fig. 6 shows the internals of one of
the major components of the plotter, namely the Y-axis. The
“controller” submodel has the required functionality for the
“loop control” layer in Fig. 1.

Because 20-sim is a (dynamics) modeling and simulation
tool and not a software design tool, the other ECS layers
are designed separately in gCSP (see Fig. 7 for the top level
model). The 20-sim controller submodel is translated into C-
code following step 1) of the Way of Working using a code
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Fig. 3. Real plotter
Mechatronic co-design test case 25

work on cartesian plotters and co-simulation.
Analysis results are presented in section III. The
proposed solution is divided in two parts, a virtual
prototype and the target implementation and can
be found in section IV. Results are presented in
section V. In section VI the conclusions are pre-
sented and finally section VII gives suggestions
for future work.

II. RELATED WORK

In mechatronic system design often a collection
of unlinked tools are used. When the system
is implemented, informal techniques are used
that involve human-language interactions between
groups that do not necessarily have full under-
standing of each others domains. This uncertainty
can result in errors that are difficult to identify and
debug [8]. In the area of HW/SW co-design co-
simulation is used to check the functional correct-
ness ahead of the final synthesis step [9]. Amory
et al. [10] connect geographically distributed sim-
ulators (C and VHDL) via a co-simulation back-
plane. A lack of portability is noted, due to the
interfaces to C and VHDL not being standard.
The backplane approach is however flexible to-
wards new simulators and languages. The area
of embedded control system design shows efforts
to reduce the problems found during integration
as well. The design of an automotive system
for instance, requires the co-design of hardware,
software, and micro-mechanical components [11].
In traditional design approaches the different parts
are designed by different groups and the integra-
tion of the overall system is made at the final
stage. Here, interfacing problems may introduce
extra time and extra cost. LeMarrec et al. [11] use
a C-VHDL-MatLab co-simulation for functional
validation. The main differences when mechanics
are involved in a co-design are mixing discrete
events and continuous time models of computa-
tion and the need of time synchronization. Bouch-
ima et al. [12] propose a co-simulation approach
that uses a synchronization model that minimizes
interaction between simulators.

A different approach is found in the open source
project Ptolemy [13], where instead of linking the
unlinked tools, one tool offers a framework that
can be used to model all different domains of
the model. Verhoef et al. [14] recognize Ptolemy
as a major step forward for model based design
of real-time embedded systems, but on the other
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Fig. 4: Proposed workflow, taken from [7]

hand recognize that it does not appeal to either
control engineers or software engineers. Also,
currently only simulation is offered as a means
of model validation, code generation is still in
a development phase. Another tool, Microsoft
Giano, also offers a simulation framework that
can be used for simulation of arbitrary computer
systems [15]. Giano focuses on both HW/SW
co-design and software development for real-
time embedded applications. Co-simulation with
dynamic systems is not possible. One of the
aims is to make the source code available, which
would make Giano more promising as an open
framework.

Embedded control system design are often net-
worked. Branicky et al. [16] provides a framework
for networked control systems that addresses fun-
damental issues such as time-varying transmission
periods, network schedulability, network delay,
and packet loss. In other work, the distributed con-
trol software, network and plant are co-simulated,
and an effort is made to make a smooth transition
from simulation to a real control system [17]. For
optimal use of computing resources however, the
control algorithm and the control software design
need to be considered at the same time [18]. This
is often not practiced, because the mechanics and
hardware platform are already given when control
system design begins.

Groothuis and Broenink [19] and Broenink et
al. [7] recognize that the design trajectory of
embedded control systems needs a methodology
that enables concurrent design and interaction be-
tween all involved disciplines. Discrete events and

Control Engineering

Fig. 4. Plotter stepwise refinement

generation template with 20-sim model tokens and a gCSP
process interface. The gCSP model in Fig. 7 is also translated
into C-code with tokens and a netlist. These two pieces of
code are generated separately and have still no detailed I/O
information or target information.

The next step is to read the code and netlists in the Target
Connector, select the wanted target and connect the dangling
inputs and outputs to the target I/O (e.g. driver calls). The
Target Connector processes the code and replaces I/O and
target tokens by the corresponding code pieces from its target
template (step 2 in Fig. 2).

Subsequently following the Way of Working results in
code running on the target (a PC/104 embedded computer,
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running RTAI real-time Linux), with which experiments can
be performed (step 4 in Fig. 4). Preferably, these experiments
were tested first in simulation, such that the results of the
controller controlling the real setup can be compared with
the simulation (step 8 of the Way of Working).

The advantage of the strict separation between the two
models and the target code details, becomes clear when we
follow the stepwise refinement route in Fig. 4. Before testing
the generated ECS software on-target, we want to make sure
that the combination of the two software pieces is working
fine and that the designed safety layers are functioning. This
can be tested via a co-simulation between the ECS software
(gCSP) and the plant submodel in Fig 5 (step 3a in Fig. 4).
For this purpose, a co-simulation target template can be used
in the Target connector to redirect the I/O from the software
to the 20-sim model with the plant (simulated plotter) using
the connections as shown in Fig 8.

Similarly, processor-in-the-loop simulation and hardware-
in-the-loop simulation (step 3b in Fig. 4), can elegantly be
supported: the controller model always stays the same.

Replacing the targets processor board by another type (e.g
an ARM board) or the usage of a different I/O board requires
only a different target template and no changes in the design

28 Virtual prototyping through co-simulation in hardware/software and mechatronics co-design
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Fig. 10: The co-simulation environment

is a textfile with setpoints. To check this file on
correctness a HPGL parser-checker is made in
MatLab. In figure 13 the virtual plot is shown. It
is within the boundaries of a landscape A4 page.
The values for jerk, acceleration and velocity are
within the limits of safe operation, as shown
in figure 14. In the acceleration plots maximum
value of 1.0m/s2 is reached but not crossed.
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Fig. 11: The co-simulation connection diagram
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gCSP is used to 1) automatically generate source
code for the system software and 2) to automat-
ically generate CSPm code. The CSPm code can
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models, unless details like delays and resolution change. In
that case the I/O details in the 20-sim model needs a small
adaptation because these changes can influence the controller
performance. This can be resolved by using a library with I/O
building blocks (board support package submodels) which
simplifies the model changes into replacing 1 submodel by
an alternate implementation.

V. DISCUSSION AND CONCLUSION

We expect that the approach presented here can also
be used for commercial platforms and commercial robots,
provided that the information needed in the target template
can be obtained (i.e. distilled from the robot documentation).
Furthermore, different tools can be used, provided that the
model-specific information via the tokens can be passed
between the tools used.

We conclude that the principle of exploiting templates and
passing model-specific information via token replacement
contributes to the separation of concerns / goals between the
control algorithm design step and ECS implementation step.
This separation of concerns supports quality enhancement
of the models, and, as a result of that, supports better reuse
of existing model (parts), thus raising design efficiency (i.e.
reducing design time). However, we did not yet quantify the
advantages of our approach over classical methods.

Ongoing work is done on supporting our approach on
commercial industrial control platforms like the Bachmann
M1 Controller hardware [14].

Future work is to generalize this approach by connecting
other tools and execution platforms (e.g. OROCOS), and
check whether also templating the target execution daemon
contributes to better models and more reuse, thus being
effective for the users (i.e. industry).
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