
Real-time Kalman filter implementation for active
feedforward control of time-varying broadband noise and
vibrations

S. van Ophem 1 and A.P. Berkhoff 1,2

1 University of Twente, Faculty EEMCS, PO Box 217, 7500AE Enschede, The Netherlands
e-mail: a.p.berkhoff@utwente.nl

2 TNO Technical Sciences, Acoustics and Sonar, PO Box 96864, 2509JG The Hague, The Netherlands

Abstract
Tracking behavior and the rate of convergence are critical properties in active noise control applications with
time-varying disturbance spectra. As compared to the standard filtered-reference Least Mean Square (LMS)
algorithm, improved convergence can be obtained with schemes based on preconditioning, affine projec-
tions, Recursive Least Squares (RLS), and other methods. The RLS method potentially leads to very fast
convergence but straightforward implementations may suffer from round-off errors and suboptimal tracking
behavior. In this paper a Kalman filter approach is used which, as compared to RLS, includes a covariance
weighting for model output errors in order to improve tracking behavior and robustness. An orthogonal
transformation scheme was used to reduce the influence for round-off errors of the Kalman recursions. In
this paper an extension is given for multiple input multiple output systems, and results of a real-time im-
plementation are presented. Conclusions are given regarding the suitability for real-time implementation of
previous formulations. Different parameterizations of the secondary path model between the active control
source and the error sensor are compared. Real-time results demonstrate the rapid convergence for reduction
of noise in a duct, as well as numerical stability during extended operation intervals.

1 Introduction

Filtered-reference and filtered-error least means squares algorithms based on approximate, instantaneous
gradients are widely used for adapting an Active Noise Control (ANC) system. The algorithms are relatively
simple and robust, but one of the biggest drawbacks of the algorithms are the low rate of convergence leading
to slow adaption to changes in the primary path. The assumption that is used is that the filter coefficients are
changing slowly in comparison to the timescale of the plant dynamics, see Elliott [1]. Several approaches
have been suggested to improve the speed of convergence of least-mean-square based algorithms, such as
the modified fx-LMS algorithm proposed by Bjarnason [2], Fast Affine Projections, Preconditioned LMS [1]
and other methods.

Recursive Least Squares (RLS) algorithms have a faster rate of convergence, but require more computational
effort. A modified RLS algorithm has been derived by Flockton [3], which has a similar structure as a
modified LMS-algorithm. The disadvantages of this algorithm are the initial overshoot when the filter is
turned on and slow tracking behavior. Sayed et al. [4] have shown that the RLS filter is a special case of
a Kalman filter. A SISO Kalman filter was described by Fraanje [5] in an ANC context, in which it was
shown that there is no initial overshoot before convergence when a properly tuned Kalman filter is used for
an ANC application. This filter estimates the state of the secondary path and the filter coefficients and takes
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Figure 1: Block diagram of a MIMO ANC system with a Kalman filter.

uncertainty of the state and uncertainty in measurements into account, which explains the abscence of the
overshoot in the convergence curve. As compared to the RLS filter, tracking behavior is potentially improved
because system uncertainties are taken into account in the algorithm.

This paper presents results of a multiple input multiple output Kalman filter as derived for an ANC system.
An extension of the algorithm is made with a state space description of the secondary path in output normal
form. This requires less computational effort and is numerically more robust. Simulations will be shown
of a multiple input multiple output implementation of the Kalman recursions in free field conditions. The
performance of the algorithm was tested in a real-time experiment in which the goal was to minimize the
noise at the end of a duct for time-varying signals.

2 MIMO Kalman filter

2.1 Model description

Consider an ANC system which has Nx reference channels, Nu control channels and Ne error channels
with the reference signal vector x(i) ∈ RNx , the control signal vector u(i) ∈ RNu , and the error signal
vector e(i) ∈ RNe , in which i is the time instance. In this paper, the time index i is indicated either as a
subscript or between parentheses. It is assumed that there is no feedback from the actuators to the reference
microphones, so the control system can be seen as a purely feed-forward system, as shown in Fig. 1. In
this figure P(z) represents the primary path from the reference microphone to the error microphone, G(z)
represents the secondary path from the secondary actuator to the error microphone andŴi,FIR(z) is the
controller, adapted by a Kalman filter.

The adaptive controller has a feed-forward structure and is described by the matrixŴi,FIR(z) ∈ RNu×Nx

consisting of FIR-filters with nw filter coefficients. The (k, l)th term of this matrix, with 0 ≤ k ≤ Nu, 0 ≤
l ≤ Nx can be described by:

Ŵ(k,l)
i,FIR(z) = ŵ

(k,l)
0 (i) + ŵ

(k,l)
1 (i)z−1 + ...ŵ

(k,l)
nw−1(i)z

−nw−1. (1)

The individual filter coefficients can be organized as follows:

ŵ(k,l)(i) =
[

ŵ
(k,l)
0 (i) ... ŵ

(k,l)
nw−1(i)

]T ∈ Rnw×1 , (2)

ŵ(k)(i) =
[

ŵ(k,1)(i)T ... ŵ(k,Nx)(i)T
]T

∈ RnwNx×1, (3)

Ŵ(i) =
[

ŵ(1)(i) ... ŵ(Nu)(i)
] ∈ RnwNx×Nu . (4)
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ŵ(k)(i) =
[

ŵ(k,1)(i)T ... ŵ(k,Nx)(i)T
]T ∈ RnwNx×1, (5)

The Nx vectors with the last nw steps of the nx-th reference signal xnx
nw

(i) are stacked in the vector xnw(i).
The resulting control signals are (using vec(ABC) = (CT ⊗A)vec(B) [6]):

u(i) = −ŴT (i)xnw(i) = −vec(xT
nw

(i)Ŵ(i)INu)

= −(INu ⊗ xT
nw

(i))ŵ(i). (6)

In this equation INu is the identity matrix of size Nu. When the controller reaches its optimal value wo(i),
the control signal vector is:

uo(i) = −(INu ⊗ xT
nw

(i))wo(i). (7)

2.2 Augmented state space description

The MIMO ANC problem is written in a state space form, where the purpose of the FIR controller is to
minimize the error e(i) = d(i) + y(i) + v(i), in which d(i) is the influence of the primary paths on
the error microphones, y(i) is the influence of the secondary path on the error sensors and vi is assumed
to be a Gaussian white noise signal vector, corrupting the measurement of the error sensors. The error is
minimized when the FIR filters are adjusted to their optimal values Wo

i (z), so that d(i) = −y(i). As stated
by Sayyarrodsari [7] the purpose of the active noise control algorithm is to make a model of the primary path
with the series connection of the FIR filter matrix and the secondary path. Therefore the primary path can be
approximated by a series connection of the optimal filter −Wo

i (z) and the secondary path G(z), as shown
in Fig. 2. A noise vector n(i) is included to account for modeling uncertainties. Using the methods of [8]
and defining the augmented state vector

χ(i) =
[

w(i)
θ(i)

]
, (8)

the augmented state space description can be written as:[
w(i + 1)
θ(i + 1)

]
= A(i)

[
w(i)
θ(i)

]
−B(i)ŵ(i) + H(i)n(i) , (9)

e(i) = C(i)
[

w(i)
θ(i)

]
−D(i)ŵ(i) + v(i),

[
w(0)
θ(0)

]
=

[
wo(0)
θ(0)

]
Introducing a forgetting factor 0 � λ ≤ 1 [8], the full state space description for a MIMO ANC feed-forward
system can be written as:

A(i) =
[

λ−1/2InwNuNx 0nwNuNx×ns

Bs(INu ⊗ xT
nw

(i)) As

]
, (10)

B(i) =
[

0nwNuNx×nwNuNx

−Bs(INu ⊗ xT
nw

(i))

]
, (11)

C(i) =
[

Ds(INu ⊗ xT
nw

(i)) Cs

]
, (12)

D(i) = −Ds(INu ⊗ xT
nw

(i)), (13)

H =
[

0nwNuNx×NeNx

Hs

]
, (14)

ACTIVE NOISE AND VIBRATION CONTROL 421



+

xi

−Wo
i (z)

Kalman

G(z)
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Figure 2: Block diagram of a MIMO ANC system with an approximate representation of the primary path.

leading to the state space description

χ(i + 1) = A(i)χ(i) + B(i)ŵ(i) + Hn(i),
e(i) = C(i)χ(i) + D(i)ŵ(i) + v(i). (15)

2.3 Kalman filtering

To estimate the state of the ANC system a Kalman filter is used, in which the Kalman filter explicitly takes
the covariances from the noise vectors ni and vi into account and gives a minimum variance estimate of the
state. The initial state is assumed to be uncorrelated with the noise terms ni and vi. Also the inididual noise
terms are assumed to be uncorrelated, resulting in

E

⎛⎜⎝
⎡⎣ χ(0)

n(0)
v(0)

⎤⎦ ⎡⎣ χ(0)
n(0)
v(0)

⎤⎦T
⎞⎟⎠ =

⎡⎣ Π(0) 0 0
0 Qδkl 0
0 0 Rδkl

⎤⎦ . (16)

In this equation δij is the Dirac delta function and Π(0) is called the state covariance matrix, defined as

Π(0) =
[

Πww(0) Πwθ(0)
Πθw(0) Πθθ(0)

]
, (17)

with Πww
0 = E[w(0)wT (0)], Πwθ

0 = ΠθwT

0 = E[w(0)θT (0)], Πθθ
0 = E[θ(0)θT(0)].

Furthermore Q and R are the noise covariance matrices, and are given by

Q =

⎡⎢⎣ Q11 . . . 0
...

. . .
...

0 . . . QNxNe

⎤⎥⎦ , (18)

R =

⎡⎢⎣ R1 · · · 0
...

. . .
...

0 · · · RNe

⎤⎥⎦ . (19)

The estimate of the control coefficients ŵ(i) and the estimate of the state vector θ̂(i) are combined in the
estimate of the augmented state vector

χ̂(i) =
[

ŵ(i)
θ̂(i)

]
, (20)

422 PROCEEDINGS OF ISMA2012-USD2012



Then the MIMO Kalman filter in covariance form is given by the following equations:

χ̂(0) = 0nwNuNx+ns×1, (21)

P(0) = Π(0), (22)

ε(i) = e(i)−Csχ̂(i)−Dsŵ(i), (23)

Re(i) = R + C(i)P(i)CT (i), (24)

K(i) = A(i)P(i)CT (i), (25)

χ̂(i + 1) = Asχ̂(i) + Bsŵ(i) + K(i)R−1
e (i)ε(i) (26)

P(i + 1) = A(i)P(i)AT (i)−K(i)R−1
e (i)KT (i) + HQHT . (27)

For a derivation of these equations, see Sayed [9]. In these equations P(i) represents the covariance matrix
of the state estimation error, ε(i) the innovation vector, Re(i) the error covariance matrix and K(i) the gain
matrix. Since the state is augmented, some of these expressions can be reduced and partitioned as follows:

P(i) =
[

Pww(i) Pwθ(i)
Pθw(i) Pθθ(i)

]
, (28)

K(i) =
[

Kw(i)
Kθ(i)

]
,

ε(i) = e(i)−Csθ̂(i), (29)[
ŵ(i + 1)
θ̂(i + 1)

]
=

[
λ−1/2ŵ(i)
Asθ̂(i)

]
+

[
Kw(i)
Kθ(i)

]
R−1

e (i)ε(i), (30)

in which Kw
i ∈ RnwNuNx×Ne , and Kθ

i ∈ Rns×Ne . The straightforward implementation of Eqs. (21) - (27)
gives a computationally demanding algorithm. A more efficient algorithm can be achieved by making use
of the shift-invariance of the reference signals. Use of shift invariance properties, the resulting Fast Array
descriptions, and a specific initialization leading to a reduced rank of the update scheme, are summarized in
Ref. [8].

2.4 Shift invariance, Fast Array form and initialization

The shift invariance means that, for 1 ≤ n ≤ Nx, the reference signal vector x(n)
nw (i + 1) is just a shifted

version of x(n)
nw (i) with one new term. For multiple reference signals this shift behavior can be expressed in

the following equation:

xT
nw

(i) = xT
nw

(i + 1)(INx ⊗ Znw) +[
01×nw−1 x(1)(i− nw + 1) . . . 01×nw−1 x(Nx)(i− nw + 1)

]
. (31)

The matrix Znw ∈ Rnw×nw is a first diagonal shift matrix and ⊗ is the Kronecker matrix product. Due to
the shift invariance, the state matrices have to be augmented with zeros [8].

The relations between the augmented state space matrices on instance i+ 1 and i can be used to derive a fast
array Kalman filter. This implementation of the Kalman filter has the following advantages (Sayed [4]):

• Due to the shift-invariance the calculation efficiency is much better than the standard covariance
Kalman filter.

ACTIVE NOISE AND VIBRATION CONTROL 423



• Numerical round-off errors are not amplified when transformations are applied, because the norms and
angles of inner products are preserved, when transforming.

• The use of square root factors limits the dynamic range.

The reason for the high calculation efficiency of the fast array form of the Kalman filter is that the difference
of the Riccati equation is updated instead of the Riccati equation itself:

dP̃i = P̃i −ΨP̃i−1ΨT . (32)

When proper initial conditions for the covariance matrix are chosen, dP̃i can be of very low rank, see Ref.
[9]. Also the following difference equations are defined :

dR̃e,i = R̃e,i − R̃e,i−1, (33)

dK̃i = K̃i −ΨK̃i−1. (34)

Substitution of these variables into the Kalman filter equations leads to

dR̃e,i = C̃idP̃iC̃
T
i , (35)

dK̃i = ÃidP̃iC̃
T
i , (36)

dP̃i+1 = ÃidP̃iÃ
T
i + ΨK̃i−1R̃−1

e,i−1K̃
T
i−1Ψ

T

−K̃iR̃−1
e,i K̃

T
i . (37)

Assume that dP̃(i) can be factorized as follows (see Sayed et al. [10] );

dP̃i = L̃i−1Mi−1L̃T
i−1, (38)

with L̃i−1 ∈ Rnm+ns×α, Mi−1 ∈ Rα×α, α � nm + ns, in which α the rank of matrix Mi−1. When this
factorization is used the matrices R̃e,i−1, K̃i−1 and L̃i−1 can be updated with a fast array algorithm. The
matrix needed to accomplish the required transformations can be achieved by both a series of hyperbolic
Givens rotations or hyperbolic Householder transformations, see [9].

The difference of the Riccati equation must have an as low as possible rank to make the algorithm signifi-
cantly faster than the covariance form of the Kalman algorithm. By choosing the initial conditions properly,
the rank for the Riccati difference equation can be reduced to α = 2NuNx.

3 Output normal form parameterization

The state space description of the secondary path is rewritten to an output normal form parameterization. This
parameterization has a few advantages in comparison to the full state space model. As shown in Ref. [11], not
only the calculations needed to do the multiplications with the state matrices reduce due to the Hessenberg
form of the state matrix, but the parameterization also makes it possible to solve the multiplications in a
recursive way, leading to even more reduction of the floating point operations needed. Another benefit of the
state space parameterization is the reduction of redundancy in the state matrices.
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3.1 Transformation to output normal form

When the assumption that the secondary path doesn’t change in time is met, the state matrices can be iden-
tified off-line. After identification the states can be transformed if the states are observable. An output norm
form transforms the state matrices in such a way the observability Gramian is the identity matrix:

AT
s As + CT

s Cs = I. (39)

When this is true, the states are orthogonal, giving several numerical advantages in comparison to the full
state space model, in which the most important are the low round off noise gain and the notion that the
amplitude of the signal is not changed throughout the filter (Roberts et al. [12]). The transformation of the
state space model is done with a similarity transform matrix Tt. This matrix can be determined by calculating
the solution Q from the observability Gramian of the full state space system AT

s QAs + CT
s Cs = Q, by

decomposing this solution (Q = TqT
T
q ) and calculating Tt = T−T

q . The state matrices in output normal form
can be calculated with AT = TtAT−1

t , BT = TtB, CT = CT−1
t and DT = D. When these transformations

are done, the columns of the matrix

[
CT

AT

]
are orthogonal. A second similarity transformation is done to

transform the matrix to a Hessenberg form (the needed transformation matrix can be calculated with Given’s

rotations or Householder transformations). The resulting matrix

[
CH

AH

]
now can be decomposed with the

following parameterization:

[
CH

AH

]
= T1(β(1))....T (β(n))

[
0
In

]
. (40)

In this equation βAC =
[

β(1) . . . β(n)
]T

is a vector with parameters ranging from −1 to 1. and
T1.....Tn are rotation matrices, see [11].

3.2 Incorporation into the Kalman filter

To incorporate the output normal form parameterization into the Kalman filter in fast array form, a few
adjustments have to be done, since the parameterization is only useful for the parts of the augmented state
matrices that represent the secondary path. The matrix L̃i−1 has to be partitioned in the following way:

L̃i−1 =
[

L̃p1,i−1

L̃p2,i−1

]
, (41)

in which L̃p1,i−1 ∈ Rnm×2NuNx , and L̃p2,i−1 ∈ Rns×2NuNx . The parameterization can now be used to
calculate

[
CH

AH

]
L̃p2,i−1 = T1(β(1))....T (β(n))

[
0

L̃p2,i−1

]
. (42)

Since the calculation of CiL̃i−1 also requires L̃p1,i−1, the end result is calculated with

CiL̃i−1 = Ds(INu ⊗ xT
nw+1(i))L̃p1,i−1 + CH L̃p2,i−1. (43)

Also the A matrix has to be partitioned into Ai =
[

Ap1,i

Ap2,i

]
with Ap1,i ∈ Rnm×nm+ns and Ap2,i ∈

Rns×nm+ns . The matrix multiplication AiL̃i−1 can now be executed with
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Figure 3: MIMO simulation setup. The horizontal distances indicated by the arrows are, from left to right:
5 m, 5m, 5m. The vertical distance between the controlled sources is 5m. The reference sensor and noise
source are positioned symmetrically between the two controlled sources.

Ap1,iL̃i−1 =
[

λ−1/2Inm 0nm×ns

]
L̃i−1. (44)

Ap2,iL̃i−1 = Bs(INu ⊗ xT
nw

(i))L̃p1,i−1 + AHL̃p2,i−1, (45)

Also the update equations can be rewritten to a more efficient form by using a dummy update vector.

[
êd

x̂d

]
=

[
CH

AH

]
θ̂i = T1(β(1))....T (β(n))

[
0
θ̂i

]
, (46)

εi = ei − êd ∈ RNe , (47)

θ̂i+1 = x̂d + K
θ
i R
−1/2
e,i εi ∈ Rns . (48)

When these alternate equations are used, only the parameters βAC =
[

β(1) . . . β(n)
]T

are needed,
instead of the state matrices As and Cs.

4 Simulation results

A simple MIMO system was simulated to check the behavior of the filter. The simulation setup is shown in
Fig. 3. The acoustic pressure generated by the noise source on the left hand side is to be minimized at the
error microphones with error signals e1 and e2 by choosing appropiate filter coefficients for W11 and W12

which drive the controlled sources. The system is assumed to be in free space, without reflecting boundaries.
The controlled sources are point sources having constant volume velocity. There is no feedback from the
controlled sources to the reference signal x(i). The transformation matrix is calculated with a series of
hyperbolic Housholder transformations at every instance i. The noise source is emitting white noise with a
cut-off frequency at 1000 Hz and the system is sampled with a frequency of fs = 2000 Hz.

Due to symmetry, it is expected that the convergence curves of e1 and e2 will be the same. As can be seen in
Fig. 4, this is the case (the filter is turned on after 1000 samples).

Additional numerical tests were carried out with recorded signals from accelerating vehicles which showed
that the Kalman filter copes well with the changing spectrum with no noticeable change in the residual signal
as function of time after convergence. Tracking behavior of the Kalman filter with moving sound sources
including the Doppler effect is described in Ref. [8].
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Figure 4: Convergence curve of a symmetric MIMO system. The filter is turned on after 1000 samples.

Figure 5: Experimental setup consisting of a duct for active noise control tests.

5 Experimental results

A duct was used for testing the Kalman filter in an Active Noise Control environment. A picture of the
setup is shown in Fig. 5. A loudspeaker on the left hand side generates a noise source and the goal is the
control the signal from the secondary source near the other end of the duct in such a way that the signal
on the error microphone measures is reduced. The error sensor is placed at at the other end of the tube.
The control system was implemented on an embedded PC, specifically made for ANC purposes, running
an Linux operating system. A detailed description of the system can be found in [13]. The noise signal
was created on the embedded PC and was also used as reference signal, so no feedback compensation was
needed. System identification of the secondary path was done beforehand to determine the proper initial
conditions of the filter with subspace identification. For a system with a sampling frequency of fs =2000
Hz with a 30th order plant, a Variance Accounted For (VAF) value of around 99.8% could be achieved. The
regularization coefficient δ was chosen in such a way that no overshoot before convergence was present,
but the convergence rate was as fast as possible. The estimated covariance of the noise terms were set at
approximately 20 dB below the variance of the nominal reference signal. The forgetting factor was set to
λ = 1. The number of filter coefficients was set to varying values, depending on the structure of the state
space model.
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Figure 6: Disturbance signal.

Figure 7: Spectrogram of the disturbance signal; colorscale in dB.
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Figure 8: Error signal.
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Figure 9: Spectrogram of the error signal; colorscale in dB.

5.1 Influence of secondary path models

Use of the full state space model of the secondary path was unsuccesful. Firstly, at the 2 kHz sample rate the
Kalman filter exceeded the maximum available processing resources of the platform. At a lower sample rate
of 500 Hz the processing resources were sufficient but still the algorithm failed to converge, constituting a
more fundamental problem. It was found that the model of the secondary path prevented a proper operation
of the algorithm. Therefore two alternatives were evaluated, a state space model representing an FIR filter
structure and a state space model in output normal form, as described in Section 3. When an FIR structure is
used for a state space model, the Kalman algorithm can be implemented efficiently for a SISO system, since
a large part of the estimated state matrices will consist of zeros. Therefore, an FIR length of 300 coefficients
could be achieved without a problem. In the duct, a maximum broadband reduction of about 12 dB could be
achieved. The rate of convergence was comparable to the results achieved in the simulations. The filter also
proved to be quite robust to rounding-off errors. To test the robustness of the algorithm, the noise control
system was turned on and after four hours it was checked if the system was still working correctly. This was
found to be the case.

5.2 Output normal form structure

The output normal form was found to require less computational effort and to be numerically more robust
than the full state space system. Although the description of the state space model in output normal form
may not be as efficient as the FIR filter structure for SISO systems, it is expected to be more efficient for
MIMO systems, since common dynamics in the filter path will only be present in the output normal form
state space model once, after the redundancy will be removed, in contrast to a MIMO FIR state space model.
Also the noise reduction at the error microphone is better, being approximately 14 dB, since the accuracy of
the secondary path models of the output normal parameterization can be higher for a given computational
complexity.

5.3 Band-limited noise

To test the perfomance of the filter for changing noise spectra, three non-overlapping bandpass filters where
chosen to filter the white noise and every two seconds the bandpass filter was switched. The scalar distur-
bance signal di is depicted in Fig. 6 and the corresponding spectrogram in Fig. 7. The resonances in the
duct can be identified in the spectrogram. The scalar error signal ei with control system switched on can
be found in Fig. 8 and the corresponding spectrogram in Fig. 9. The first time the filter is confronted with
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new information (the first three bands), the filter needs a small amount of time to converge at every switch.
When the noise bands return, the filter doesn’t need any time at all to converge. The same behavior can be
seen in simulations. Since the geometry of the duct causes resonances at certain frequencies, the FIR con-
troller adapts its filter coefficients in such away that these resonances are included into the model. When new
frequency information is present in the signal, it needs to tune the FIR coefficients, so that the resonances
at these frequencies are included, but the information at other frequencies is still present in the model, due
to the recursive nature of the filter. When the frequency response of the FIR filter is observed as function
of time, it can be seen that the filter not only adds information for the new frequencies, every time a new
frequency band occurs, but also keeps the old information available.
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