
Simplicity, uniformity and quality - the role of

semantic analysis in systems development

K. Liu/ Y. Ades& & R. Stamper"

"School of Computing, Staffordshire University, Stafford,

^Department of Computing and Information Technology,

Greenwich University, UK

^Department of Information Management, University of

P.O.

ABSTRACT

Industrial experience shows that heavy investment in IT does not always bring in a
satisfactory economic return due to very often quality problems, which was partly
caused by inadequacy of user requirements analysis and representation. Semantic
Analysis, a method developed for analysing and specifying user requirements based
on an 'agent-in-action' ontology, has demonstrated a way to improve software
quality. The semantic structure is preserved through design and implementation in
order to produce a satisfactory system. To this end, a set of methods and tools for
systems engineering has be developed around Semantic Analysis and supported by
Normbase. This approach has demonstrated several advantages in systems
engineering such as concision of requirements representation, drastic reduction of
documentation, and low cost of maintenance.

INTRODUCTION: SEMIOTICS AND SOFTWARE ENGINEERING

There are many recognised paradigms of systems development: the waterfall
approach, exploratory programming, prototyping, formal transformation and system
assembly from reusable components (cf. [23]). The first three of these approaches
are all currently used for practical systems development. The last two are less
applied and are, especially the last one, in development stages. Very often one
approach would be adopted supplemented by others in order to get benefit from
each of them.

Semiotics [17,18,21] applied to computer systems development opens up
another promising perspective. Andersen [1,2] presents an example of constructing
computer systems based on such a paradigm. Patterns of human communications
and use of languages are increasedly regarded as one of the foundations for
computer systems design, which is witnessed for example in HCI (cf. [9]). The
semiotic approach developed in the MEASUR research programme, which is now
based on University of Twente, has offered a set of theories and methods for

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

220 Software Quality Management

information systems development [27]. A computer system in this paradigm is
viewed as a part of human communication system. In studying the broad
communication system and computerising a part of it, the important invariants are
signs that are used by human agents with or without using computers. To construct
a computer system involves understanding and representing communications among
people. The engineering of a computer system is to produce a subsystem that can
process signs as required by the agents. The functionalities of such a computer
system, as a part of a larger communication system, is determined by the social and
business needs of the agents in order to fulfil their objectives in the most effective
manner.

We can study signs from six aspects, as Stamper pointed out in his semiotic
framework (for a recent, detailed account see [26]). At a very first level Physics,
signs have physical properties such as shape, density, legibility, and so on.
Empirics is concerned with the variety, noise, entropy, redundancy, coding, etc.
which have to be considered for the purposes of reliable data storage and signal
transmission. The next level is Syntactics where the structure of a language,
components of a data record and file structures will be studied. Designing of man-
machine interfaces is closely related to an understanding of the empirics of sensory
perception and the syntactic structure of a human language ([9], p252). The most
essential aspect, the meanings of sign is studied in Semantics. At this level, people
begin to think about the use of signs rather than the representation of signs where
sentences, composed of signs according to certain syntactic rules, are used to make
meaningful utterances. The links between actions and signs are established as
meanings are assigned to the use of signs. The analysis at this level is to understand
and represent the relationships between signs used and actions performed by people.
The next aspect is the use of signs in context. Intentions are embedded in
communications as conversations or negotiations are carried out. Speech acts are
performed in a certain sequence following certain norms, for example cultural or
business norms. These issues are studied in Pragmatics. The Social level is the last
one in which signs can be studied where social effects of use of signs are the foci of
the attention. Through the use of signs interpersonal relationships and social
obligations can be created and altered.

In any business organisation, people use signs for communication to interact
with each other purposefully. A communication process involves all the six aspects
of signs. This large, complex organisation is an ontological system where the
designing of a computer-related system is part of a "larger perspective of
ontological design" [31]. Figure 1 schematically represents our point of view that
has been applied in many of our systems designs.

RELATIONSHIP AMONG SOFTWARE QUALITY, PRODUCTIVITY AND
REQUIREMENTS ENGINEERING

Issues of software quality and engineering productivity are closely interrelated.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 221

physics

empirics

pragmatics
social use

Figure 1: Information Systems Architecture.

Industrial practices suggest that the battle must simultaneously be fought on these
two fronts: productivity and quality [29]. Productivity can be improved in many
ways including: automation of software engineering processes, and re-use of
engineering knowledge and software components. However, industrial experiences
have shown that much more work must be done on both two areas to achieve
satisfactory results. Much research effort has been put into producing CASE tools
or environments for certain methodologies along the line of automation. In the
direction of reusability, attention has been directed to the re-use of artifacts and
knowledge on development of software and applications in order to reduce the
effort of development and maintenance of new software and applications. Artifacts
to be re-used include any products of the engineering process, such as systems,
components and documentation; while the knowledge includes the facts and
experience known by system engineers, such as the information on systems analysis
and design [4,15].

A definition that Quality is "fitness for use" [11] suggests that one of the
critical steps on the path to a quality product is the analysis of user requirements,
followed by representing precisely and realising them exactly in the product.
Requirements engineering should occupy a more important place in a whole process
of software engineering than it is often the case today. Without a clear definition of
requirements there is no standard against which to test quality. In software
engineering, attention has been shifted from coding, design more to requirement
analysis because the recognised problem as stated by Jalote ([13], p33) that software
engineering is weakest in this critical phase.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

222 Software Quality Management

Another important aspect we must take into account is the possible effect on
the economics of software engineering. Requirements engineering has the dominant
position in the whole process of software engineering. We are familiar with the
escalating costs of rectifying errors which do not surface until a system has been
put into operation. The typical software engineering lecturer presents a diagram like
the following, giving detail about the design and construction phases but treating
requirements definition a an undifferentiated task. In fact requirements definition
carried out thoroughly should be assigned several levels, to which an order of
magnitude in error rectification costs ought to be ascribed (figure 2).

analysis cost of error realisation phases

requirement definition 10**6 to 10**9 running the business

design 10**3to 10**5 running the IT system

construction 10**1 to 10**4 implementation

Figure 2: Cost of errors at different levels.

The size of the disaster caused by an error in requirements definition cannot be
doubted having witnessed in the UK alone a few typical examples in recent years.
One notorious hospital systems cost tens of millions of pounds on being abandoned,
the Taurus project at the London Stock exchange cost hundreds of millions while
the cost of the abortive Poll Tax system for the UK has been estimated at about 15
billion pounds sterling. A cynic would assert that these mistakes are good for
software engineers if no responsibility can be pinned on them. We would assert that
neglecting the requirements analysis and specification phase, as though it were
purely the responsibility of politicians, administrative policy-makers and
management, is inexcusable, from a professional point of view.

To minimise the chance of making those expensive mistakes, a task for our
research has been to devise a method of requirements analysis and specification.
However, expressing organisational requirements in a form that will meet the needs
of software developers calls for a degree of rigour and precision that is otherwise

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 223

unnecessary in most other organisational tasks. The vehicle we have been devising
provides a formalism for both the agents responsible for business and organisations
and the software engineers who will construct the computerised systems to support

the business functions.

A FUNDAMENTAL DIFFERENCE BETWEEN MEASUR AND THE
CONVENTIONAL METHODS

The method for requirements analysis and specification, Semantic Analysis, is based
on a logic of norms and action developed in the research programme MEASUR.

MEASUR regards all information systems as systems of social norms. When
behaviour is organised, it operates according to norms. The most important norms
govern behaviour relating to the substantive tasks. In a small team we may need to
be explicit only about these substantive norms because we can rely on people to
keep one another informed and to behave in conformity with the norms that apply
to them. In large systems, we have to be explicit about keeping records and passing
messages: this generates the semiological or bureaucratic norms. We also need
some gubernatorial norms which say what should be done to ensure conformity
with other norms. MEASUR deals with all norms but classical methods confine our
attention almost exclusively to the semiological norms or the bureaucratic aspects of
the organisation. The present day, conventional methods are concerned with data
elements and how to structure them for navigation through storage, with dataflows
between nodes where data are created, processed, stored or used, and with the
functionality of those nodes expressed in terms of transformations to syntactic
structures. More recently these ideas have been expressed in terms of data-objects
and their functions. All these techniques focus our attention, in fact, upon records,
messages and the behaviour of bureaucratic organisation. They do not attempt to go
behind the data and enquire what the data signify in the real world. Meaning cannot
be ignored but the classical methods assume that it is sufficient to handle them
informally, by virtue of our intuition about words. This is clear from the implied
ontology of the vocabulary of the specification languages - they limit us to
describing a world of data elements and what happens to them.

This point is illustrated by the observation that led to the research on which
MEASUR is based. The research began in the early 1970's with the observation
that a government department dealing with social security performs a massive
information processing task on the basis of a relatively brief set of legal norms. A
part of this legislation is then turned into huge number of volumes of clerical codes
expressed in the classical 'dataflow' tradition. In the UK Department of Social
Security, for example, the ratio is roughly 30-plus slim volumes of legal norms to
400 thick volumes of clerical codes. These clerical codes explain what data should
be collected, how they should be stored, the forms which should be used and all the
clerical tasks for processing them. Roughly speaking 20% of the legislation gives
rise to these routine, clerical activities, the rest will only be applied infrequently by

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

224 Software Quality Management

specialist professional staff and by ministers, senior civil servants and the courts,
and it never becomes part of the routine. The whole style of the clerical codes is
based on the same concepts as those behind the classical requirements specification
techniques. The initial aim of the research was to describe organisations in terms of
their social norms in order to achieve the precise and concise form of specification
which one finds in legislation.

Human behaviour presents regularities which are governed by norms. Human
agents exercise their powers and responsibilities following some rationale within
some limits. Their actions exhibit, construct and define the purposes, functions and
hence the information requirements of the organisation. In contrast to many
approaches to requirements analysis, the Semantic Analysis method treats the use of
language as a raw material for analysis but does not stop at the surface. It focuses
analysts' attention on the meanings of linguistic expressions by examining the
relationships between the use of language and behaviour. In this way the analysis
becomes an investigation of the patterns of business behaviour and the specification
relates signs to the actions if substantive importance to the business, rather than
dealing with actions of a bureaucratic nature.

Requirements specifications are to be completed, as far as business functions
and performance are concerned, at three levels. There is, however, another level of
specification for technical implementation (e.g. data flows and data formats). The
three business requirements specifications are about norms, communications, and
semantics. Analysis of norms aims at identifying the regularities in social behaviour
relating responsibilities to certain types of agents (e.g. functional managers) and
identifying conditions and constraints upon their actions. The purposes of the study
is to understand how an organisation functions socially in relation to fulfilment of
its business obligations and commitments within given legal contexts.
Communication analysis deals with intentional effects that are achieved by sending
messages from one agent to another. Intentions associated with their messages are
dependent upon the context of the communication acts on the conversational
protocols in which they are used. The most critical aspect, meaning, is the focus of
attention of the Semantic Analysis which will be presented later. An objective of
semantic analysis is to establish a requirement model in which basic patterns of
behaviour are represented and semantics are expressed. The communications and
norms are then described on the basis of the semantic information model.

SEMANTIC ANALYSIS: A METHOD FOR REQUIREMENTS
MODELLING

The method of Semantic Analysis is based on some radical philosophical logic and
paradigm.

A Logic of Norms and Affordances, NORM A
An approach to this problem of finding a logic that can deal with semantic

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 225

structures has been proposed by Stamper originally in 1985 and most recently
discussed in 1993 where more detail can be obtained. In this paper we need only a
sketch of the key concepts of NORM A.

The most fundamental assumption required is that, for all practical purposes,
we construct our own reality by finding or defining the structures in the flux of
behaviour in which we exist. James Gibson [10] introduced the concept of an
affordance as a result of his work on the psychology of perception. Gibson's theory
rejects the idea that an organism sees ready-made objects around it, such as an
orange, but instead, the organism detects invariants in the flux of signals reaching
its senses. As the observer moves towards, grasps and manipulates the orange, it
discovers a cluster of invariants such as a closed visual field of colour, a spherical
shape, an odour, and a softness, for example, these experiences and those others
offered by hefting, throwing, biting and sucking constitute the orange. The orange
may be conceived as a repertoire of behaviour available to the observer rather than
as an entirely independent object. Perception depends upon the organism learning to
recognise a repertoire of biologically useful invariants of this kind. Thus reality, as
we know it, has its origin in the agent.

Human beings recognise not only the invariants that are valuable biologically
but the socially valuable invariants. Society evolves patterns of behaviour that
enable its members to live together effectively. These naturally evolving norms are
the culture. Legal norms can be added to them to refine and extend the cultural
structures. A person introduced to a social environment will detect invariants in the
behaviour of the established membership of the group and will find her own
behaviour subjected to sanctions and rewards that help to reinforce the boundaries
of the social invariants. In this we are socialised naturally. Human society has the
additional capacity of using a very rich repertoire of signs, including language,
through which information reaching the group can be shared. These semiological
experiences allow human groups to recognise invariants in a stream of information
that would be beyond the ability of an individual to sense. Collectively, therefore,
our perceptions are far beyond those of simple organisms. In this way we acquire
sophisticated cognitive norms. Similarly, by being able to express norm
semiologically, for example by writing legal rules, we can augment our own social
reality by constructing more sophisticated invariants that allow us to live together
more effectively. Some of these, a copyright for example, are not unlike the
orange: they are invariants which correspond to a repertoire of behaviour in the
social domain. Copyright may even be bought and sold just like an orange. Norms
are invariants that are the social counterpart to the biological affordances that
interested Gibson.

Ontological Dependency
An ontology is a philosophical position concerning our basic assumptions about
existence. Method engineers are seldom explicit about their philosophical positions
but these have far-reaching effects. For example, the classical methods, in their

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

226 Software Quality Management

formal structures, only recognise the existence of signs (messages and records).
MEASUR is radically different from them because it adopts an agent-in-action
ontology.

This very different philosophical position states that, for all practical purposes,
nothing exists without a perceiving agent nor without the agent engaging in actions
of some kinds. The words and expression we use names for invariant patterns in the
flux of actions and events which agents experience. The classical distinction
between entity, attribute and relationship disappears (a development that results in
our being able to create re-useable structures) to be replaced by the concepts of
affordance (for the behaviour patterns of physical or biological significance) and
norms (for the socially defined patterns of behaviour). This accounts for the name
of the MEASUR specification formalism, NORM A.

The agent-in-action ontology has other important implications for requirements
engineering. In particular, it requires the relevant agent to be specified in every
component of the requirements definition. The benefits of this constraint are that (a)
we know the responsible originators are users of information, (b) we can handle
differential meanings for the same form, (c) we know exactly whom to consult over
details of design, (d) we can organise norms (system functionality) according to the
various group agents involved. Clearly a philosophical position is not a side issue
but of fundamental practical relevance.

Our philosophical arguments lead directly to the observation that an agent in a
situation where it experiences certain invariants (affordances or norms) becomes a
modified agent:

person upright
where we first name the agent and then the invariant. A modified agent can then
behave in some ways that are not possible otherwise. So we may have

person upright walk
person upright jump

both of which are not affordances of a
person sitting.

Some invariants can only be experienced during the existence of others which we
call their 'antecedents'. Similarly, in the social domain

Society (person, person) marriage separation
is a structure in the flux of experience where a separation can only exist while there
is a related marriage which, in turn, can only exist during the coexistence of two
people and the society which provides the appropriate norms. 'Separation' has many
meanings but its meaning is substantially governed in this example by the context
provided by the lattice of dependencies. These we can express in what we call an
'ontology chart'. Here, for example, is the chart for separation with another
extension to include a violation of the separation by someone:

Society person marriage separation
\ violation

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 227

For our present purposes, the essential idea is that we must know the ontological
structure behind a word to know its meaning. If we are not sure when an instance
of any one of the above concepts can exist, then we are not sure of its meaning. A
brief illustration is in the CONTEST example.

PROJECT ONE: CONTEST

In this section we address some features of Semantic Analysis in requirements
engineering and systems design.

The project
CONTEST, a project nearing completion, aims at developing a knowledge-based,
large scale information system. It stores items (i.e. questions of which a
examination can be composed), and produces tests (or, in another word,
examinations) according to test specifications given by teachers or educational
specialists who want to have a test produced by the system to make
discriminations of defined characteristics over specific kind of population. The
major system components have been articulated as follows from which the
complexity of the system can be seen [6,7]:
1. The databases: There are five databases: item banks, test banks, graphics

banks, auxiliary material banks, and population banks. The contents of the
five banks are represented in different data types: numerical data, textual data,
graphs, etc.

2. The knowledge-base: It contains knowledge needed for eliciting test
specification and test generation.

3. The mathematical model-base: The mathematical models are needed for
producing test drafts.

4. The general engine and man-machine interface: Through use of these two
mechanisms, users can interact with the system for all kinds of applications.
Due to the complexity of the requirements and the foreseeable high cost of

the project, the institute felt that it is worth putting great effort in producing a
correct requirement specification which can be only guaranteed by involvement of
the professionals who verify the requirements.

Requirements analysis
The requirement model was actually produced interactively by both the analysts
and professionals. At the first step, the main task is to obtain an understanding of
the total problem to be tackled from various written materials and interviews. The
understanding of the problem was then indicated by key terms and concepts which
were listed as candidate items to be included in the requirement model. Examples
of those terms and concepts are: institute, school, person, test, student, etc. All
these were then classified into different types. For example, person, school and
institute are agents; writes an item and writes an test specification are actions;
writers are role names; ability scale and administration time, as they describe
some aspects of an item, are determiners for item. Relationships of generic-

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

228 Software Quality Management

specific structure are also identified. For example, school is a specific kind of
institute. In the requirement model all these elements are linked together according
to ontological dependencies. Figure 3 presents a major part of the model. (The
major omission from this model is the root agent form which the whole structure
originates.)

Figure 3: Part of the CONTEST semantic model.

The items enclosed in ovals are agents, e.g., institute and person. The labels
in 'semi-circles' are role-names, such as writer, employer and employee. School
and test institute are specific kinds of institute, therefore they are placed in the box
below the institute. All determiners have been omitted in this example, though
they belong to the model. Examples of determiners are: names of particular
institute or person; attributes of an item.

Documentation and design
Believe it or not, the total amount of requirement documentation of CONTEST is
three A4 pages, which consist of a one page of the semantic model (part of it is
shown in figure 3), two pages of determiners of some of the elements of the
model and some norms to specify logical and procedural constraints. This was one
of the two most striking features experienced by the project team. Before Semantic
Analysis was used in the project, the team had conducted requirements analysis
using two methods. After that, however, the decision could not be made on
whether either or both of the models reflected what was desired by the
professionals. One of reasons was the huge amount of documents created an
obstacle to the professionals' understanding. The notations in the documents were
just syntactic puzzles to the professionals who could not, therefore, even think

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 229

about the semantics represented in the model. The documents produced by one of
methods amounted to a little more than 30 pages, in contrast to 3 pages produced
by the Semantic Analysis.

The other striking feature experienced was the simplicity of the
documentation. The elements in the model are the terms and concepts familiar to
the users because they are derived from the users' vocabulary. Those concepts are
linked by one single relationship, ontological dependency. Once this is taught to a
user, he or she will be then able to read and check the model. In fact, after a first
draft of the semantic model was made by the analysts, the professional specialists,
became an active part of the design team. Very soon they could comment, criticise
and suggest improvements to the model. In this way the control of the quality of
the requirement modelling has remained in the hands of the responsible
professionals.

The CONTEST system has been designed and implemented in object-oriented
approach. The conversion from the semantic requirement model to the object-
oriented design was relatively simple because of some conversion rules that have
been worked out, such as correspondence between agents and objects, behaviour in
the model and actions in the design, determiners in terms of the Semantic Analysis
and properties in object-oriented terms. Because the requirement model was
semantically verified by the users, confidence in the design, therefore and the
quality of the whole system has be dramatically enhanced despite some errors
incurred during programming.

PROJECT TWO: NAMAT

NAMAT is an operational software system developed with the use of the Semantic
Analysis method. It supports the student information system for a university using
the credit-hours academic system. NAMAT 1.0 was deployed in 1987 and was
extended several times. The last major extension resulted in NAMAT 4.2 in 1990.

The effect of Semantic Analysis on NAMAT's development and initial user
acceptance was reported in [8]. The user management acceptance was and remains
particularly encouraging due to the robustness of the temporal student database.

In this section we compare NAMAT and a system, we refer to here as,
System-200. System-200 is a popular software package used by over 200
universities. System-200 was built without the aid of semantic analysis to also
serve universities with credit-hour academic systems. Both support all academic
transactions between the student and the university, altogether about fifty academic
transactions. Both systems also record the academic history of the student's
previous studies including individual subjects and marks. As well as other personal
data. And both have facilities for extraction of ad hoc reports.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

230 Software Quality Management

Effectiveness in supporting student administration
1. NAMAT's temporal Student Database allowed the extraction of some historical
reports that are not possible with System-200.
2. System-200 required one officer to follow up special student cases: student
cases officer to follow up the loose ends of System-200. No such a role existed in
the University using NAMAT, because NAMAT followed up student cases
automatically.
3. NAMAT's maintenance system is more responsive to its host university. Every
adaptive and corrective maintenance request is dealt with. System-200, on the
other hand, could not be changed at all for some requests because that would have
caused compatibility problems with the next version of the package.

Cost to support software
NAMAT is supported by just one in-house technical staff member performing
adaptive and corrective maintenance, database administration, user training and
writing all management reports programs requested.

System-200 on the other hand requires:
• Two in-house technical staff for support
• US$25,000 annual maintenance fee
" Several part time end-users who writing 4GL programs for management

reports
• Substantial training investment.
The cost of System-200 training is an order of magnitude more than that required
for NAMAT.

Handling Suspension Transactions
Usability: The most immediate is the relative simplicity of NAMAT.
1. One NAMAT transaction replaces two separate SYSTEM-200 transactions -
one to create the prohibition and another to create the anecdotal entry.
2. SYSTEM-200 leaves the user total discretion on whether to make the anecdotal
entry and if he does - total arbitrariness on what information to record in this
entry.
3. SYSTEM-200 imposes on the user a foreign vocabulary - "HOLD", "FLAG",
"SCREEN", "ANECDOTAL ENTRY".
4. SYSTEM-200 provides no information about the student status. NAMAT
constructs from student history a concise natural language sentence of the students
relevant status and prompts the user with it. This saves the user having to look at
many screens.
5. System-200 users must have an understanding not only of what suspension
means administratively but also of high degree of interpretation required to map
this into System-200 transaction(s).
6. SYSTEM-200 requires the user to memorise SCREEN numbers.
7. The user has to make two System-200 transactions to retract and record a
clerical error. Reset the Hold screen flag and another anecdotal entry. NAMAT 4.2

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 231

has one transaction to support each retraction and clerical error.

Temporal Functionality
NAMAT is based on a temporal database [22], with non-destructive update
technique. This means that users do not loose any information they have
previously entered. System-200 support for historical information is inconsistent
therefore it is very difficulty to produce historical reports, and monitor student
population automatically.

Maintainability
1. A maintenance problem arises when an attempt is made to add another
authority for suspension. System-200 requires a technical staff to add another flag
that has the effect of prohibiting a student from registration in screen #004
together with the appropriate data and program changes. In NAMAT to add
another authority requires no data structure or program changes at all.
2. System-200 is not restrict with the authority. For example when an academic
department suspends a student. System-200 is not actually capable of telling us
which department. To get this information the user would have to look up the free
format anecdotal entry (if the user bothered to put one in) or presume it is the
same department that the student is majoring in. It is not even feasible to be more
specific about departments because that would require creating flags for each
department in the university on the screen! In NAMAT the authorities for all
academic transactions are not hard-coded in the screens.

Summary
Whereas it is possible to achieve these same quality characteristics with
conventional methods, it is necessary with semantic analysis to embody these
characteristics in the requirements specification. NAMAT is a verification of this
claim to necessity.

Secondly, Semantic Analysis made it possible to develop and maintain a tailor-
made system cheaper than System-200 package solution! The University using
System-200 dumped a predecessor tailor-made system and recognises System-200
as a better solution. The few tailor made systems that we have come across so far
are too flimsy to consider seriously for comparison. But the invitation is open to
make a comparison with another tailor made system.

NORMBASE: A TOOL TO SUPPORT SYSTEMS DEVELOPMENT

Norm base [28] is primarily developed as an information system shell, and
expanded with functions that are required for supporting systems development
processes. Therefore it becomes a self-contained, integrated environment for
systems development as well as an information system shell for all kinds of
applications.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

232 Software Quality Management

An important aim of the Normbase research has been to evolve automated
tools to support the whole process of information systems engineering. Normbase
can be used in several stages of a system development: analysis, design and
implementation, but it is especially designed to help system developers during
analysis and design to concentrate on the core subject matter (or business
problems) rather than technological issues. Normbase facilities will allow analysts
to conduct elaborated requirements engineering. A strong emphasis has been put in
requirement elicitation, articulation and analysis during which knowledge about the
business organisation will be obtained. The business knowledge is expressed as the
norms of teams, firms, social groups or nation states. All these norms form a
conceptual foundation for the design and construction of the system that meets the
users' requirements at the policy, organisation strategy and business operation
levels.

Design of a database is automatically generated by a Normbase from the
Semantic Model. The Semantic Analysis option on a Normbase allows the analyst
to establish the conceptual model of the problem. The Semantic Analysis facility
guides the analyst to enter specifications of each conceptual entity. With such a
facility every entity entered into the system will be added onto the semantic model
immediately. In fact the modelling is an interactive process with users. Because
the semantic modelling employs users' vocabulary rather than creating artificial
labels as most of the analysis methods would do, the users can understand the
model easily with a modest amount of assist from the analyst. The concision of
the representation also encourages the users' attempt to understand what has been
written in the documents for quality control purposes (very often the key
requirements documents in the form of semantic models for a project are no more
than two or three pages). Once the analysis is approved, the semantic model will
serve as the conceptual design of a Semantic Temporal Database (STDB).

An STDB is generated from the semantic mode. Adding a rich semantic
structure to the data has marked advantages: meaningless structures or data are
eliminated; temporal constraints are applied automatically and complex temporal
queries are simple. To illustrate this past point, for example, a simple query about
which guests at a hotel are attending various functions would be expressed as

guest(person) while attending(person, function)
in the form "a while b" requires 2 operands and 1 operator, 3 expressions, instead
of in the 99 expressions needed in SQL! Norms are constructed using formulas
like the one above and they are associated with the start and finish of the
existence of each element in the semantic model. The system, therefore, also guide
the analyst when eliciting norms from the user community. An interpreter applies
the norms to the data and norms can be held as data within the STDB. Data,
semantic model and norms (data, schema and functions) are never overwritten in
the STDB, their existence attribute has its finish time added but the history is
persevered. These features of the STDB all contribute to system quality.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 233

CONCLUSIONS: HOW SEMANTIC ANALYSIS INCREASES SIMPLICITY,
UNIFORMITY AND QUALITY

A fundamental change in the philosophy underlying the concept of an information
system has far-reaching effects on quality of requirements specified using
MEASUR. In summary they are as follows
• E-R-A distinction is removed, the semantic schema is simpler as a result;

all concepts are patterns of behaviour, so that the schema incorporates time;
Strict semantic principles ensure that the schema is stable and its parts are re-
usable;

• the agent-in-action ontology allows a rich structure of agent, times, authorities
etc to be implicit in the schema thus reducing documentation by a factor of
about 10;
rigorous specification plus simple, understandable documentation puts the user
back in control over the definition of requirements;

• requirements analysis entirely focused on the business or substantive problems
without technical complexities also improves quality;
uniform, nor-destructive STDB for data, schema and norms vastly reduces
complexity of implementation.

MEASUR is still rather new but we and many other collaborators have now tested
it sufficiently in practice for us to feel confident that it greatly enhance system
quality.

NOTE

The MEASUR methods are commercially available through Semiotica at:
Hengelosestraat 705, Postbus 545, 7500 AM Enschede, The Netherlands.
Telephone +31.53.836580, fax +31.53.337415.

REFERENCES

1. Andersen, Peter B. (1990) A Theory of Computer Semiotics: semiotic
approaches to construction and assessment of computer systems. Cambridge
University Press, Cambridge.

2. Andersen, Peter B. (1991) A Semiotic Approach to Construction and
Assessment of Computer Systems, in Nissen, et al.

3. Andersen, Peter B. and Berit Holmqrist (eds) (1994) Semiotics in the
Workplace, De Gruyter.

4. Biggerstaff, T.J. & Richter, C. (1987) Reusability Framework, Assessment,
and Directions, IEEE Software, 4(2) March pp.41-49.

5. Boehm, B. (1981) Software Engineering Economics. Prentice-Hall,
Englewood Cliffs, New York.

6. Boekkooi-Timminga, E. (1989) Models for Computerised Test Construction,
Academisch Boeken Centrum, De Lier.

7. Boekkooi-Timminga, E. and Sun, L. (1991) Contest: A Computerised Test

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

234 Software Quality Management

Construction System, in Hoogstraten, et al.
8. Badr, E., Y. Ades, A. Bid (1992) The Experience of Qatar University with

NAMAT, 13th Annual Conference of ACRAO, University of Qatar, Doha.
9. Dix, A, J. Finlay, G. Abowd and R. Beale (1993) Human-Computer

Interaction, Prentice Hall, NY.
10. Gibson, J.J. (1979) The Ecological Approach to Visual Perception, Houghton

Mifflin Company, Boston.
11. Hall, Terence J. (1992) The Quality Manual. John Wiley, Chichester.
12. Hoogstraten, J. and Linden, W.J. van, (eds) (1991) Proceedings of Dutch

National Conference on Educational Research, Stichting Centrum voor
Onderwijsonder-zoek van de Universiteit van Amsterdam.

13. Jalote, P. (1991) An Integrated Approach to Software Engineering. Springer-
Verlag, New York.

14. Jirotka, M., J. Goguen and M. Bicherton (eds) (1994) Social Technical
Aspects of Requirements Engineering, Academic Press, New York.

15. Li, Haikuan (1993) RITL: An Information System for Application Reuse-in-
the-Large. Delft University Press, Delft.

16. Liu, K. (1993) Semiotics Applied to Information Systems Development.
Doctoral Thesis, University of Twente, Enschede.

17. Morris, C.W. (1938) Foundations of the Theory of Signs, International
Encyclopedia of Unified Science, 1,2. Univ. of Chicago Press, Chicago.

18. Morris, C.W. (1946) Signs, Language and Behaviour. Braziller, New York.
19. Navath, S. (ed) (1985) froccWm&s o/ WCM-S7OMW.S Wfrna/zoW

Conference on Management of Data, Austin, TX, S1GMON Record 14 (4).
20. MsjfM, //.-E., A7f/M, //.AT. <& ///rjc/7Ww, #. ff<6y f7997y /M/or/Maf/on .Sysfcmj

Research: Contemporary Approaches and Emergent Traditions, Elsevier
Science Publishers, North-Holland.

21. Peirce, Ch.S., (1931/35) Co//ecW fwperf of C/7.,9, f<?/rcc, edited by
Hartshorne, C. & Weiss, P. Cambridge, Mass. 1960.

22. Snodrgass, R. (1985) A Taxonomy of Time in Databases, in Navath.
23. Sommerville, Ian (1992) Software Engineering (fourth edition). Addison-

Wesley Publishing Company, Workingham, England.
24. Stamper, Ronald K. (1991) The Semiotic Framework for Information Systems

Research, in Nissen, et al.
25. Stamper, Ronald K. (1992) Signs, Organisations, Norms and Information

Systems. Keynote paper for the 3rd Australian National Systems Conference,
Wollongang.

26. Stamper, Ronald K. (1992) Signs, Norms and Information Systems.
ICL/University of Newcastle Seminar on "Information".

27. Stamper, Ronald K. (1994) Social Norms in Requirements Analysis, in
Jirotika, et al.

28. Stamper, R.K., K. Liu, M. Kolkman, P. Klarenberg, F. van Slooten, Y. Ades,
and C. van Slooten (1991) From Database to Normbase. International Journal
of Information Management, 11 62-79.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 235

29. Troy, Robert (1991) Impact of Methods on Productivity and Quality.
ESEC'91 Proceedings, Lamsweerde, A.van & Fugetta, A. (eds), Springer-
Verlag, Berlin.

30. Weigand, H. (1990) Linguistically Motivated Principles of Knowledge Base
Systems. Foris Publications, Dordrecht.

31. Winograd, T. & Flores, C.F. (1986) Understanding Computers and Cognition.
Addison-Wesley Publishing Company.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

