
Lubrication at the Frontier / D. Dowson et al. (Editors) 
© 1999 Elsevier Science B.V. All rights reserved. 151 

Amplitude Reduction of Non-Isotropic Harmonic Patterns in Circular 
EHL Contacts, under Pure Rolling 
C.H. Venner a, A.A. Lubrecht b 

a University of Twente, Enschede, The Netherlands. 

bLaboratoire de M6canique des Contacts, UMR CNRS 5514, INSA de Lyon, France. 

Surface roughness plays an important role in ElastoHydrodynamically Lubricated contacts, a role which is cur- 
rently only partially understood. Recent work on waviness in EHL line contacts has shown and quantified the 
elastic deformation of the waviness inside the contact as a function of a single dimensionless parameter. In the 
present paper this work is extended to the circular contact problem. First it is shown that the amplitude reduc- 
tion of an isotropic harmonic pattern can also be described as a function of a single dimensionless parameter. 
Subsequently, the effects of anisotropy are investigated varying from purely transverse to purely longitudinal. It 
is shown that one can create a single curve for the case varying from isotropic to longitudinal, and another for 
the case varying from isotropic to transverse. Both curves can be combined in a single formula. 

1. I n t r o d u c t i o n  

Tendencies in design are such that  EHL con- 
tacts are required to operate reliably under in- 
creasingly severe conditions, e.g. higher loads, 
higher temperatures,  sparser lubricant supply. As 
a result the film thickness in the contact will be 
smaller, and the microgeometry of the surface has 
an increased effect on the operation of the con- 
tact. In fact, the microgeometry or surface rough- 
ness can no longer be seen as a given feature. 
On the contrary, surface texture is rapidly be- 
coming a design parameter  too. Finally environ- 
mental awareness calls for silent machinery and 
thus silent bearings. This requires detailed un- 
derstanding of the different sources of vibrations, 
and of the dynamic behaviour of the individual 
EHL contacts and its relation with the microge- 
ometry. Summarizing, a detailed understanding 
of the effects of microgeometry on film formation 
and surface deformation is as important  as ever 
before. 

The study of effects of surface features in EHL 
contacts has a long history, both experimentally 
and theoretically, e.g. see [1]. Experimental re- 
sults can be found in [2]-[7]. Theoretical studies 
mostly addressed the subject by means of numer- 
ical simulations. The steady state problem was 

studied first, e.g. see [8]-[16]. Examples of tran- 
sient studies of the pressure and film thickness 
are [17]-[31]. Most of these studies deal with a 
surface feature on one of the surfaces. Results for 
two non-smooth surfaces can be found e.g. in [32] 
and [33]. 

Obviously for non-smooth surfaces generally 
dense grids are required to obtain accurate re- 
sults. Moreover, from a stability point the rough 
surface problem tends to be more demanding 
than the smooth surface problem. Finally, by 
definition, in the case of roughness on a moving 
surface the problem becomes transient. Conse- 
quently, fast and stable algorithms for the nu- 
merical solution of the problem are a prerequi- 
site for such studies. These algorithms were long 
lacking. However, the situation has changed with 
the introduction and further development of so- 
called multigrid or multilevel techniques by Lu- 
brecht [34]-[36], and Venner [37]. 

An alternative approach to full numerical sim- 
ulations was pioneered by Greenwood et al. [38]- 
[41]. They showed that  transient EHL solutions 
consist in principle of two parts; a particular in- 
tegral (moving steady state solution with the ve- 
locity of the rough surface) and a complemen- 
tary function (excitation coming from the inlet) 
travelling with the average velocity of the lubri- 
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cant, and thereby resulting in film changes with 
a wavelength that is larger or smaller than the 
wavelength of the undeformed waviness. 

It thus appears that the basic phenomena in- 
volved in transient EHL contacts are relatively 
well understood nowadays. The necessary next 
step is to generalise the results to obtain tools for 
practical use in e.g. design. A first step in this 
direction was taken by Couhier [42] and Venner 
et al. [43]. It was shown that the numerical re- 
sults of the amplitude reduction of waviness in 
an EHL line contact under pure rolling could be 
represented on a "master-curve" of a single di- 
mensionless parameter. Such a curve obviously 
can form an important tool to estimate defor- 
mation of rough surfaces, i.e. by applying it to 
each of the Fourier components of the surface, 
and then by inverse Fourier transform construct 
the deformed film thickness. Subsequently, the 
mastercurve was extended to include the effects 
of sliding in [44]. Theoretical support for the ob- 
served behaviour was provided recently by Hooke 
[45]. 

In the present paper the approach is extended 
to the circular contact problem. By means of 
numerical simulations the amplitude reduction of 
harmonic surface patterns is investigated for con- 
ditions of pure rolling. 

2. N o m e n c l a t u r e  

a amplitude 
A dimensionless amplitude A = aR/b  2 
b radius of Hertzian contact 

b= ~/(3FR~)/(2E') 
E' reduced modulus of elasticity 

2 / E '  - (1 - v2)/E1 + (1 - v~)/E2 

F external load 
G dimensionless materials parameter 

G = a E '  
h film thickness 
H dimensionless film thickness 

H = h R z / b  2 

L dimensionless material parameter 
(Moes) L = G(2U) °'25 

M 2d dimensionless load parameter (Moes) 
M = W(2U)  -°'r5 

p pressure 
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maximum Hertzian pressure 
Ph -- (3F)/(27rb 2) 
dimensionless pressure P -  P/Ph 
reduced radius of curvature in x 
1/Rz  - 1 /R lx  + 1/R2~ 
reduced radius of curvature in y 
Ry - R~ 
surface feature 
slip parameter S - ul / 
dimensionless time T - - t ~ / b  
surface velocity 
mean velocity ~ -  (ul + u2)/2 
dimensionless speed parameter 
u -  

2d dimensionless load parameter 
W - F / ( E ' R ~ )  
coordinate in direction of rolling 
dimensionless coordinate X - x /b  
dimensionless location surface feature 
coordinate perpendicular to x 
dimensionless coordinate Y - y /b  
pressure viscosity index 
coefficient in Reynolds' equation 
¢ -- ( ~ H  3) / ( ~ )  

dimensionless time step 
dimensionless mesh size in X, Y 
dimensionless wavelength parameter 
V2 - - ( A / b ) ( M 1 / 2 / L  1/2) 

dimensionless speed parameter 
- 12(rlo~tR2)/(b3ph ) 

wavelength in x, y direction 
viscosity 
dimensionless density q -  r//rlo 
density 
dimensionless density f i -  p/po 

inlet, outlet 
initial (undeformed), deformed 
start 
constant, e.g. at ambient pressure 
surface 1, 2 

3. T h e o r y  

The dimensionless Reynolds equation for the 
transient circular contact problem reads: 

oX b-f ax 
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The boundary conditions are P(Xa ,Y ,T )  = 
P(Xb, Y, T) - P(X,  Ya, T) - P(X,  Yb, T) -- 0, 
VT where Xa, Xb, Ya and lib denote the bound- 
aries of the domain. Furthermore, the cavitation 

• condition P(X,  Y, T) >_ 0, VX, Y, T must be sat- 
_ 

isfied, e and ~ are defined according to: 

fill3 X -  12r/°fiR2 

¢'-- f7 X b3ph 

The density p is assumed to depend on the pres- 
sure according to the Dowson and Higginson re- 
lation [46] and the Roelands viscosity pressure re- 
lation [47] is used. 

The film thickness equation is made dimensionless 
using the same Hertzian parameters and account- 
ing for a moving surface pattern T¢ reads: 

X 2 y2 
H(X,  Y, T) - Ho(T) + ~ + --~- - n ( X ,  Y, T) 

2 f P(X' ,  Y', T) dX' dY' (2) 

where P~(X, Y, T) denotes the undeformed geom- 
etry of the surface feature at dimensionless time 
T and Ho(T) is an integration function. In this 
paper calculational results will be presented for 
isotropic and non isotropic harmonic surface pat- 
terns. This pattern is assumed to be located on 
the surface moving with velocity U l and modelled 
according to: 

TO(X, Y, T) Ai 10 -10(max(0' x-~ )2 - -  (),=/b) ) 

X - _ ~  cosf27r Y c o s  (3) 

where X - Xs + ST  with S - ul/ft. This par- 
ticular shape was chosen to avoid discontinuous 
derivatives, and to start the calculation with a 
smooth surface geometry. 

At all times the force balance condition is im- 
posed, i.e. the integral over the pressure must 
balance the externally applied contact load. This 
condition determines the value of the integration 

function Ho(T) in equation (2). Expressed in the 
dimensionless variables it reads: 

I~ P(X,  Y, T) dX dY 2re 3 = 0, VT (4) 

In physical terms this equation means that the 
acceleration forces of the contacting bodies are 
neglected. 

We will determine the deformed amplitude of 
the pattern as a function of the operating condi- 
tions: 

2Aa - maxH(0, 0, T ) -  min H(0, 0, T) (5) 
T T 

This definition is suited for all cases except for 
purely longitudinal waviness Ax - co. For that  
case it needs to be generalised as will be explained 
in Sec. 5.3. 

4. Numerical  Solution 

The equations were discretised on a uniform 
grid with second order accuracy in space and 
time. The discrete equations are the same as used 
in [48] except for the discretisation of the wegde 
and squeeze term. For these terms an alternative 
scheme was used adopted from Computational 
Fluid Dynamics, and referred to as NU2 (Nar- 
row Upstream 2nd order). Unlike the usual ap- 
proach where each of the advective terms (fiH)x 
and (fiH)T is discretised separately using back- 
wards (upstream, upwind) second order discreti- 
sation (SU2), the combined term (~H)x + (fiH)T 
is considered. The resulting scheme is still sec- 
ond order, but as the leading term of its trun- 
cation error vanishes for two directions X = T 
and X = 2T, (instead of only for X = T) the 
truncation error for other components is generally 
smaller too. This scheme was tested for the line 
contact problem showing a significantly higher ac- 
curacy for small wavelengths, see [33]. Also for 
the circular contact problem it yields a signifi- 
cant increase in accuracy as is illustrated in ap- 
pendix A. 

The discrete equations per time step were 
solved using multilevel techniques to accelerate 
convergence of the relaxation process. Unlike [48] 
the techniques were directly applied to the second 
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order equations and double discretisation was not 
used. The elastic deformation integrals were com- 
puted using Multilevel Multi-Integration. For the 
basic techniques involved the reader is referred to 
[34] and [37]. 

The calculations were performed using a do- 
main -2 .5  < X _ 1.5 and - 2  _ Y _< 2 using a 
grid with 257 × 257 points. The time step was 
chosen equal to the spatial mesh size, i.e. with 
A T -- A X -- Ay  -- 0.015625. As we are inter- 
ested in small amplitude waviness the amplitude 
of the undeformed wave was taken as 20 % of 
the central film thickness obtained when assum- 
ing perfectly smooth surfaces. The simulation 
was started with the Xs - -2.5.  Subsequently 
the pat tern moves into the contact with the ve- 
locity of the wavy surface. Monitoring of the cen- 
tral film thickness to determine Ad is started at 
T - T8 where Ts denotes the time after which 
the solution has become periodic, i.e. when all 
running in effects have disappeared. To obtain 
a time independent value for Ad it is important 
that  monitoring only starts for T > T~. As a gen- 
eral rule Ts can be taken as the time at which the 
slowest of the induced or real wave reaches the 
end of the contact. Subsequently the monitoring 
time should be taken sufficiently long to ensure 
that  a real maximum and minimum have occured. 
As we assume pure rolling in the present paper it 
is sufficient to have a monitoring time that is (a 
multiple of) ~ / b .  

5. R e s u l t s  

The behaviour of the reduced amplitude Ad 
was studied as a function of the dimensionless 
wavelengths Ax/b, Ay/b and the operating con- 
ditions M,L .  Below the results are presented 
organized according to the pattern orientation. 
First in section 5.1 results for the isotropic case 
A~ = Ay = A are presented. Subsequently in the 
sections 5.2 and 5.3 the cases A~ < Ay (including 
the transverse limit) and Ax > Ay (including the 
longitudinal limit) are discussed. 

5.1. Isotropic: Ax - ~ y  - .~ 
Figure 1 shows the pressure and film thick- 

ness as a function of X and Y for a typical case. 

The conditions are M - 1007.6, L - 12.05 and 
A/b - 0.25. With a - 2.2 10 -8 the maximum 
Hertzian pressure for this case is Ph -- 2.0 GPa. 
The undeformed amplitude was taken as Ai = 
5.6 10 -3 - 0.2Hc with He the smooth surface 
central film thickness. The value of Ad obtained 
for this case is Ad -- 4.136 10 -3 -- 0.739 A/. 

2 . 0 0  

1. 011 

- 1 . 0 6  ~ - 0 . 5 0  
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-2.  DO " -2 .50  

B, 50 

Figure 1. Snapshot of P (top) and H (bottom) 
as a function of X and Y, under pure rolling ~ - 
b/4, Ai -0 .2He ,  M -  1007.6, L -  12.05. 

In the same way as for the line contact problem, 
see Venner et al. [43] and Lubrecht et al. [44], the 
reduced amplitude Ad was studied as a function 
of wavelength and operating conditions. First it 
was established that  the results are linear in Ai, 
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i.e. Ai can be fixed and need not be varied sepa- 
rately. For the line contact this linearity remained 
valid even for very large values of Ai. For the 
point contact however, the linearity breaks down 
when Ai ,~ Hc. As mentioned earlier, all results 
presented here were obtained using Ai - 0.2Hc. 

In a preliminary study [49] it was shown that  
for a range of M, L and A/b values, all results 
fell quite well on a single curve if they were pre- 
sented as a function of the dimensionless param- 
eter V2 - ( A / b ) ( M I / 2 / L  ~) with 1/6 _< 7 _< 1/2. 
On physical grounds V:  - (A/b)(MI/2/L1/2)  
was chosen because it results in the same de- 
pendence on ~ and Ph as in the line contact 
problem, as suggested by Drs Hooke and Green- 
wood [50]. Note that  V2 can be written as 
V2 -- V/27r3/3 (A/b)(a ph) 3/2 L -2. 

Fig. 2 presents results of Ad/Ai  for isotropic 
• waviness as a function of 272 for cases 50 _< M < 
2000, L - 12.05, and 0.125 _< A/b <_ 4.0. A 
two parameter  least square fit of the present data  
shows that  the points can be approximated by 
an equation similar to the one found in the line 
contact case: 

Ad 1 
Ai 1 + O.15V: + O.O15V: 2 (6) 

5.2. Anisotropic: Ay > Ax 
Figure 3 shows the pressure and film thickness 

as a function of X and Y for the same case as con- 
sidered in Fig. 1 but with Au/b = 2A~/b = 0.50. 
For this case the value of the reduced amplitude 
was Ad -- 4.273 10 -3 = 0.763Ai 

Subsequently, the operating conditions were 
varied. The question then is which parameter  
should be used to present the results. As a first 
guess V2 was chosen with A = Ax. 
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Figure 2. Relative deformed amplitude as a 
function of V2, pure rolling. Dotted curve: equa- 
tion (6). 
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Figure 3. Snapshot of P (top) and H (bottom) as 
a function of X and Y,  under pure rolling Az - 
b/4, Av - 2Ax, Ai - 0.2He, M - 1007.6, L - 
12.05. 
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Figure 4. Ad/Ai  as a function of V2 with A - 
Ax. Anisotropic: Ay/l~ - 2 (top), 4 (centre) and 
transverse (bottom). 

Figure 5. Ad/Ai as a function of V2 with A - A~. 
Anisotropic: Ay > Ax. 

Figure 4 presents the results obtained for 
Ay/Ax - 2, 4, and for purely transverse, i.e. Ay = 
c~. For reference the predictions of Eq. (6) are 
presented. Figure 4 shows that  for each ratio 
Ay/Ax the results fall on the curve obtained for 
the isotropic case. Deviations occur for smaller 
wavelengths but they seem to be a second order 
effect. It thus appears that  the main behaviour 
for Ay > A~ is accurately described by Eq. (6) 
using A -  A~ in V2. 

This is once more confirmed by Fig. 5 where all 
results for Ay > Ax are presented in one figure. 

5.3. An i so t rop i c :  A~ > Ay 
Figure 6 shows the pressure and film as a func- 

tion of X and Y for the same case as considered 
in Fig. 1 but with Ay/b - 0.5Ax/b - 0.25. For 
this case the value of the reduced amplitude was 
Ad -- 3.117 10 -3 --0.557Ai. 

By Eq. (5) the deformed amplitude Ad was de- 
fined as half the difference between the maximum 
value and the minimum value of the film thick- 
ness in X - Y - 0 taken over time. This implies 
that with increasing A~ the required monitoring 
time increases, i.e. the time before a full period of 
the oscillation has past. Thus, for the asymptotic 
case of purely longitudinal waviness (A~ - c~) 
no result can be obtained. To include this case 
a generalised definition of Ad is needed. In the 
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high pressure region the Reynolds equation re- 
duces to a transport  equation in the X direction. 
As in this region the film is nominally flat, the 
deformed amplitude could also be defined as: 

2Ad - max H ( X ,  O, To) - min H ( X ,  O, To) (7) 
X X 

where the maximum and minimum should be 
taken over a region of length at least Ax/b en- 
tirely in the high viscosity zone, and To is a time 
taken after which the contact has settled in the 
steady oscillation. 
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Figure 7. Ad/Ai  as a function of V:  with A - Au, 
for Ay/A~ - 1, 0.5, and longitudinal. 

O,OO 
Y 

-~.o5 ~ -o.so 
\ - 1 . 5 0  g 

- 2 ,  O 0  " - 2 . 5 0  

0 . 5 0  

0,00 

0.00 

- 2 , 0 0  " - 2 . 5 0  

i!:i';:!'i;i!!i!::!;iiiiii:.!~i:i!i:!;!i! i:;:ii:!i;i!iii?:?!::'i::'!::':':'" '..,,--'~ O. 5[J 

- 1 . 5 0  

- 0 , 5 0  

g 

Figure 6. Snapshot of P (top) and H (bottom) as 
a function of X and Y,  under pure rolling A u = 
b/4, ~ - 2Ay, Ai - 0.2He, M - 1007.6, L = 
12.05. 

For A~/b < 1 (7) and (6) should give the same 
result, i.e. as long as the value determined by (7) 
is not influenced by the global changes in X di- 
rection of the film. For the isotropic case it was 
also noticed that the amplitude of the film thick- 
ness variations in Y direction at a given instance 
(taken after the solution has settled) was the same 
as the amplitude in X direction, as long as the 
wavelength Ay/b was sufficiently small compared 
to the size of the contact. Thus it appears that  
the deformed amplitude could also be taken as: 

2Ad -- m a x  H ( X ,  Y, To) - m i n  H ( X ,  Y, To) (8) 
(X,Y) (X,Y) 

with To as before, and the maximum and min- 
imum taken over a sufficiently large region (at 
least of size £x/b x Ay/b, and well inside the high 
viscosity region, or more specifically well inside 
the region in which the film thickness for the 
steady state is nominally fiat. For £x/b and Ay/b 
smaller than unity this generalisation remained 
valid for anisotropic waviness. Consequently, this 
generalised definition of Ad was used to study the 
longitudinal waviness A~ = oc, where it reduces 
to:  

2Ad -- m a x H ( X o ,  Y, To) - m i n H ( X o ,  Y, To). (9) 
Y Y 

Figure 7 shows Ad/Ai  as a function of V2 with 
in U2 taken A - Ay. For clarity, results of 



158 

only two cases are presented, i.e. Ay/A, = 0.5 and 
purely longitudinal. For comparison the curve ob- 
tained for the isotropic case is also drawn. Fig- 
ure 7 shows that  for each Ay/Ax again a single 
curve is obtained but it is shifted to the left com- 
pared to the isotropic curve. The total shift going 
from isotropic to longitudinal however is limited 
and relatively small. It appears that the different 
results can be scaled onto a single line once again 
if they are presented as function of f ( r)V2 with: 

f(r) - -  e 1--~ (10) 

with r - Ax/Ay. This is shown in Fig. 8. Thus, 
Eq. (6) accurately describes Ad/Ai if V2 is re- 
placed by f(A,/Ay)V2,  and A - Ay is used in V2. 
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Figure 8. Ad/Ai as a function of f(Ax/Ay)V2 
with A -  Ay. Anisotropic: A~ > Ay. 

6. Conclus ion  

Based on numerical simulations for many cases 
a simple relation is derived for the amplitude re- 
duction of anisotropic harmonic surface patterns. 

For isotropic waviness with A~ - Ay - A 
all amplitude reduction results fall onto a single 
curve using the dimensionless coordinate V2 - 
(A/b)(M1/2/L1/2). For anisotropic waviness with 
Ay > Ax an identical single curve was found when 
choosing the dimensionless coordinate V2 with 
A - Ax, including the case of pure transverse 

waviness (Ay = oc). For anisotropic waviness 
with Ax > )ty, once again a reduction to a sin- 
gle curve was obtained when choosing as a di- 
mensionless coordinate the product V2 f(Ax/Ay) 
using A - Ay in V2. This includes the station- 
ary case of pure longitudinal waviness (A~ = oc) 
but to include this last case a generalisation of 
the definition of the deformed amplitude Ad was 
needed. All cases can be combined in a single 
equation: 

Ad 1 
Ai = 1 + 0.15](r)V2 + 0.015(](r)V2) 2 (11) 

where 

e l_ !  i f r > l  with r - A x / A y ,  
f(r) - 1 otherwise 

and 

V2 - (A/b)(M1/2/L 1/2) with A - min(Ax,Ay) 
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A. Accuracy 

For time dependent problems great care must 
be taken to obtain accurate results. Reynolds' 
equation in the high viscosity region reduces to 
an "advection-diffusion" equation: 

~ O(fiH) O(fiH) _ 0 (12) 
OX OT 

where $'~ symbolises a differential operator, i.e. in 
this case the poisseulle terms. The solution in the 
limit of small ~'~ is fiH ~ ( ~ H ) ( X  - T),  i.e. vari- 
ations of (fill) are propagated along the charac- 
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teristic X - T without any change of amplitude. 
The solution for small ~'~ will show the same be- 
haviour, except that  the effect of a small viscous 
terms is that  the amplitude of an oscillatory com- 
ponent in the solution will not be a constant but 
slowly decay, depending on the (local) value of 
~ .  It can easily be shown that  the solution to 
the discretised problem up to a higher order terms 
will satisfy: 

$.  cO(fill) O(fiH) ~ TAx,AT = 0 (13) 
OX OT 

where w ax,AT is the truncation error made in the 
discretisation. If this error is sufficiently small 
compared to 9r~ the discrete solution will mimic 
the physical behaviour of the continuous solution. 
However, if 9r~ is very small, as is the case in E H L  
the discrete solution may show viscous effects, 
e.g. amplitude reduction (or phase shift), caused 
by the truncation error, which are thus mesh size 
dependent. Indeed, with decreasing mesh size 
the truncation error decreases and eventually on 
very fine grids and using very small time steps 
one will converge to the right continuous solution, 
but this only occurs on grids where 9r~ starts to 
dominate r. In fact, as long as this stage is not 
reached one simply obtains a solution for a case 
with much larger viscous effects than should occur 
for the given operating conditions. This for exam- 
ple shows up as amplitude decay in the solution 
as a function of space to an extend much larger 
than the real viscous term could ever account for. 
These effects will be very strong when a first order 
discretisation is used, see Venner [37][chapter 8], 
and [26]. Therefore, generally a second order dis- 
cretisation should be used. A convenient choice 
is to separately discretise the wedge and squeeze 
term with the well known upstream second or- 
der discretisation, e.g. see [48, Appendix B], the 
so-called SU2 scheme (Standard Upstream 2nd 
Order). 

In CFD many alternative discretisations for the 
advective part  of (13) can be found. Of particular 
interest are the so-called narrow schemes. Instead 
of discretising both terms separately, the com- 
bined term (fiH)x + (fiH)T is discretised using a 
given set of points and demanding a prescribed 
order of accuracy. Stability of the discretisation 
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Figure 9. Ad/Ai as a function of the mesh size 
(timestep) M - 1007.6, L - 12.05, and )~x /b -  
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(not amplifying components in the solution) may 
then require the use of one or more stencils with 
angles smaller than 90 degrees, together cover- 
ing all possible directions in the flow each in a 
manner as narrow as possible. This makes the 
discretisation formula a bit more complex, but 
this disadvantage is often outweighted by the gain 
in accuracy. An example of a second order dis- 
cretisation thus derived is the narrow upstream 
scheme "NU2", see [33]. 

As an example Fig. 9 shows Ad/Ai  as a func- 
tion of the mesh size obtained with the SU2 and 
N U 2  schemes for the load case displayed in Fig. 1 
with ,,kx/b = Ay/b = 0.5. The figure shows that  
both schemes converge to the same value for suf- 
ficiently fine grids but, even though both schemes 
are second order, on coarser grids the result ob- 
tained with the SU2 scheme is less accurate. This 
effect will be stronger if the wavelength is smaller, 
see Fig. 10, where Ad/A i  as a function of the 
mesh size is shown for Ax/b = Ay/b = 0.25. For 
this case Fig. 11 and 12 show how the differ- 
ences in accuracy show in the solution, i.e. in the 
film profile at the line Y - 0 as a function of 
X.  Two effects can  be observed. Firstly, with de- 
creasing mesh size the level around which the film 
thickness oscillates converges in the same way as 
the central  film thickness converges for the steady 
state solution. This behaviour, by definition, is 
the same for both the N U 2  and SU2 results. Sec- 
ondly, the amplitude of the oscillation itself con- 
verges. This latter behaviour is governed by the 
truncation error in the transient equation. Here 
the difference between the two schemes clearly 
shows. Even though the SU2 scheme is second 
order too, and also has a truncation error that  
vanishes for the characteristic component X = T 
(for AT -- Ax) ,  its results, for this high load and 
small wavelength case, exhibit an almost com- 
plete amplitude reduction on the coarsest grids. 
Only for A x  = 1/128 it becomes small. The 
N U 2  results are much more accurate. Even on 
the coarsest grids there is no amplitude reduc- 
tion. However, on these grids there is a slight 
phase error (related to higher order terms in T). 
Thus, compared with SU2 already on coarse grids 
it gives a good approximation to the appropriate 
"physical" behaviour of the continuous equations. 
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Figure 11. Film thickness at the line Y = 0 
as a function of  X for M = 1007.6, L = 12.05, 
and Ax/b = Ay/b = 0.25 obtained using the SU2 
scheme as a function of  A x  ( A x  = A y  = AT) .  
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Figure 12. Film thickness at the line Y = 0 
as a function of  X for M = 1007.6, L = 12.05, 
and Ax/b = Ay/b = 0.25 obtained using the N U 2  

scheme as a function of  A x  ( A x  = A y  = A T ) .  




