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ABSTRACT

Modeling a Coriolis mass-flow meter for shape optimization is considered. The optimization should en-
hance the performance of the meter by improving several performance criteria like the measurement sensi-
tivity. These performance criteria are improved by optimizing parameters that define the shape of the tube in
the mass-flow meter. A dynamic model is used to obtain the performance criteria for a set of shape parame-
ters. The tube is modeled using a flexible multibody approach, where an existing beam-element is modified
to include the effect of the fluid flow. Besides the calculation of the performance criteria, the model is used
to calculate the sensitivities of the performance criteriato the shape parameters, because those sensitivities
are useful for the optimization. Results from modeling the performance criteria and the parameter sensi-
tivities are shown for a U-shaped Coriolis mass-flow meter. Finally, some preliminary results from shape
optimization are demonstrated.

Keywords: Flexible Multibody Dynamics, Fluid-Conveying Pipes, Modal Analysis, Sensitivity Analysis,
Coriolis Mass-Flow Meter

1 INTRODUCTION

Coriolis mass flow meters measure the mass flow of a fluid from the vibration of a tube conveying that fluid.
The tube is fixed at both ends and excited in one of its eigenmodes. A mass flow through the tube causes
parts of the tube to vibrate out of phase resulting in a wave like motion. The motion of the tube is measured
at two locations and the phase difference between the motionat those points is proportional to the mass
flow. The phase difference per unit of flow is referred to as themeasurement sensitivity of the mass flow
meter. Measuring the mass flow from the Coriolis effect is advantageous, because the measurement is not
affected by medium properties like density, viscosity and heat conductivity.

Several applications require the measurement of mass flows as little as 1 g/h, leading to a need for highly
sensitive mass flow meters. Coriolis mass flow meters with small tubes are needed to measure such small
flows, because the measurement sensitivity increases with the inverse of the size of the tube. However,
scaling the tube dimensions does not increase the measurement sensitivity by the same factor the flow de-
creases and thus it is hard to measure small flows accurately.Many different tube shapes for Coriolis mass
flow meters are claimed in patents and publications to maximize the measurement sensitivity, though the
design of the tube shapes is mostly based on intuition. Improvement in terms of measurement sensitivity is
expected from designing the tube shape using rigorous model-based optimization. Model-based optimiza-
tion requires the formulation of appropriate performance criteria, the quantification of those performance
criteria for a tube shape using a dynamic model and the application of a suitable optimization procedure to
find the optimal tube shape. The focus of this paper is on modeling the dynamic properties for a given tube
shape and on predicting the change of the dynamic propertieswith the tube shape. The relevant performance
criteria and the optimization are outlined only briefly.

In Reference [8] it is shown that the measurement sensitivity of a Coriolis mass flow meter can be obtained
from a dynamic model that describes the inertia and stiffness properties of the tube and the inertia properties
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Figure 1. Typical shape of the tube of a Coriolis mass flow meter

of the fluid. The fluid is considered incompressible and viscous and its inertia properties are modeled as
a string moving along the tube centerline. A similar approach was used to model the fluid flow through
a beam element in the multibody systems dynamic package SPACAR, which was published previously in
Reference [7]. In this paper, those tube elements are used to model the performance of a Coriolis mass
flow meter for shape optimization. The tube shape is described by the geometric properties of the cross-
section of the elements and the position and orientation of the nodal points. Besides the calculation of the
performance criteria for these shape parameters, the modelis used to compute the sensitivity (derivatives) of
the performance criteria to the shape parameters. The advantage of using the flexible multibody approach
over a linear finite element approach is the possibility to consider some deformations as infinitely rigid,
which reduces the dimensions of the dynamic equations and speeds up the computations for optimization.
Furthermore, the flexible multibody approach as implemented in the package SPACAR already provides
some derivatives of kinematic functions to the node locations, which are needed for the computation of
the parameter sensitivities. Finally, the described method for computing the parameter sensitivities of the
performance criteria can straightforwardly be extended toother systems that can be described by the flexible
multibody approach. This approach can describe a wide classof systems including system with infinitely
rigid elements, flexible elements and elements undergoing large rotations.

2 PERFORMANCE CRITERIA AND PARAMETERS

A classic shape of the tube of a Coriolis mass flow meter is shown in figure1(a). The tube is fixed at both
ends and the out-of-plane motion of the tube is measured at the two encircled points. The tube is excited in
its first eigenmode and a flow induces an additional vibrationmode due to the Coriolis-effect. This vibration
mode occurs 90 degrees out of phase with the excited mode and results in a phase-difference between the
motion of the tube at the sensor locations. The phase-difference is proportional to the mass-flow. Figure1(b)
shows the first eigenmode of the tube without flow and the additional flow induced part of the eigenmode

An extensive discussion on the design of a Coriolis mass flow meter can be found in Reference [5]. An
important aspect of the design of a Coriolis mass flow meter isthe shape of the tube. The tube shape is
specified by the dimensions of the cross-section, e.g., the inner and outer diameter of a circular tube, and
the curvature of the tube centerline, e.g., the U-shape. Thedesign of the tube shape affects several quantities
related to the performance of a Coriolis mass flow meter. The most important are:

• The measurement sensitivity, which should be large to reduce the effect of sensor noise on the mea-
sured mass flow.



• The tube’s eigenfrequencies, which should be well separated to reduce the effect of disturbances on
the measurement sensitivity.

• The drop of the pressure between the inlet and outlet of the tube, which should be small.

• The envelope of the tube, which should be small.

These issues can be considered as either objective or constraint for the optimization of the tube shape,
depending on their relative importance. The last issue is directly related to the tube shape and the other issues
depend on the tube shape indirectly. Models are used to quantify those performance criteria for a design of
the tube shape. The effect of the tube shape on the pressure drop is modeled using the Hagen–Poiseuille
equation, which is not elaborated further in this paper. Thepaper focuses on modeling the eigenfrequency
and the measurement sensitivity.

3 MODELLING

A flexible rigid body model is used to quantify the eigenfrequencies and the measurement sensitivity for a
certain choice of the tube shape. The tube shape is specified by two types of shape parameters; the initial
location of the nodal points of the elements and parameters related to the cross-section of the element, e.g.,
the area and the area moment of inertia. The initial nodal locations are denoted byu0

i and the cross-sectional
parameters are denoted byri. These shape parameters and the properties of the fluid and the tube material
are used to formulate the kinematic and dynamic equations ofthe tube elements. The element equations are
added and reduced to a minimal set of degrees of freedom to obtain an unconstrained set of global dynamic
equations. Eigenfrequency analysis yields the eigenfrequencies and eigenmodes, where the latter are used
to compute the measurement sensitivity of the mass flow meter.

This section describes the modeling steps from the element equations to the calculation of the eigenfre-
quency and the measurement sensitivity. After the derivation of the equations for each of these modeling
steps, the computation of the derivative of these equationsto the shape parameters is discussed. The deriva-
tive of the final model equations gives the sensitivity of theeigenfrequency and the measurement sensitivity
to variations of the shape parameters.

3.1 Element kinematics

3.1.1 Model equations

The tube of the mass flow meter is modeled using the tube element that was previously presented in Refer-
ence [7]. The tube element is an extension of the two-node beam element described in Reference [4]. The
position and orientation of each element are described by the nodal coordinatesu =

[

xpT ,λpT ,xqT ,λpT
]T

.
Coordinatesxp andxq are the Cartesian coordinates and coordinatesλp andλq are the Euler parameters
of nodesp andq. In addition to these coordinates, two coordinates relatedto the mass flow are introduced
in Reference [7], but these are not used in this paper, because the mass-flow is assumed to be constant
along the tube. The four Euler parameters (λ = [λ0 . . . λ3]

T ) of each node describe the orientation of the
orthogonal triad of unit vectorseij connected to the node. The unit vectorsepi1 andeqi1 are perpendicular to
the cross-sections, pointing inwards at nodep and outwards at nodeq. The other unit vectorsei2 andei3 are
pointing in the principal directions of the cross-section.The norm the four Euler coordinates of each node
point is unity and thus the four Euler coordinates define three independent coordinates. So, each element
has 12 independent nodal coordinates and six rigid body degrees of freedom. Therefore, six independent
deformation functions are defined, which are formulated such that they are invariant for any rigid-body dis-
placement. The following six deformationsǫ1 . . . ǫ6 are defined

ǫ1 = ǭ1 +
(

2ǭ23 + ǭ3ǭ4 + 2ǭ24 + 2ǭ25 + ǭ5ǭ6 + 2ǭ26
)

/
(

30l0
)

,
ǫ2 = ǭ2 + (−ǭ3ǭ6 + ǭ4ǭ5) /l

0,
ǫ3 = ǭ3 + ǭ2 (ǭ5 + ǭ6) /

(

6l0
)

,
ǫ4 = ǭ4 − ǭ2 (ǭ5 + ǭ6) /

(

6l0
)

,
ǫ5 = ǭ5 − ǭ2 (ǭ3 + ǭ4) /

(

6l0
)

,
ǫ6 = ǭ6 + ǭ2 (ǭ3 + ǭ4) /

(

6l0
)

,

ǭ1 = l − l0,
ǭ2 = l0 (epi3e

q
i2 − e

p
i2e

q
i3) /2,

ǭ3 = −l0elie
p
i3,

ǭ4 = l0elie
q
i3,

ǭ5 = l0elie
p
i2,

ǭ6 = −l0elie
q
i2,

(1)



where the Einstein summation convention is used,l = ‖xp − xq‖ is the actual distance between the nodal
points andeli = (xp

i − xq
i ) /l is the actual unit vector pointing from nodep to nodeq. The initial lengthl0

is defined such thatǫ1 = 0 for the initial nodal coordinatesu0
i . These functions, relating the deformations

to the nodal coordinates, are denoted asǫi = Di (u). For kinematic analysis, the first and second order
derivatives of the expressions forDi (u) with respect toui, denoted as ∂

∂uj
Di and ∂2

∂uj∂uk
Di, are used.

These (lengthy) expressions, which can be found in [4], are not elaborated further in this paper.

3.1.2 Sensitivities

The kinematic functionsDi (u) do not depend on the cross-section parameters and thus the derivatives of
the kinematic functions to these shape parameters are zero.

The derivatives of the kinematic functions to the initial nodal coordinates can be computed using the deriva-
tives of the kinematic functions to the actual nodal coordinates, but these derivatives are not the same,
because the undeformed lengthl0 depends on the initial nodal coordinates, but not on the actual nodal co-
ordinates. Thus, the derivatives of the kinematic functions to the initial nodal coordinates can be computed
from

∂

∂u0
j

Di =
∂

∂uj

Di +
∂

∂l0
Di

∂

∂u0
j

l0, (2)

where the relations for∂
∂uj

Di are described in [4], ∂
∂l0

Di is obtained from the relations forǫ and ¯epsilon

and ∂
∂u0

j

l0 is obtained from the conditionǫ1 = 0 for u0
i , which results in a linear relation inl0.

3.2 Element dynamics

3.2.1 Model equations

The energetic duals of the nodal coordinatesui are the nodal forcesfi, such thatfiδui represents the virtual
work exerted by those forces, where the prefixδ denotes a virtual variation. Similarly, the energetic duals
of the deformationsǫi are the generalized stressesσi, where−σiδǫi represents the virtual work exerted by
those stresses. The equilibrium conditions for each element is formulated as

δui (Mij üj − fi)− δǫiσi = 0, (3)

whereMij is the mass matrix andfi includes the inertial terms that are not depending on the acceleration
of the nodal coordinates, like Coriolis forces. Hereafter,expressions for the nodal forces, the mass matrix
and the internal stresses for the tube element are describedshortly. Those expressions were previously
published in Reference [7] and are an extension of the model for two-node beam element described in
References [6, 4].

The generalized stresses in the flexible tube elements are modeled by the following constitutive relations
for stretching, bending and torsion

σi = Kij

(

ǫj − ǫ0j
)

, (4)

whereǫ0j is the value of the deformationǫj for which the beam is stress free and the nonzero elements of
stiffness matrixKij are

K11 = l0/E/A, K22 = GkxIt/l
03, K33 = K44 = 4EIy/l

03,

K34 = K43 = −2EIy/l
03, K55 = K66 = 4EIz/l

03, K56 = K65 = −2EIz/l
03, (5)

E is the modulus of elasticity of the tube material,G is its shear modulus,A is the area of the tube’s cross-
section,Iy, Iz are the moments of inertia of the tube’s cross-section around the local y- and z-axis,It is the
torsion consant andkx is a shape factor, which is 1 for circular cross-sections. The effect of traverse shear
and the internal pressure on the internal stresses are expected to be small and thus not taken into account in
the constitutive relations.



The mass matrixMij and the inertia force vectorfi that result from the inertia of the tube and the flow are

Mij =
(

ρA+ ρ̃Ã
)

l0
∂

∂ui

µkΦkl

∂

∂uj

µl + 2ρIpl
0LkiLkj , (6)

fi = −
(

ρA+ ρ̃Ã
)

l0
∂

∂ui

µkΦkl

∂2

∂um∂un

µlu̇mu̇n − 4ρIpl
0L̇kiLkmu̇m (7)

2ρ̃ṽÃ
∂

∂ui

µkΦ
′

kl

∂

∂uj

µlu̇j − 2ρ̃ṽ2Ãk̃/l0
∂

∂ui

µkΦ
′′

klµl, (8)

whereρ is the density of the tube material,Ip is the polar moment of inertia,̃ρ is the density of the fluid,
Ã is the area of the tube’s cross-section containing fluid,k̃ is a factor that measures the deviation from a
uniform velocity distribution (1 for a uniform flow distribution and 4/3 for a laminar flow through a circular
cross-section), and furthermore

Φ =
1

420

[

156I3 22I3 54I3 −13I3
22I3 4I3 13I3 −3I3
54I3 13I3 156I3 −22I3
−13I3 −3I3 −22I3 4I3

]

,Φ
′
=

1

60

[

−30I3 6I3 30I3 −6I3
−6I3 O3 6I3 −I3
−30I3 −6I3 30I3 6I3
6I3 I3 −6I3 O3

]

,Φ
′′
=

1

30

[

−36I3 −33I3 36I3 −3I3
−3I3 −4I3 3I3 I3
36I3 3I3 −36I3 33I3
−3I3 I3 3I3 −4I3

]

.

µ{1...3} = x
p
i , µ{4...6} = l

0
e
p
i1, µ{7...9} = x

q
i , µ{10...12} = l

0
e
q
i1, (9)
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p
1
, λ

p
0
, λ

p
3
,−λ

p
2
, }, L{2 11...14} = {−λ

q
1
, λ

q
0
, λ

q
3
,−λ

q
2
, }, (10)

The first term in the mass matrix and force vector account for the mass of the tube and the fluid, which are
assumed to be distributed along the element’s centerline. The second term in the mass matrix and force
vector account for the moment of inertia of the tube materialaround the element’s centerline, which is
lumped at the nodal points. The third term in the force vectoris due to the Coriolis acceleration of the fluid.
The fourth term in the force vector is due to the centripetal acceleration of the flow in the curved sections.

3.2.2 Sensitivities

The derivatives ofKij , Mij and fi to the cross-sectional parameters (A, Ix, Iy, Ip, It, kx, Ã, k̃) can be
obtained by straightforward differentiation of (5), (6) and (8).

The stiffness matrixKij only depends on the initial nodal coordinates via the initial length l0. Thus,
∂

∂u0
m
Kij can be computed from the chain rule for differentiation using ∂

∂l0
Kij

∂
∂u0

m
l0 that can be computed

straightforwardly from (5) and ∂
∂u0

m
l0 that was previously used for the kinematic computations.

The mass matrixMij and the inertia force vectorfi depend on the nodal coordinates vial0, Lij , µi and
derivatives ofµi. The derivatives ∂

∂u0
m
l0 were previously used for the kinematic computations.Lij is linear

in the nodal Euler parameters and its derivative to the nodalcoordinates can thus be computed straightfor-
wardly. The derivatives ofµi to the nodal coordinates can be obtained from the derivatives of l0, which
were previously used, the derivatives ofxp

i andxq
i , which are unity for the respective nodal coordinates,

and the derivatives ofepi1 andeqi1, which can be computed from the expression for rotation of these vectors,
which are quadratic in the Euler parameters

3.3 Equations of motion

3.3.1 Model equations

The equations of motion are formulated in terms of a set of independent coordinatesqi, which are referred
to as the degrees of freedom (DOFs). Given the fixed nodal coordinates and rigid deformations of the
system, which are both prescribed zero, those independent coordinate are a subset ofui and ǫi that are
exactly sufficient to define all otherui andǫi via the kinematic relationsDi (u). In the considered problem,
the deformations 2...6 of all elements, except for the last element, are used as degree of freedom. The first
deformation mode is not taken into account, because the elements are considered stiff in the elongation
direction, and the corresponding first deformation is prescribed zero. The six deformations of the last
element can be computed from the deformations of the other elements, because the elements form a loop



with fixed ends, and thus these deformations are not includedin the set of DOFs. The relations between all
coordinates and the DOFs are expressed by,

ui = F
(u)
i (qi), ǫi = F

(ǫ)
i (qi), (11)

whereF (u)
i andF

(ǫ)
i are geometric transfer functions. The first and second orderderivatives of those

transfer functions with respect toqi, expressed by∂
∂qj

Fi and ∂2

∂qj∂qk
Fi, are computed from the derivatives

of Di (u) with respect toui as derived in Reference [3] and implemented in the multibody systems dynamic
package SPACAR. These (lengthy) expressions are not elaborated here.

Using the derivatives of the geometric transfer functions and the principle of virtual power (see Reference
[3]), the dynamic equations of the system can be expressed in terms of the DOFs as

∂

∂qi
F

(x)
k M

(x)
kl

∂

∂qj
F

(x)
l q̈j =

∂

∂qi
F

(x)
k

(

f
(x)
k −M

(x)
kl

∂2

∂qm∂qj
F

(x)
l q̇mq̇j

)

−
∂

∂qi
F

(ǫ)
k σ

(ǫ)
k , (12)

whereM (x)
ij is the global mass matrix,f (x)

j is the global force vector, including inertia forces, andσ
(ǫ)
j is

the global stress vector. The global mass matrix, force vector and stress vector are obtained by assembling
those of the individual elements. Assembly of the constitutive element equations ((4)) results in the global
stiffness matrixK(ǫ)

ij that relates the global stress vector to the global deformation vector.

In the considered problem, small vibrational motions with respect to a static nominal configuration are
considered. For frequency analysis, the equations of motion are linearized using the method described in
[2]. The resulting linearized relations contain dynamic and geometric stiffening matrices with elements
proportional to the square of the fluid velocity. Because only small flows are considered, these matrices are
small and neglected in further analysis. The remaining linear equations of motion are

M
(q)
ij δq̈j + C

(q)
ij δq̇j +K

(q)
ij δqj = Oi, (13)

whereM (q)
ij is the mass matrix,C(q)

ij the velocity sensitive matrix andK(q)
ij is the structural stiffness matrix.

These matrices are obtained from

M
(q)
ij =

∂

∂qi
F

(x)
k M

(x)
kl

∂

∂qj
F

(x)
l , C

(q)
ij =

∂

∂qi
F

(x)
k

∂

∂u̇l

fk
∂

∂qj
F

(x)
l , K

(q)
ij =

∂

∂qi
F

(ǫ)
k K

(ǫ)
kl

∂

∂qj
F

(ǫ)
l . (14)

The mass and stiffness matrix are symmetric. The velocity sensitive matrix is skew symmetric and its
elements are linear in the flow velocitỹv.

3.3.2 Sensitivity

The sensitivity of the dynamic matrices to the shape parameters pn can be computed straightforwardly
from the product rule for differentiation using the parameter derivatives of the dynamic matrices∂

∂pn
M

(x)
kl ,

∂2

∂ql∂pn
fk and ∂

∂pn
K

(ǫ)
kl , which are obtained from assembling the derivatives of the element matrices, and the

derivatives of the geometric transfer functions∂
2

∂qi∂pn
F

(x)
k and ∂2

∂qi∂pn
F

(ǫ)
k . The derivatives of the geometric

transfer functions do not depend on the cross-sectional parameters and thus ∂2

∂qi∂rj
F

(ǫ)
k = Okij , which

simplifies the computations of the derivatives of the dynamic matrices to the cross-sectional parameters.
The derivatives of ∂

∂qi
F

(x)
k to the nodal coordinates are derived from the expressions tocompute ∂

∂qi
F

(x)
k

from ∂
∂qi

Di and the previously described expressions for the derivatives of ∂
∂qi

Di to the nodal coordinates.
The expression are not elaborated further in this paper.

3.4 Eigenfrequencies and eigenmodes

3.4.1 Model equations

The eigenvalue and eigenvector of the dynamic equations (13) are the solutions of
(

ω2M
(q)
ij + ωC

(q)
ij +K

(q)
ij

)

v
(q)
j = Oi, (15)



where only the solution for the lowest eigenvalueω is considered. The eigenvectorv(q)j denotes the first
resonance vibration mode of the system in terms of the DOFs, which is scaled such that

v
(q)
i M

(q)
ij v

(q)
j = 1. (16)

Without fluid flow (̃v = 0), the velocity sensitive matrixC(q)
ij is zero and the eigenmode is real. For nonzero

fluid flow, C(q)
ij is nonzero and the eigenmode becomes complex, which means that the degrees of freedom

do not vibrate in the same phase. The mass flow is measured fromthe phase-difference of the vibration
mode at the two node points corresponding to the sensor locations. The vibration modev(q)i , which is
expressed in terms of the the DOFsq, is converted to the vibration mode in terms of the nodal coordinates
u by the following transformation

v
(x)
j =

∂

∂qi
F

(x)
j v

(q)
i . (17)

3.4.2 Sensitivity

The parameter derivatives of the eigenvalue and eigenvector in terms of the DOFs are computed using the
method described in Reference [1], which is suited for non-proportionally damped systems. This method
computes the parameter derivatives of the eigenvalue and eigenvector from the solution of the eigenvalue
problem, the dynamic matricesM (q)

ij , C(q)
ij andK(q)

ij and the parameter derivatives of these dynamic matri-
ces. The scaling of the eigenvalues in (16) differs from the scaling used in Reference [1] and therefore the
method has been modified slightly.

The parameter sensitivity of the vibration mode in terms of the nodal coordinates can be computed from
differentiation of (17) using the previously derived parameter derivative of the vibration mode in terms of
the DOFs and the parameter derivative of∂

∂qi
F

(ǫ)
k , which was previously used for the computation of the

parameter derivatives of the dynamic matrices.

3.5 Measurement Sensitivity

3.5.1 Model equations

The mass flow is measured from the phase-difference of the vibration mode of the tube at two sensor
locations. This phase difference is obtained from the modelby subtracting the complex angles of the com-
ponents of the eigenmodev(x)j corresponding to the nodes at the sensor locations. The complex angles are
assumed to be small, such that the phase difference between the nodal pointsn andm can be approximated
by

θnm =
I
(

v
(x)
n

)

R
(

v
(x)
n

) −
I
(

v
(x)
m

)

R
(

v
(x)
m

) . (18)

The phase differenceθnm is proportional to the mass flow̃v. The measurement sensitivityz is the phase
difference per unit mass flow, which can be computed from

z =
θnm

Ãρ̃ṽ
. (19)

3.5.2 Sensitivity

The sensitivity of the phase differenceθnm to parameterpo can be computed from differentiation of (18),
resulting in

∂

∂po
θnm =

I
(

∂
∂po

v
(x)
n

)

R
(

v
(x)
n

) −
I
(

v
(x)
n

)

R
(

v
(x)
n

)

2
R

(

∂

∂po
v(x)n

)

−
I
(

∂
∂po

v
(x)
m

)

R
(

v
(x)
m

) +
I
(

v
(x)
m

)

R
(

v
(x)
m

)

2
R

(

∂

∂po
v(x)m

)

, (20)

where the derivation of∂
∂pn

v
(x)
n has been discussed before.
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Figure 2. Results from sensitivity analysis

Finally, the parameter sensitivity ofz can be computed from differentiation of (19) using the previously
derived expression for∂

∂po
θnm.

4 RESULTS

4.1 Modelling

The model is verified by computing the eigenfrequency and sensitivity of the U-shaped mass flow meter
described in Reference [8] and comparing the results to References [8] and [7]. The U-shaped tube is
depicted in Figure1(a). The tube is made of steel withE = 208 GPa,G = 80 GPa andρ = 8027 kg/m3.
The fluid is water with̃ρ = 1000 kg/m3. A radius ofa =150 mm is taken for the semicircular part and the
length of the straight sections is set tob =450 mm. The cross-section of the tube is circular with an outer
diameterr of 50.8 mm and an inner diameter of 47.2 mm. The two straight sections are subdivided into two
elements and the semicircular part is subdivided into 12 pre-curved elements.

The model presented in the previous section yields an eigenfrequency ofω = 520 rad/s and a sensitivity of

z = 9.48·10−4 rad s/kg, which can also be rewritten asω = 0.177
√

EI(ρA+ ρ̃Ã)/a2 andz = 1.82·10−6ω

s2/kg. These values are the same as those found in Reference [7] for low flows.

4.2 Sensitivity

The proposed method to compute the parameter sensitivitiesis verified by computing some of the param-
eter sensitivities for the U-shaped tube and comparing themto the parameter derivatives obtained from



(a) Initial shape (b) Final shape

Figure 3. Results from optimization

numerical differences. The parameter sensitivities of theeigenfrequency and the measurement sensitivity
are computed. The sensitivities are computed for the outer radius of the tube, which is a cross-sectional
parameter affecting both the inertia and stiffness of the tube material. Moreover, the sensitivities are com-
puted for the nodal point at the centerline of the U, which is moved in the y-direction. The orientation of
the tube at the nodal points is kept constant. Figure2 shows the result of the sensitivity calculations. The
outer radius is varied over 9 values between the original radius and a 10% larger radius. The nodal point
is varied over 9 values between 90% and 110% of the original distance from the fixed ends. The figures
show the variation of the performance criteria and the sensitivity of those criteria to the shape parameters.
Moreover, an approximate derivative, indicated by crosses, is computed from the division of difference be-
tween the next and the previous value of the performance criterion and the difference between the next and
previous value of the shape parameter. Note that the sensitivities match the approximate derivatives closely,
the difference reduces even more if the grid for computing the approximate derivatives is refined.

4.3 Optimization

The developed model was used for the actual optimization of the tube shape of a Coriolis mass flow meter.
Details on the optimization are published in Reference [9]. Figure3 shows the initial U-shaped tube and
the optimized tube shape. The sensitivity of the final shape is 68 times the sensitivity of the initial shape.
Most of this improvement is the result of the increased length of the tube, which could not be increased
further due to constraints on the envelope and the allowed drop of pressure along the tube. A small part of
the improvement results from the change of the shape.

The parameter sensitivities of the performance criteria were not used for obtaining the presented results.
Future optimizations might benefit from the availability ofthese parameter sensitivities. The sensitivities
have already been used to verify the robustness of the obtained design and to analyze the effect of the
cross-sectional parameters on the various constraints.

5 CONCLUSIONS

Modeling a Coriolis mass flow meter for shape optimization isconsidered in this paper. The model-based
optimization should enhance the performance of a Coriolis mass flow sensor by optimizing the shape of the
tube. Typical performance criteria for the optimization are the measurement sensitivity and the separation
of the eigenfrequencies. The tube shape is specified by the dimensions of the cross-section and the curvature
of the tube centerline.

The dynamics of the meter’s tube are modeled using a flexible multibody approach. An existing beam



element is extended to model the distributed flexibility andinertia of the fluid-conveying tube. The element
equations are assembled, reduced to a minimal set of degreesof freedom and linearized. Modal analysis of
the linearized dynamic equations yields the eigenfrequency and measurement sensitivity of the tube.

The model is also used to derive the parameter sensitivitiesof the performance criteria to the shape pa-
rameters. The dynamic equations of the model are differentiated to the shape parameters and the method
presented in Reference [1] is used to derive the parameter sensitivities of the eigenvalue and measurement
sensitivity. The parameter sensitivities are useful for the shape optimization and they can also be used to
analyze the sensitivity and the robustness of the performance criteria to changes of the shape parameters.

The advantage of using the flexible multibody approach over aconventional linear finite element approach
is the possibility to consider some deformations as infinitely rigid, which reduces the dimensions of the
dynamic equations and speeds up the computations for optimization. Furthermore, the flexible multibody
approach implemented in the package SPACAR provides derivatives of the element deformations to nodal
coordinates which are used for the sensitivity analysis.

The model is validated by comparison of the resulting eigenfrequency and measurement sensitivity to the
results for a U-shaped Coriolis mass flow meter from Reference [8]. The U-shaped mass flow meter is also
used to validate the parameter sensitivities by comparisonto the values obtained from finite differences.
Furthermore, preliminary results from the optimization ofthe tube shape using the presented model are
presented. So far, the parameter sensitivities have not been used for optimization. Future research will show
the usability of the parameter sensitives for the optimization.

The proposed method for computing the parameter sensitivities of dynamic properties can straightforwardly
be extended to other systems that can be described by the flexible multibody approach. This approach can
describe a wide class of systems including system with infinitely rigid elements, flexible elements and
elements undergoing large rotations. Application of the proposed method to the optimization of to other
(multibody) systems will be subject of future research.
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