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ABSTRACT

Modeling a Coriolis mass-flow meter for shape optimizatisrcdnsidered. The optimization should en-
hance the performance of the meter by improving severabpaence criteria like the measurement sensi-
tivity. These performance criteria are improved by optimigoarameters that define the shape of the tube in
the mass-flow meter. A dynamic model is used to obtain thepadnce criteria for a set of shape parame-
ters. The tube is modeled using a flexible multibody apprpatiere an existing beam-element is modified
to include the effect of the fluid flow. Besides the calculatdd the performance criteria, the model is used
to calculate the sensitivities of the performance critevithe shape parameters, because those sensitivities
are useful for the optimization. Results from modeling tleefgrmance criteria and the parameter sensi-
tivities are shown for a U-shaped Coriolis mass-flow meténalfy, some preliminary results from shape
optimization are demonstrated.

Keywords: Flexible Multibody Dynamics, Fluid-Conveying Pipes, Mbdaalysis, Sensitivity Analysis,
Coriolis Mass-Flow Meter

1 INTRODUCTION

Coriolis mass flow meters measure the mass flow of a fluid frawitbration of a tube conveying that fluid.
The tube is fixed at both ends and excited in one of its eigeles104 mass flow through the tube causes
parts of the tube to vibrate out of phase resulting in a waeeriotion. The motion of the tube is measured
at two locations and the phase difference between the matitimose points is proportional to the mass
flow. The phase difference per unit of flow is referred to asmteasurement sensitivity of the mass flow
meter. Measuring the mass flow from the Coriolis effect isaad&geous, because the measurement is not
affected by medium properties like density, viscosity aadtitonductivity.

Several applications require the measurement of mass fleuitla as 1 g/h, leading to a need for highly
sensitive mass flow meters. Coriolis mass flow meters witHIgoizes are needed to measure such small
flows, because the measurement sensitivity increases latinverse of the size of the tube. However,
scaling the tube dimensions does not increase the measutrsaerssitivity by the same factor the flow de-
creases and thus it is hard to measure small flows accuritalyy different tube shapes for Coriolis mass
flow meters are claimed in patents and publications to madrtie measurement sensitivity, though the
design of the tube shapes is mostly based on intuition. lagmment in terms of measurement sensitivity is
expected from designing the tube shape using rigorous rimadeld optimization. Model-based optimiza-
tion requires the formulation of appropriate performandtiga, the quantification of those performance
criteria for a tube shape using a dynamic model and the afgitof a suitable optimization procedure to
find the optimal tube shape. The focus of this paper is on ntagihe dynamic properties for a given tube
shape and on predicting the change of the dynamic properitleshe tube shape. The relevant performance
criteria and the optimization are outlined only briefly.

In Referenced] it is shown that the measurement sensitivity of a Coriolasmflow meter can be obtained
from a dynamic model that describes the inertia and stiffipesperties of the tube and the inertia properties
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Figure 1. Typical shape of the tube of a Coriolis mass flow meter

of the fluid. The fluid is considered incompressible and wiscand its inertia properties are modeled as
a string moving along the tube centerline. A similar apphoa@as used to model the fluid flow through
a beam element in the multibody systems dynamic packa&ge &R, which was published previously in
ReferenceT]. In this paper, those tube elements are used to model tlierpemce of a Coriolis mass
flow meter for shape optimization. The tube shape is desttilyethe geometric properties of the cross-
section of the elements and the position and orientatiohehbdal points. Besides the calculation of the
performance criteria for these shape parameters, the risagstd to compute the sensitivity (derivatives) of
the performance criteria to the shape parameters. The td@nf using the flexible multibody approach
over a linear finite element approach is the possibility tosider some deformations as infinitely rigid,
which reduces the dimensions of the dynamic equations ameldspup the computations for optimization.
Furthermore, the flexible multibody approach as implengtinethe package BACAR already provides
some derivatives of kinematic functions to the node locetjiovhich are needed for the computation of
the parameter sensitivities. Finally, the described neflbbo computing the parameter sensitivities of the
performance criteria can straightforwardly be extendemther systems that can be described by the flexible
multibody approach. This approach can describe a wide ofasgstems including system with infinitely
rigid elements, flexible elements and elements undergaimyg Irotations.

2 PERFORMANCE CRITERIA AND PARAMETERS

A classic shape of the tube of a Coriolis mass flow meter is shiovigure1(a) The tube is fixed at both
ends and the out-of-plane motion of the tube is measurece aivitencircled points. The tube is excited in
its first eigenmode and a flow induces an additional vibratimae due to the Coriolis-effect. This vibration
mode occurs 90 degrees out of phase with the excited modesantisrin a phase-difference between the
motion of the tube at the sensor locations. The phase-€liftaris proportional to the mass-flow. Figafe)
shows the first eigenmode of the tube without flow and the emtdit flow induced part of the eigenmode

An extensive discussion on the design of a Coriolis mass fl@iencan be found in Referencd.[ An
important aspect of the design of a Coriolis mass flow meténasshape of the tube. The tube shape is
specified by the dimensions of the cross-section, e.g.nteriand outer diameter of a circular tube, and
the curvature of the tube centerline, e.g., the U-shaped&hbign of the tube shape affects several quantities
related to the performance of a Coriolis mass flow meter. Tostimportant are:

e The measurement sensitivity, which should be large to redue effect of sensor noise on the mea-
sured mass flow.



e The tube’s eigenfrequencies, which should be well sepétateeduce the effect of disturbances on
the measurement sensitivity.

e The drop of the pressure between the inlet and outlet of the, tvhich should be small.
e The envelope of the tube, which should be small.

These issues can be considered as either objective or aimdtr the optimization of the tube shape,
depending on their relative importance. The lastissueéxty related to the tube shape and the other issues
depend on the tube shape indirectly. Models are used toifyutrgse performance criteria for a design of
the tube shape. The effect of the tube shape on the presspeésdmodeled using the Hagen—Poiseuille
equation, which is not elaborated further in this paper. péger focuses on modeling the eigenfrequency
and the measurement sensitivity.

3 MODELLING

A flexible rigid body model is used to quantify the eigenfreqaies and the measurement sensitivity for a
certain choice of the tube shape. The tube shape is specifigdottypes of shape parameters; the initial
location of the nodal points of the elements and paramegéaited to the cross-section of the element, e.g.,
the area and the area moment of inertia. The initial nodaltions are denoted by and the cross-sectional
parameters are denoted by These shape parameters and the properties of the fluid ardité material

are used to formulate the kinematic and dynamic equatiotteedfibe elements. The element equations are
added and reduced to a minimal set of degrees of freedomamadit unconstrained set of global dynamic
equations. Eigenfrequency analysis yields the eigenéecjes and eigenmodes, where the latter are used
to compute the measurement sensitivity of the mass flow meter

This section describes the modeling steps from the elenwrdtions to the calculation of the eigenfre-
quency and the measurement sensitivity. After the dedwadif the equations for each of these modeling
steps, the computation of the derivative of these equatmtise shape parameters is discussed. The deriva-
tive of the final model equations gives the sensitivity of¢éigenfrequency and the measurement sensitivity
to variations of the shape parameters.

3.1 Element kinematics
3.1.1 Modéd equations

The tube of the mass flow meter is modeled using the tube eleimarwas previously presented in Refer-
ence [/]. The tube element is an extension of the two-node beam eledescribed in Referencd][ The
position and orientation of each element are describedégdilal coordinates = [z, A*T, @1, APT] r
Coordinatese? andx? are the Cartesian coordinates and coordinateand A? are the Euler parameters
of nodesp andq. In addition to these coordinates, two coordinates relaie¢tde mass flow are introduced
in Reference 7], but these are not used in this paper, because the masssflassimed to be constant
along the tube. The four Euler parameteXs=£ [\g ... Ag]T) of each node describe the orientation of the
orthogonal triad of unit vectors,; connected to the node. The unit vectefsande’, are perpendicular to
the cross-sections, pointing inwards at npded outwards at nodge The other unit vectors;, ande;3 are
pointing in the principal directions of the cross-sectidime norm the four Euler coordinates of each node
point is unity and thus the four Euler coordinates definedlinelependent coordinates. So, each element
has 12 independent nodal coordinates and six rigid bodyedsguf freedom. Therefore, six independent
deformation functions are defined, which are formulatedhghat they are invariant for any rigid-body dis-
placement. The following six deformations. . . ¢ are defined

€1 =& + (26 + €364 + 265 + 262 + s +263) / (300°), & =1-1°,

€ =& + (—€36 + E455) /1 & =10 (ejzel, —erel) /2,
€3 = €3 + €2 (€5 + 66 6[0) €3 = —loele i35
s 0 _ 00,4 1)
€4 = €4 — €3 (65 + 66) Gl ) s €4 =1 €;€;s,
€5 = €5 — €2 (gg + 64) (6[0) s €5 = loeéefz,
€6 =& + € (€3 + &) / (61°), &6 = —1lel,,



where the Einstein summation convention is uged, ||x? — x?]| is the actual distance between the nodal
points ande! = (2! — z) /1 is the actual unit vector pointing from nogeto nodeg. The initial length/°

is defined such that; = 0 for the initial nodal coordinates?. These functions, relating the deformations
to the nodal coordinates, are denotedtas= D, (u). For kinematic analysis, the first and second order
derivatives of the expressions fér; (u) with respect tou;, denoted a;TD and 5, 0ur a -D;, are used.
These (lengthy) expressions, which can be foundjndre not elaborated further in this paper

3.1.2 Sensitivities

The kinematic function®; (v) do not depend on the cross-section parameters and thusrihatides of
the kinematic functions to these shape parameters are zero.

The derivatives of the kinematic functions to the initiatlabcoordinates can be computed using the deriva-
tives of the kinematic functions to the actual nodal coaaths, but these derivatives are not the same,
because the undeformed lendgthdepends on the initial nodal coordinates, but not on theshaindal co-

ordinates. Thus, the derivatives of the kinematic funcitmthe initial nodal coordinates can be computed

from 5 5 5 5
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where the relations fob@D- are described ird], azoD is obtained from the relations ferandepsilon
and l0 is obtained from the condition = 0 for «?, which results in a linear relation ifi.

3.2 Element dynamics
3.21 Modd equations

The energetic duals of the nodal coordinatgare the nodal forceg;, such thatf;du; represents the virtual
work exerted by those forces, where the préfitenotes a virtual variation. Similarly, the energetic dual
of the deformations; are the generalized stressgswhere—o;d¢; represents the virtual work exerted by
those stresses. The equilibrium conditions for each eleiméormulated as

du; (Myjiiy — f;) — b0 = 0, 3

whereM;; is the mass matrix ang} includes the inertial terms that are not depending on thelexation

of the nodal coordinates, like Coriolis forces. Hereaftapressions for the nodal forces, the mass matrix
and the internal stresses for the tube element are desctmtly. Those expressions were previously
published in Referencer] and are an extension of the model for two-node beam elenmestritbed in
Referencesd, 4].

The generalized stresses in the flexible tube elements adelatbby the following constitutive relations
for stretching, bending and torsion
0i =K (¢j — €}) 4)

wheree] is the value of the deformatiory for which the beam is stress free and the nonzero elements of
stiffness matrixi;; are

Ky, =1°/E/A, Koo = Gk, 1, /1°3, K3z = Ky = 4F1, /1%,
K3y = K43 = —2E1,/1"%, Kss = Kgg = 4E1,/1°%, Ksg = Kgs = —2E1,/1°%,  (5)

E is the modulus of elasticity of the tube materi@ljs its shear modulusi is the area of the tube’s cross-
section,/,, I are the moments of inertia of the tube’s cross-section arthm local y- and z-axidy is the
torsion consant ankl, is a shape factor, which is 1 for circular cross-sections &ffiect of traverse shear
and the internal pressure on the internal stresses areteddede small and thus not taken into account in
the constitutive relations.



The mass matrid/;; and the inertia force vectgf; that result from the inertia of the tube and the flow are
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wherep is the density of the tube materidl, is the polar moment of inertig is the density of the fluid,

A is the area of the tube’s cross-section containing flkigs a factor that measures the deviation from a
uniform velocity distribution (1 for a uniform flow distrittion and 4/3 for a laminar flow through a circular
cross-section), and furthermore
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The first term in the mass matrix and force vector accountifembass of the tube and the fluid, which are
assumed to be distributed along the element’s centerlifme sEcond term in the mass matrix and force
vector account for the moment of inertia of the tube mateialind the element’s centerline, which is
lumped at the nodal points. The third term in the force veistdue to the Coriolis acceleration of the fluid.
The fourth term in the force vector is due to the centripetakbteration of the flow in the curved sections.

3.2.2 Sensitivities

The derivatives of;;, M;; and f; to the cross-sectional parameters, (,, I, I, I, k., A, k) can be
obtained by straightforward differentiation &)( (6) and g).

The stiffness matrixi;; only depends on the initial nodal coordir]ates vifa the ihieagth [°. Thus,
BLOKZ-]- can be computed from the chain rule for differentiation Q%Kij a%lo that can be computed

The mass matri¥//;; and the inertia force vectof; depend on the nodal coordinates ¥iaL;;, x; and
derivatives ofu;. The derlvat|vesa—l0 were previously used for the kinematic computatiabg.is linear

in the nodal Euler parameters and its derivative to the nooiaidinates can thus be computed straightfor-
wardly. The derivatives ofi; to the nodal coordinates can be obtained from the derivaté’, which
were previously used, the derivativesadf and 2], which are unity for the respective nodal coordinates,
and the derivatives of?, andey,, which can be computed from the expression for rotation @s¢hvectors,
which are quadratic in the Euler parameters

3.3 Equations of motion
3.3.1 Mode equations

The equations of motion are formulated in terms of a set aéethdent coordinates, which are referred

to as the degrees of freedom (DOFs). Given the fixed nodaldawtes and rigid deformations of the
system, which are both prescribed zero, those independentioate are a subset of ande¢; that are
exactly sufficient to define all other; ande; via the kinematic relation®; (u). In the considered problem,
the deformations 2...6 of all elements, except for the lEshent, are used as degree of freedom. The first
deformation mode is not taken into account, because theeelsnare considered stiff in the elongation
direction, and the corresponding first deformation is mibed zero. The six deformations of the last
element can be computed from the deformations of the otleenestts, because the elements form a loop



with fixed ends, and thus these deformations are not includtgk set of DOFs. The relations between all
coordinates and the DOFs are expressed by,

= F"q), & = F\(q), (11)

where F; (u) and]-“ 9 are geometric transfer functions. The first and second atdevatives of those
transfer functions with respect tp, expressed bﬁ]—" and +%— a4, aq F;, are computed from the derivatives

of D; (u) with respect ta,; as derived in Referencé][and implemented in the multibody systems dynamic
package BACAR. These (lengthy) expressions are not elaborated here.

Using the derivatives of the geometric transfer functiond #he principle of virtual power (see Reference
[3]), the dynamic equations of the system can be expressethiis & the DOFs as

0 (@), (x) O
81]:( kl)a

Fdy = BTIZ-J:’E < K ‘gl)aqmaqul( qm%’) - @Fzg oY, (12

WhereM("L) is the global mass matmf(*) is the global force vector, including inertia forces, afﬁ is
the global stress vector. The global mass matrix, forceovemnid stress vector are obtained by assembling

those of the individual elements. Assembly of the constiéuiélement equations4)) results in the global
stiffness matrixi’ Z(;) that relates the global stress vector to the global defoomagctor.

In the considered problem, small vibrational motions wiglsgect to a static nominal configuration are
considered. For frequency analysis, the equations of matie linearized using the method described in
[2]. The resulting linearized relations contain dynamic aedrgetric stiffening matrices with elements
proportional to the square of the fluid velocity. Because enhall flows are considered, these matrices are
small and neglected in further analysis. The remaininglirguations of motion are

Mi(j”&jj + Cff)éq'j + Kff)5qj =0, (13)

WhereMi(;’) is the mass matri>Ci(J‘?) the velocity sensitive matrix anﬁi(;?) is the structural stiffness matrix.
These matrices are obtained from

0 0 0w D, 0 ) g O 0
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The mass and stiffness matrix are symmetric. The velocihgiiee matrix is skew symmetric and its
elements are linear in the flow velocity

3.3.2 Sensitivity

The sensitivity of the dynamic matrices to the shape pararspf, can be computed straightforwardly
from the product rule for differentiation using the paraeneterivatives of the dynamic matricg@#M ,Ef)

(')qlap fr and kl ), which are obtained from assembling the derivatives of kment matrices, and the
derivatives of the geometric transfer functlofhé’ﬁ]-' =) and aqaa Fy () The derivatives of the geometric

transfer functions do not depend on the cross-sectionalnpaters and thu%m]:ke) = Oyqj;, Which
simplifies the computations of the derivatives of the dyramatrices to the cross-sectional parameters.
The derivatives ofi}'(z) to the nodal coordinates are derived from the expressiouer‘ﬂputeaa J—'(I)

from 5 D and the preV|oust described expressions for the dere/amf .- Di to the nodal coordinates.
The expressmn are not elaborated further in this paper.

3.4 Eigenfrequencies and eigenmodes
34.1 Modéd egquations
The eigenvalue and eigenvector of the dynamic equatib8)safe the solutions of

(wQMiff) +wC +Kf]‘.’>) v =0, (15)



where only the solution for the lowest eigenvalues considered. The eigenvectof) denotes the first
resonance vibration mode of the system in terms of the DORghwis scaled such that

v MDD = 1, (16)

Without fluid flow (v = 0), the velocity sensitive matri@éf) is zero and the eigenmode is real. For nonzero

fluid flow, Cff) is nonzero and the eigenmode becomes complex, which meatrthéhdegrees of freedom
do not vibrate in the same phase. The mass flow is measuredtfi@mphase-difference of the vibration
mode at the two node points corresponding to the sensoridosat The vibration mod®§Q), which is
expressed in terms of the the DO#;9s converted to the vibration mode in terms of the nodal domates
u by the following transformation

@ _ 9 (@) (@

3.4.2 Sensitivity

The parameter derivatives of the eigenvalue and eigenviecterms of the DOFs are computed using the
method described in ReferencH,[which is suited for non-proportionally damped systemhbisTmethod
computes the parameter derivatives of the eigenvalue gahegctor from the solution of the eigenvalue
problem, the dynamic matriceg’, ¢ and K’ and the parameter derivatives of these dynamic matri-
ces. The scaling of the eigenvalues 1) differs from the scaling used in Referendg énd therefore the
method has been modified slightly.

The parameter sensitivity of the vibration mode in termshef hodal coordinates can be computed from
differentiation of (L7) using the previously derived parameter derivative of tiiseation mode in terms of

the DOFs and the parameter derivative;)%f]-"(e), which was previously used for the computation of the
parameter derivatives of the dynamic matrices.

3.5 Measurement Sensitivity
3.5.1 Modéd equations

The mass flow is measured from the phase-difference of thatioh mode of the tube at two sensor
locations. This phase difference is obtained from the mbgelubtracting the complex angles of the com-
ponents of the eigenmodéz) corresponding to the nodes at the sensor locations. Thelerrapgles are

assumed to be small, such that the phase difference bethvee@odal points andm can be approximated

by
_T() () "

O, = — .
The phase differenc®,,,, is proportional to the mass flow. The measurement sensitivityis the phase
difference per unit mass flow, which can be computed from

z= 0~n~”i . (19)
Apo

352 Sensitivity

The sensitivity of the phase differenég,, to parametep, can be computed from differentiation dfg),
resulting in

o T (6%)”’(?)) B I(“g)) ( 9 (m)) M

" T R () R ()2 o

(i) z () R(av“))’ (20)

R(D)  R(D) \om"

where the derivation o%vff) has been discussed before.
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Figure 2. Results from sensitivity analysis

Finally, the parameter sensitivity af can be computed from differentiation af9) using the previously
derived expression fog%enm.

4 RESULTS
4.1 Modelling

The model is verified by computing the eigenfrequency angiteity of the U-shaped mass flow meter
described in Referenca][and comparing the results to Referenc8sdnd [7]. The U-shaped tube is
depicted in Figurel(a) The tube is made of steel with = 208 GPaG = 80 GPa ang = 8027 kg/n3.
The fluid is water withp = 1000 kg/ni. A radius ofa =150 mm is taken for the semicircular part and the
length of the straight sections is setite=450 mm. The cross-section of the tube is circular with anroute
diameter of 50.8 mm and an inner diameter of 47.2 mm. The two straigttimes are subdivided into two
elements and the semicircular part is subdivided into 1Zpreed elements.

The model presented in the previous section yields an eiggméncy ofu = 520 rad/s and a sensitivity of

z = 9.48-10~* rad s/kg, which can also be rewrittenvas= 0.1771/ EI(pA + pA)/a? andz = 1.82-10 5w
g?/kg. These values are the same as those found in Refergrfoe fow flows.

4.2 Sensitivity

The proposed method to compute the parameter sensitiistieified by computing some of the param-
eter sensitivities for the U-shaped tube and comparing tteethe parameter derivatives obtained from
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Figure 3. Results from optimization

numerical differences. The parameter sensitivities ofellgenfrequency and the measurement sensitivity
are computed. The sensitivities are computed for the oat#ius of the tube, which is a cross-sectional
parameter affecting both the inertia and stiffness of tie tonaterial. Moreover, the sensitivities are com-
puted for the nodal point at the centerline of the U, which @ved in the y-direction. The orientation of
the tube at the nodal points is kept constant. Figusbows the result of the sensitivity calculations. The
outer radius is varied over 9 values between the originalsagind a 10% larger radius. The nodal point
is varied over 9 values between 90% and 110% of the origirstadce from the fixed ends. The figures
show the variation of the performance criteria and the $igitgiof those criteria to the shape parameters.
Moreover, an approximate derivative, indicated by crgssesomputed from the division of difference be-
tween the next and the previous value of the performanceriont and the difference between the next and
previous value of the shape parameter. Note that the sgtisgtimatch the approximate derivatives closely,
the difference reduces even more if the grid for computirgaibproximate derivatives is refined.

4.3 Optimization

The developed model was used for the actual optimizatiohefube shape of a Coriolis mass flow meter.
Details on the optimization are published in Refererfije Figure 3 shows the initial U-shaped tube and
the optimized tube shape. The sensitivity of the final sha@8itimes the sensitivity of the initial shape.
Most of this improvement is the result of the increased lergftthe tube, which could not be increased
further due to constraints on the envelope and the alloweg df pressure along the tube. A small part of
the improvement results from the change of the shape.

The parameter sensitivities of the performance criterieewmt used for obtaining the presented results.
Future optimizations might benefit from the availabilitytbBse parameter sensitivities. The sensitivities
have already been used to verify the robustness of the edtalesign and to analyze the effect of the
cross-sectional parameters on the various constraints.

5 CONCLUSIONS

Modeling a Coriolis mass flow meter for shape optimizationdasidered in this paper. The model-based
optimization should enhance the performance of a Coriotissiilow sensor by optimizing the shape of the
tube. Typical performance criteria for the optimizatioe #ie measurement sensitivity and the separation
of the eigenfrequencies. The tube shape is specified bythendiions of the cross-section and the curvature
of the tube centerline.

The dynamics of the meter’s tube are modeled using a flexihlgibndy approach. An existing beam



element is extended to model the distributed flexibility arettia of the fluid-conveying tube. The element
equations are assembled, reduced to a minimal set of degfrreedom and linearized. Modal analysis of
the linearized dynamic equations yields the eigenfrequand measurement sensitivity of the tube.

The model is also used to derive the parameter sensitivifi¢gse performance criteria to the shape pa-
rameters. The dynamic equations of the model are diffextatdito the shape parameters and the method
presented in Referenc#][is used to derive the parameter sensitivities of the eigeilevand measurement
sensitivity. The parameter sensitivities are useful fer $hape optimization and they can also be used to
analyze the sensitivity and the robustness of the perfocmariteria to changes of the shape parameters.

The advantage of using the flexible multibody approach oveamaentional linear finite element approach
is the possibility to consider some deformations as infiyitayid, which reduces the dimensions of the
dynamic equations and speeds up the computations for @atimin. Furthermore, the flexible multibody
approach implemented in the packagea8AR provides derivatives of the element deformations to nodal
coordinates which are used for the sensitivity analysis.

The model is validated by comparison of the resulting eiganfency and measurement sensitivity to the
results for a U-shaped Coriolis mass flow meter from Refardjc The U-shaped mass flow meter is also
used to validate the parameter sensitivities by compatisdhe values obtained from finite differences.
Furthermore, preliminary results from the optimizationtioé tube shape using the presented model are
presented. So far, the parameter sensitivities have natusssl for optimization. Future research will show
the usability of the parameter sensitives for the optiniirat

The proposed method for computing the parameter seniivif dynamic properties can straightforwardly
be extended to other systems that can be described by theldlexultibody approach. This approach can
describe a wide class of systems including system with tefinirigid elements, flexible elements and
elements undergoing large rotations. Application of theppsed method to the optimization of to other
(multibody) systems will be subject of future research.
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