
Proceedings for

International Workshop on

Tools for Managing Globally Distributed
Software Development (TOMAG 2007)

+

Tool Support and Requirements Management
in Distributed Project (REMIDI 2007)

Munich, Germany
August 27, 2007

Edited by Jos Van Hillegersberg, Frank Harmsen, Chintan
Amrit, Dr. Eva Geisberger, Patrick Keil, Marco Kuhrmann

© Chintan Amrit, University of Twente, 2007
Copyright is retained by the authors of the individual papers in this volume.

Title: TOMAG+REMIDI 2007 Proceedings. The Seventh International
Conference of Computer Ethics: Philosophical Enquiry

Author: Jos Van Hillegersberg, Frank Harmsen, Chintan Amrit, Dr. Eva
Geisberger, Patrick Keil, Marco Kuhrmann (eds.)
ISSN: 1574-0846
Publisher: Center for Telematics and Information Technology (CTIT), Enschede,

the Netherlands

As part of

International Conference on
Global Software Engineering, ICGSE 2007

Program Committee (TOMAG)

Jos van Hillegersberg, University of Twente
Frank Harmsen, Cap Gemini
Kuldeep Kumar, Florida International University
Mehmet Aksit, University of Twente
Richard Welke, Georgia State University
Matti Rossi, Helsinki School of Economics and Business Administration
Gert-Jan de Vreede, University of Nebraska at Omaha
M. E. Iacob, University of Twente
Robert Slagter, Telematica Institute
Harry Julsing, Mithun Training & Consulting BV
Tobias Kuipers, Software Improvement Group
Joost Visser, Software Improvement Group

Program Committee (REMIDI)

Matthew Bass, Carnegie Mellon University
Stefan Biffl, TU Wien
Manfred Broy, TU München
Mathai Joseph, Tata Consultancy Services
Thomas Klingenberg, microTOOL GmbH
Vesna Mikulovic, Siemens AG Austria
Jürgen Münch, Fraunhofer IESE
Ita Richardson, University of Limerick
Bernhard Schätz, TU München
Gernot Stenz, TU München

Table of Contents

1. Introduction TOMAG 2007……………………………………………………………………………..1

2. Monitoring the Quality of Outsourced Software..…………………….………………………………3
Kuipers, T; Visser, J and de Vries, G

3. MAIS: an awareness mechanism for change identification on shared models…......................12
de M. Lopes, M A.; Werner, C. M. L. and Mangan, M. A. S

4. Exploring Coordination structures in Open source Software Development.....………………22
Amrit, C; Hegeman, J.H. and van Hillegersberg, J

5. A framework for designing integrated tool support for globally distributed software……………30
development teams
Herrera, M and van Hillegersberg, J

6. Introduction REMIDI 2007…………………………………………………………………………….37

7. A Sensitivity Analysis Approach to Select IT-Tools for Global Development Projects…………40
Laurent, C

8. Requirements Management Infrastructures in Global Software Development………………….46
-Towards Application Lifecycle Management with Role-Oriented In-Time Notification
Heindl, M.; Reinisch, F. and Biffl S.

9. Communication Tools in Globally Distributed Software Development Projects……………..….53
Niinimäki, T

10 A Groupware System for Distributed Collaborative Programming: Usability Issues………..…59
and Lessons Learned
Bravo, C; Duque, R; Gallardo, J; García, J and García, P

1st International Workshop on Tools for Managing Globally Distributed
Software Development (TOMAG 2007)

Chintan Amrit

University of Twente
c.amrit@utwente.nl

Jos van Hillegersberg
University of Twente

j.vanHillegersberg@utwente.nl

Frank Harmsen

Cap Gemini
frank.harmsen@capgemini.com

Abstract

The advent of global distribution of software development
has made managing collaboration and coordination
among developers more difficult due to various reasons
including physical distance, differences in time, cultural
differences etc. A nearly total absence of informal
communication among developers makes coordinating
work in a globally distributed setting more critical. The
goal of this workshop is to provide an opportunity for
researchers and industry practitioners to explore both the
state-of-the art in tools and methodologies for managing
global software development (GSD).

1. Introduction

Large scale software development is an inherently
collaborative, team based process, and hence requires
coordination and control in order to make it successful.
The advent of global distribution of software development
has made managing this collaboration more difficult due to
various reasons including physical distance, differences in
time, cultural differences etc. Although research on global
software development argues the use of communication
technologies to alleviate problems caused by separation of
workers in time and space, studies have often found them
to be not as effective as publicized. A nearly total absence
of informal communication among developers makes
coordinating work in a globally distributed setting more
critical.
The goal of this workshop is to provide an opportunity for
researchers and industry practitioners to explore both the
state-of-the art in tools and methodologies for managing
global software development (GSD). The workshop will
foster interaction between practitioners and researchers

and help grow a community of interest in this area.
Practitioners experiencing challenges in GSD are invited
to share their concerns and successful solutions.
Practitioners will have the opportunity to gain a better
understanding of the key issues facing other practitioners
and share their work in progress with others in the field.
In this workshop we examine the technologies that go
beyond mere communication technologies and which aim
to manage the coordination problems encountered in
globally distributed development. We are particularly
interested in empirical research (case studies) on globally
distributed projects such as open source, commercial, and
government projects. Such projects are often dominated by
social, rather than just technical, issues, and so would
significantly benefit from appropriate tool support.

2. Workshop Scope and Theme

The main theme of this workshop is Tools for Managing
Globally distributed software development. . We are
particularly interested in empirical research (case studies)
on globally distributed projects such as open source,
commercial, and government projects. Such projects are
often dominated by social, rather than just technical,
issues, and so would significantly benefit from appropriate
tool support.

Some of the topics of interest to this workshop are:

• Communication, collaboration, and awareness
tools for globally distributed software
development

• Visualization systems to support social
aspects of globally distributed software
development

• Evaluation techniques for studying the
effectiveness and impact of collaborative
software development tools

• CASE and Requirement tools for managing
globally distributed systems

• Project management tools and environments
for globally distributed teams

• Communities of interest, communities of
practice, knowledge sharing and
organizational learning

• Interaction in large scale online
communities supporting collaboration in
local and distributed communities

3. Workshop Presentations

Apart from the Key Note speech of Alan Hartman, of
IBM Haifa, Israel, the workshop has 3 full papers and
one short paper presentation.

The workshop accepted both full papers of maximum
8 pages and short pages of 4 pages maximum.
We received 3 full papers and two short papers.
Among the full papers Lopes M., Werner C. and
Mangan Marco describe an awareness mechanism
prototype for collaborative modeling. Through a

preliminary case study of 10 university students they
try and validate the tool design and usage.

Amrit C. and Hillegersberg J. describe a
methodology to track globally distributed
development. In a case study of 3 open source
projects they use a clustering mechanism to see how
the tasks of the developers change over a period of
time.

Kuipers T., Gejon V. and Visser J. present a tool-
based method for monitoring software in outsourcing
situations. Through the 3 case studies, the authors
have shown the usefulness of the method to maintain
the software quality through continuous monitoring.

Among the short papers, Hillegersberg J. and Herrera
M. describe a framework for designing integrated
tool support for globally distributed software
development teams. Hegeman J.H. and Amrit C.
describe a tool which represents the developers and
the software they are developing through clustering.

4. Summary and Discussion
One of the goals of this workshop was to have a
discussion about the current practices as well as the
future of Tool development in a globally distributed
software development scenario. In order to have a
broader platform for discussion we have a joint
session with REMIDI 2007.

Monitoring the Quality of Outsourced Software
Tobias Kuipers

Software Improvement Group
The Netherlands

Email: t.kuipers@sig.nl

Joost Visser
Software Improvement Group

The Netherlands
Email: j.visser@sig.nl

Gerjon de Vries
Software Improvement Group

The Netherlands
Email: g.devries@sig.nl

Abstract—Outsourcing application development or mainte-
nance, especially offshore, creates a greater need for hard facts to
manage by. We have developed a tool-based method for software
monitoring which has been deployed over the past few years in a
diverse set of outsourcing situations. In this paper we outline the
method and underlying tools, and through several case reports
we recount our experience with their application.

I. INTRODUCTION

Outsourcing of application development or maintenance
brings about an interesting dilemma. One the one hand, out-
sourcing promisses cost reduction and increased focus on core
business. The vendor organization specializes in software engi-
neering capabilities and realizes scaling benefits. On the other
hand, the loss of technical expertise at the client organization
leads to loss of control over the quality of the delivered product
which, in turn, leads to loss of efficiency and increased costs.
To prevent that costs, deadlines, and functionality slip out of
control, the remote management of outsourced projects must
be grounded in factual technical knowledge of the outsourced
system. Is there a way out of this dilemma?

In this paper, we argue that this outsourcing dilemma can
be resolved by performing tool-assisted monitoring of the
quality of outsourced software. Such software monitoring is
a highly specialized activity that supports IT management by
translating technical findings to actionable recommendations.
To avoid the need for in-house technical know-how, this highly
specialized activity of monitoring outsourced software can in
turn be outsourced to a third, independent party.

We have developed a tool-based method for software mon-
itoring which has been deployed over the past few years in a
diverse set of outsourcing situations. In this paper we outline
the method and underlying tools, and through several case
reports we recount our experience with their application.

The paper is structured as follows. Section II provides
a global overview of the tool-based method for software
monitoring that we have developed previously [1]. Section III
high-lights the tools that support the method, while Section IV
focusses on the quality model it employs. In Section V, we
share our experiences with applying the method in the form
of three case reports. These reports cover various application
scenarios and various software technology platforms. The
paper is concluded in Section VI, where we summarize our
contributions and reflect on lessons learned and on the value
of software monitoring on a more generalized level.

Software Engineers

Board

IT Management

Project Management

Source code

Software Annual
Report

Quarterly
Iteration

Montly
Iteration

Generated
Documentation

Monitor

Fig. 1. The various deliverables of software monitoring and their relationships
to management levels. On the basis of source code analysis, insight in the
technical quality of software systems or entire portfolios is provided at regular
intervals to project managers, IT management, and general management.

II. SOFTWARE MONITORING

Previously, we have developed and described a tool-based
method for software monitoring which consists of a cycle
of activities designed to drive continuous improvement in
software products and processes [1]. An overview of the
method is provided in Figure 1.

A. Source code analysis

The basis of monitoring is the frequent analysis of all
source code in an automated manner. We have developed a
suite of tools, dubbed the Software Analysis Toolkit (SAT),
which contains components for parsing, flow analysis, and
metric extraction for a wide range of programming languages.
The SAT has been designed to be highly scalable and highly
customizable. It is suitable for processing software portfolios
of many millions of lines of code. We continuously extend the
SAT with support for further languages.

A dynamic web portal with all extracted software metrics
is available to all stake holders in the system or portfolio.

B. Scope

The scope of software monitoring is flexible, both in du-
ration and in the number of systems being monitored. In
some cases, only a single system is monitored, but more
commonly all systems with a particular technology footprint
(e.g. mainframe systems, or .Net systems) are under scrutiny.
When the scope extends to all systems, we use the term
software portfolio monitoring. In some cases, monitoring is

Software Annual Report
Summarizing

Quarterly Iteration
Evaluation, interpretation,

illumination, recommendation

Monthly Iteration
Apply SAT

Jan
ua

ry

D
ec

em
be

r

Fig. 2. The various nested iterations of software monitoring.

initiated at the start of system development, and ended at
first delivery. In other cases, systems are monitored in their
maintenance or renovation phase.

C. Deliverables

The information extracted from source code is combined
with information obtained from secondary sources, such as
documentation and interviews with stake holders. On the basis
of this combination, insight into the software is provided to
various levels of management at different frequencies. With
high frequency (typically monthly), fairly detailed information
about individual systems is communicated to project man-
agers. With medium frequency, more aggregated information is
presented and discussed at the level of overall IT management.
With low frequency, the monitoring information of an entire
year is compressed into an annual software report, to be
presented at board level.

Note that the various deliverables are not limited to simply
communicating measurement values. The results of source
code analysis are interpreted by experts, followed by evalua-
tion and recommendations. Where feasible, targets are set for
quality improvement. Thus, a significant consultancy effort is
mounted to incorporate the lessons to be learned from software
measurements into the software management processes.

Below we discuss the various iterations and their deliver-
ables in more detail.

D. Iterations

The three nested iterations of the monitoring methodology
are illustrated in more detail in Fig. 2. Though the typical
duration of the shortest iteration is one month, shorter and
longer time spans are also used. The yearly iteration is
optional, and is typically used only when a significant part
of the software portfolio is being monitored.

1) Monthly iteration: In the inner iteration, the Software
Analysis Toolkit is applied to the selected software systems
or entire portfolio, resulting in a large number of basic facts

about the code. These facts include metrics, dependency infor-
mation, and detected violations of programming conventions
or standards. All these facts are collected into a data repository.
From this repository, reports are generated that present the
facts in a human digestible fashion. This means that the data
is appropriately grouped and filtered, and visualized in graphs
and charts that meet the information needs of assessment
experts, project managers, and other stake holders.

2) Quarterly iteration: Every three months, the technical
data gathered in the inner iterations is interpreted and evaluated
by assessment experts. Also, the data is related to other infor-
mation elicited in workshops and interviews. The findings are
presented to IT management together with recommendations
about how to react to the findings.

By interpretation, we mean that various selections of the
data are combined and contrasted to discover for instance
trends, correlations, and outliers. For example, based on the
fact that certain modules have exceeded a certain complexity
threshold, an assessment expert might hypothesize that these
modules implement several related functions in a tangled
fashion. He might discover that the database dependency
information for these modules corroborates his hypothesis.
Finally, he may take a small sample from these modules,
inspect their code and verify that his hypothesis is indeed true.

By evaluation, we mean that the expert makes value judg-
ments about the software system or portfolio. The judgments
are based on best practices reported in the literature, on
published quality standards, comparisons with industry best
and average, and so on. In Section IV, we provide further
insight into the structured method we use for software quality
evaluation according to the ISO/IEC 9126 software product
quality model [2].

The evaluation and interpretation of technical data, as well
as elicitation of IT-related business goals are instrumental in
the most important element of the quarterly iteration: the
drafting of recommendations. These recommendations are of
various kinds. They can be detailed, short-term recommenda-
tion, such as redesigning a particular interface, migrating par-
ticular persistent data from hierarchical to relational storage,
or upgrading a particular third-party component. On the other
hand, some recommendations may have a more general, long
term character, such as integrating two functionally similar,
but technically distinct systems, or reducing the procedural
character of the object-oriented portions of the portfolio.

The deliverable of the quarterly iteration is a presentation of
findings, evaluation, and recommendations to IT management
in a workshop dedicated to that purpose.

3) Annual iteration: Every year, the deliverables of the
monthly and quarterly iterations are summarized in an Annual
Software Report. The intended audience of this report is the
general management of the company, which is not necessarily
IT-savvy. For this reason, the software engineering experts that
compile the report need to be able to explain IT issues in lay-
man’s terms. In addition to the summaries of the monthly and
quarterly iterations, the Annual Software Report may include
IT-related financial information, if available in sufficient detail.

III. TOOL BASIS

In this section we provide a brief discussion of the tool
support for source code analysis on which the monitoring
approach is based.

The tools offer three overall pieces of functionality: gath-
ering source code, performing static analysis on the code,
and visualizing the analysis results. The components that
implement analysis and visualization are frameworks into
which various subcomponents can be inserted that implement
individual analysis and visualization algorithms. A repository
that persistently stores all information extracted from the
sources is shared by the components for gathering, analysis,
and visualization.

A. Source Manager

Source code files can be brought into the system in different
ways. In some cases, a connection is made to the versioning
system of the client, such that the upload procedure is fully
automatic. In other cases, the technical situation or client
preferences do now allow full automation. For these cases,
a secure upload facility is provided which can be operated by
the client via a standard web browser.

B. Analysis Components

Once source code files have been uploaded to the system,
they will be analyzed statically by the analysis framework.
Which analyses are available for the various source files
depends on the specific client configuration.

Analysis components vary in their degree of sophistication
and generality. Some components are applicable only to certain
types of files. For instance, a component of control-flow
reconstruction may implement an algorithm that works only
for ANSI-Cobol-85. Other components are applicable more
generally. For instance, a component for counting lines of code
and comment could work for any language that employs one
of the common comment conventions.

The amount of source code in a typical software portfolio
ranges between 1 million and 100 million lines of code.
Processing this code to obtain the basic monitoring data
should under no circumstance take more than a few hours.
The computational complexity of the implemented algorithms
should be kept within bounds. In this sense, the analysis
components must be scalable.

C. Visualization components

Basically, two categories of visualizations are available:
charts and graphs. Both are highly parameterizable. We are not
only interested in presenting data about software at a particular
moment. We need to visualize the evolution of the software
throughout time. Of course charts can be used for this purpose,
where one of the axes represents time. Another instrument is
the use of animations.

analysability
changeability
stability
testability

maintainability

maturity
fault tolerance
recoverability

reliability

external and internal quality

suitability
accuracy

interoperability
security

functionality

adaptability
installability
co-existence
replacability

portability

understandability
learnability
operability

attractiveness

usability

time behaviour

resource
utilisation

efficiency

Fig. 3. Breakdown of the notions of internal and external software product
quality into 6 main characteristics and 27 sub-characteristics (the 6 so-called
compliance sub-characteristics are not shown). In this paper, we focus on
the maintainability characteristic and its 4 sub-characteristics of analyzability,
changeability, stability, and testability.

IV. A PRACTICAL MODEL OF TECHNICAL QUALITY

The ISO/IEC 9126 standard [2] describes a model for soft-
ware product quality that dissects the overall notion of quality
into 6 main characteristics: functionality, reliability, usability,
efficiency, maintainability, and portability. These characteris-
tics are further subdivided into 27 sub-characteristics. This
breakdown is depicted in Fig. 3. Furthermore, the standard
provides a consensual inventory of metrics that can be used
as indicators of these characteristics [3], [4]. The defined
metrics provide guidance for a posteriori evaluation based
on effort and time spent on activities related to the software
product, such as impact analysis, fault correction, or testing.
Remarkably, ISO/IEC 9126 does not provide a consensual set
of measures for estimating maintainability on the basis of a
system’s source code.

Over the course of several years of management consultancy
grounded in source code analysis, we have started to formulate
a software quality model in which a set of well-chosen source-
code measures are mapped onto the sub-characteristics of
maintainability according to ISO/IEC 9126, following prag-
matic mapping and ranking guidelines [5]. We briefly present
this model.

A. Mapping source code properties quality aspects

The maintainability model we have developed links system-
level maintainability characteristics to code-level measures in
two steps. Firstly, it maps these system-level characteristics to
properties on the level of source code, e.g. the changeability
characteristic of a system is linked to properties such as
complexity of the source code. Secondly, for each property one
or more source code measures are determined, e.g. source code
complexity is measured in terms of cyclomatic complexity.

Our selection of source code properties, and the mapping of
system characteristics onto these properties is shown in Fig. 4.
The notion of source code unit plays an important role in
various of these properties. By a unit, we mean the smallest
piece of code that can be executed and tested individually. In
Java or C# a unit is a method, in C a unit is a procedure.
For a language such as COBOL, there is no smaller unit
than a program. Further decompositions such as sections or
paragraphs are effectively labels, but are not pieces of code
that are sufficiently encapsulated to be executed or tested
individually.

IS
O

/I
E

C
91

26
m

ai
nt

ai
na

bi
lit

y

source code properties

vo
lu

m
e

co
m

pl
ex

ity
pe

r
un

it

du
pl

ic
at

io
n

un
it

si
ze

un
it

te
st

in
g

analysability x x x x
changeability x x
stability x
testability x x x

Fig. 4. Mapping system characteristics onto source code properties. The
rows in this matrix represent the 4 maintainability characteristics according to
ISO/IEC 9126. The columns represent code-level properties, such as volume,
complexity, and duplication. When a particular property is deemed to have
a strong influence on a particular characteristic, a cross is drawn in the
corresponding cell. .

The influence of the various source code properties on
maintainability characteristics of software is as follows:

• Volume: The overall volume of the source code influences
the analysability of the system.

• Complexity per unit: The complexity of the code units
influences the system’s changeability and its testability.

• Duplication: The degree of source code duplication influ-
ences analysability and changeability.

• Unit size: The size of units influences their analysability
and testability and therefore of the system as a whole.

• Unit testing: The degree of unit testing influences the
analysability, stability, and testability of the system.

This list of properties is not intended to be complete, or pro-
vide a watertight covering of the various system-level charac-
teristics. Rather, they are intended to provide a minimal, non-
controversial estimation of the main causative relationships
between code properties and system characteristics. Intention-
ally, we only high-light the most influential causative links
between source code properties and system characteristics. For
instance, the absence of a link between volume and testability
does not mean the latter is not influenced at all by the former,
but rather that the influence is relatively minor.

B. Ranking

For ranking, we use the following simple scale for each
property and characteristic: ++ / + / o / - / --. For various code-
level properties we have defined straightforward guidelines for
measuring and ranking them.

As an example, consider the property of complexity. The
complexity property of source code refers to the degree of
internal intricacy of the source code units from which it is
composed. Since the unit is the smallest piece of a system
that can be executed and tested individually, it makes sense
to calculate the cyclomatic complexity on each unit. To arrive
at a meaningful aggregation of the complexity values of the
various unit of a system, we take the following categorization

low

59%

moderate

14%

high

16%

very high

11%

low

78%

moderate

13%

high

7%

very high

2%

Fig. 5. Distribution of lines of code over the four complexity risk levels
for two different systems. Regarding complexity, the leftmost system scores
-- and the rightmost system scores -.

of units by complexity, provided by the Software Engineering
Institute, into account [6]:

CC Risk evaluation
1-10 simple, without much risk

11-20 more complex, moderate risk
21-50 complex, high risk
> 50 untestable, very high risk

Thus, from the cyclomatic complexity of each unit, we can
determine its risk level. We now perform aggregation of
complexities per unit by counting for each risk level what
percentage of lines of code falls within units categorized at that
level. For example, if, in a 10.000 LOC system, the high risk
units together amount to 500 LOC, then the aggregate number
we compute for that risk category is 5%. Thus, we compute
relative volumes of each system to summarize the distribution
of lines of code over the various risk levels. These complexity
‘footprints’ are illustrated in Fig. 5 for two different systems.

Given the complexity footprint of a system, we determine
its complexity rating using the following schema:

maximum relative LOC

rank moderate high very high
++ 25% 0% 0%
+ 30% 5% 0%
o 40% 10% 0%
- 50% 15% 5%
-- - - -

Thus, to be rated as ++, a system can have no more than 25%
of code with moderate risk, no code at all with high or very
high risk. To be rated as +, the system can have no more than
30% of code with with moderate risk, no more than 5% with
high risk, and no code with very high risk. A system that has
more than 50% code with moderate risk or more than 15%
with high or more than 5% with very high risk is rated as --.

For example, the system with the leftmost complexity
profile of Fig. 5 will be rated as --, since it breaks both the
15% boundary for high risk code and the 5% boundary for
very high risk code. The rightmost profile leads to a - rating,
because it breaks the 0%, but not the 5% boundary for very
high risk code.

Similar rating guidelines have been defined for other source
code properties. Details can be found elsewhere [5]. The

boundaries and thresholds we defined are based on experience.
During the course of evaluating numerous systems, these
boundaries turned out to partition systems into categories that
corresponded to expert opinions.

C. Practicality of the quality model

Our quality model exhibits a number of desirable properties.
• The measures are mostly technology independent. As a

result, they can be applied to systems that harbour various
kinds of languages and architectures.

• Each measure has a straightforward definition that is easy
to implement and compute. Consequently, little up-front
investment is needed to perform the measurement.

• Each measure is simple to understand and explain, also
to non-technical staff and management. This facilitates
communication to various stake holders in the system.

• The measures enable root-cause analysis. By giving clear
clues regarding causative relations between code-level
properties and system-level quality, they provide a basis
for action.

Due to these properties, the model has proven to be practically
usable in the context of software monitoring.

V. CASE STUDIES

Over the past few years, we have applied software moni-
toring in a wide range of management consultancy projects.
In this section, we share some of our experiences in three
anonymized case reports.

A. Curbing system erosion during maintenance

An organisation has automated a part of its primary business
process in a software system some 10 to 15 years ago. A party
that currently plays no role in the maintenance of the system
built it. Over time, maintenance has passed through a number
of organisations. The system is currently being operated and
managed in a location in central Europe, and being maintained
in South East Asia. The system owner (business requirements
developer) is in a different location in western Europe. The
system owner periodically requests specific features to be
added to the system, and from time to time the system needs
to be adapted to a changing hardware environment.

We were asked to monitor the maintenance of the system
in order to improve management’s control over the technical
quality of the software and the associated costs of the main-
tenance process.

As a result of the monitoring activity, we had accurate in-
sight into various system parameters, among which its volume.
In Fig. 6, the volume of the system, measured in lines of code,
is plotted for the 4 latest releases of the system, separated into
C code, stored procedures (PL/SQL), and scripts. Note that
an increase in the volume of C code of about 35% occurred
between release r1 and release r2. Such increases are normal
in development situations, but in the current maintenance
situation, where the system had been more or less stable for a
number of years, this amount of growth is remarkable. When
we asked the various parties involved with the system what

Lines of code

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

r1 r2 r3 r4

C Stored procs Scripts

Fig. 6. System volume in lines of code for the latest 4 releases (Case V-A).

Duplication [%]

0

10

20

30

40

50

60

r1 r2 r3 r4

C Stored procs Scripts

Fig. 7. Code duplication for the latest 4 releases (Case V-A).

could explain this growth, we were met with blank stares;
nobody could come up with a reason why the system was
growing so much.

Another parameter that we monitored is the amount of code
duplication in the system. This is expressed as a percentage
of code lines. A code line counts as duplicated when it
participates in a block of code of at least 6 lines that occurs
more than once. Apart from some compensation for spacing
issues, we count exact duplicates. For the same 4 releases, the
measurement values are plotted in Fig. 7. As it turned out,
the unexplained growth of the C code between release r1 and
release r2 was accompanied by an increase in duplication that
was even more pronounced.

After some further investigation the underlying cause was
identified: from version r1 to r2 a particular piece of hardware
was upgraded for some installations of the system. As a result,
the driver for that hardware needed to be changed as well.
Since the old driver was still needed for the old piece of
hardware, the driver was copied completely, and a few minor
changes were made to it to facilitate the new hardware.

Although there may have been a reason for copying initially

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

r1 r2

deleted

added

changed

unchanged

total

Fig. 8. Code modifications on the file level, between two versions (Case V-B).

(shorter time to market, a belief that this was a temporary
solution), it will be a burden to maintenance cost in the
long run. As the charts show, the initial copying was not
subsequently cleaned up in later versions of the system.

The fundamental problem, of course, was that no explicit
decision was ever made: the developers took this course of
action because they felt this was the best, easiest, or quickest
way to satisfy a particular change request, but they did not take
into account the consequences to the overall system health.

By analysing the numbers, and showing the result of the
action on the complete code base, we provide both developers
and management with the data needed to make an informed,
explicit decision regarding the future of the system. In this
case, actions were planned in subsequent releases to curb
system erosion by refactoring the code such that the introduced
duplication was eliminated again.

B. Systems accounting from code churn

An organisation was building an information system to
automate its primary business process. System development
was done on three sites on two continents. Requirements
gathering and management was done on another two sites in
two different countries. An estimated 25 subcontractors were
involved in the project, with an estimated 240 people. The
perception of higher management was that a significant part
of the 240 people involved were developing code on a day-
to-day basis. We were asked to monitor the technical quality
of the system.

When we analysed the system, it turned out to be quite large.
It was developed in a modern object-oriented language, and
consisted of about 1.5 million lines of code divide over about
7000 files. Based on software productivity statistics [7], a
system of this volume, built with this technology, corresponds
to about 170 man years, as a rough estimate. The technical
quality of the system, judged on the basis of indicators such
as modularization, complexity, duplication, etc. did not reveal
any major risks, though several points for improvement were
identified.

Since the system was several years old already, strong doubt
arose whether for a system of this size and quality the staffing

of 240 people was justified. To answer this question from
management we made an in-depth comparison of two versions
of the system, separated by about one year.

The overall volume of the system, its complexity, dupli-
cation, and other indicators turned out to have been more
or less stable over that period. Still, many modifications had
been made. We charted those modifications in terms of file
creations, deletions, and modification, as can be seen in Fig. 8.
When a file was copied, the copy was adapted, and the old file
was removed, we counted this as a single file modification.

Based on our measurements, it turned out that the amount of
change over that year was nowhere near the productivity that
one may expect from a 240 people effort. Perhaps 50 would
have been more realistic.

After we reported our findings, an investigation was started
to establish how many staff members were actually active as
software developers, to find out what exactly the other people
on the project were doing, and what sources of overhead
could be eliminated. This investigation led to a restart of
the project with less than 30 people, of which about 18 are
actively developing software. Development of the system has
been brought back to a single location. Requirements gathering
is still done at a different location, but people responsible
for the requirements spend at least three days a week at the
development location.

After the restart, the productivity of the project grew in
absolute terms. We were told that the project was delivering
more functionality (defined in terms of feature requests or
change requests) per time unit with 30 people than they were
with 240 people.

In retrospect this is not as surprising as it seems. It is widely
acknowledged that adding more manpower to a software
project does not make it necessarily more productive [8]. In
addition, dividing resources over a multitude of locations was
identified as a major source of overhead and waste.

What was surprising to us is that our technology apparently
can be used for what we call ‘systems accounting’. Using a
very technical (and not very sophisticated) measure, we were
able to see right through the 25 subcontractors and the 240
people. In this case, software monitoring at the system level
and fact-based interaction with high-level management proved
to be decisive in radically improving efficiency.

C. Learn from failure, measure for success

We were asked to monitor the development of an e-
Commerce platform for a large bank in the Netherlands.
This platform was built from scratch as a replacement for
a functionally identical platform which failed in the rollout
phase. Because of the earlier failure, the bank and its (new)
outsource party decided to use our monitoring service in order
to gain insight into the technical quality of the new software.
Their key targets for this new project were to realize low costs
of maintenance and operation.

At the start of the second attempt, we performed an assess-
ment on the code base of the first attempt, which led us to
attribute the failure to several factors, including:

Voortgang/LOC

Oude eServices

eServices 24,122

149,713

48,441

395,615

Java Config

Voortgang/LOC

Oude eServices

eServices 24,122

149,713

48,441

395,615

Java Config

0 100000 200000 300000 400000 500000 600000

New

Old

Dummy

Java

Other

Fig. 9. Volume measurements in lines of code for both the failed project
and the new project (Case V-C).

• An overly complex design that ambitiously tried to gen-
eralize the e-Commerce platform so that it could handle
future markets.

• A design that tried to solve possible performance issues
a priori by using a complex distributed J2EE EJB-based
architecture.

• A lack of (automatic) unit tests and integration tests.
Learning from these lessons, a set of contrasting goals were
set for the new project:

• A minimalist design that focused only on the current
product line.

• A lightweight approach to system architecture.
• A test-driven approach, by focusing on automated system

and unit tests.
Continuous monitoring of the source code base was put into
place from the start of the new project.

Our monitoring of volume indicators demonstrated that the
new approach resulted in a much leaner system. Fig. 9 shows
measurements of the lines of code for both the old and new
system. The measurements are split out between Java code and
other kinds of code, which include HTML, XML, and SQL.
As the charts show, the new system was significantly smaller
than the old one (about 7,5 times smaller). Over the period of
14 months, the volume increase of the new system was almost
linear, indicating constant productivity throughout that period.

The new approach also paid off demonstrably in terms
of quality indicators such as complexity and duplication.
The complexity profiles of both old and new system are
shown in Fig. 10. Using the quality model of Section IV,
the old system is rated on complexity as poor (--), while
the new system is rated as excellent (++). The duplication
measurements are shown in Fig. 11. The new system contains
higher duplication in non-Java code (33%) than in Java code
(2%), but significantly less than the old system for both kinds
of code (23% and 57%). The timelines reveal that at the start
of the project, duplication was low and relatively unstable,

low
57%

moderate
13%

high
18%

very high
12%

low
94%

moderate
5%

high
1%

very high
0%

Fig. 10. Complexity profiles for both the failed project and the new project
(Case V-C). The former system scores --, while the new system scores ++.

Code Duplicatie

Oude eServices

eServices
33

57

2

23

Java Config

Code Duplicatie

Oude eServices

eServices
33

57

2

23

Java Config

0 10 20 30 40 50 60

New

Old

Dummy

Java

Other

Fig. 11. Duplication measurements in lines of code for both the failed project
and the new project (Case V-C).

while towards the end of the project, this measure stabilizes.
For Java code, the final value is excellent, but for non-Java
code duplication is still too high.

We also measured several coding standards, including:
• Double checked locking: 60 instances in the old system

and 0 in the new. The double checked locking construct
introduces a bug in thread synchronization code.

• String reference equality: 22 vs. 0. String reference
equality is often a bug introduced by inexperienced
programmers; the equals method should be called instead.

• Too generic error handling constructs: 2141 vs. 17. The
17 cases in the new code were manually checked, and did
not introduce risks (false positives), while sampling the
2141 violations in the old code revealed actual problems.

Monitoring also revealed that test code was being written, with
a test coverage stable at about 60% throughout the course of
the project.

In this case, monitoring helped to reduce the size and
increase the technical quality of the new system. Surprisingly,
the much simpler (non-distributed) architecture of the new
system performed much better than the original. Also the

resulting system proved to be much easier to tweak for specific
performance issues. In contrast to the previous attempt, this
system was successfully concluded and taken into production.

VI. CONCLUSION

A. Contributions

Some years ago, we developed our tool-based method for
software monitoring [1] and introduced it into the market.
Since then, we have applied the method in a wide range of
circumstances. On the technological side, we have monitored
systems built in modern object-oriented languages, as well
as classical mainframe languages. On the organizational side,
we have acted on behalf of both clients and providers of
application outsourcing services (but never both at the same
time, naturally). In terms of software life-cycle, we have
monitored both system maintenance and development from
scratch.

More recently, we have used our experience in software
monitoring as well as in software risk assessment [9] to
draft a practical model for measuring the technical quality
of software products [5]. This model has been instrumental
for the abstraction and aggregation of source code analysis
results necessary for translation of technical findings into
management-level notions.

In this paper, we have summarized both the monitoring
approach and the quality model, and presented them for the
first time in combination. Moreover, we have shared our
experience of applying the approach and the model in a
range of application outsourcing situations. The cases reported
include maintenance as well as development situations, various
technology mixes, and a variety of organizational contexts.

B. Lessons learned

Among the lessons learned from these cases and others not
reported here, are the following:

• Simple measures, but well-chosen and aggregated in
meaningful ways, are effective instruments for software
monitoring.

• The simultaneous use of distinct metrics can be used to
zoom in on root causes of perceived quality or produc-
tivity problems.

• The gap between technical and managerial realities can be
bridged with a practical software product quality model.

• Monitoring helps to curb system erosion in maintenance
situations.

• Monitoring code churn allows ‘systems accounting’.
• Monitoring helps to achieve clear productivity and quality

targets.
• The chances of success of software development projects

are influenced positively by software monitoring.
In the introduction, we indicated that software monitoring,
when executed by a third party, can resolve a dilemma that
arises from application outsourcing. Indeed, the paradox of
removing technical know-how from the organization to an
outsourcing party while needed that knowledge to manage the
relationship to that party, can in our experience be solved

by third-party monitoring of the technical quality of the
outsourced software.

C. Future work

Software monitoring, though supported by tools, standards,
and models, is a creative process that needs continuous im-
provement and calibration. Our quality model is still fairly
young, and will be further refined based on our experience
with its application. Also, changes in the maturity of the
software industry will call for adaptation of rating guidelines,
application of more sophisticated metrics, and perhaps other
analysis instruments. In particular, we are keeping a close
watch on developments in the area of analyzing and visualizing
software evolution.

We collect a extensive set of measurement data in the course
of our monitoring and assessment activities. We are currently
consolidating this data into a benchmarking data base that will
allow well-founded comparisons of systems on the level of
source code properties as well as system-level quality aspects.

REFERENCES

[1] T. Kuipers and J. Visser, “A tool-based methodology for software port-
folio monitoring.” in Proceedings of the 1st International Workshop on
Software Audit and Metrics, SAM 2004, In conjunction with ICEIS 2004,
Porto, Portugal, April 2004, M. Piattini and M. Serrano, Eds. INSTICC
Press, 2004, pp. 118–128.

[2] ISO, ISO/IEC 9126-1: Software Engineering - Product Quality - Part
1: Quality Model. Geneva, Switzerland: International Organization for
Standardization, 2001.

[3] ——, “ISO/IEC TR 9126-2: Software engineering - product quality - part
2: External metrics,” Geneva, Switzerland, 2003.

[4] ——, “ISO/IEC TR 9126-3: Software engineering - product quality - part
3: Internal metrics,” Geneva, Switzerland, 2003.

[5] I. Heitlager, T. Kuipers, and J. Visser, “A practical model for measuring
mainainability,” 2007, draft, April 30.

[6] C. M. Software Engineering Institute, “Cyclo-
matic complexity – software technology roadmap,”
http://www.sei.cmu.edu/str/descriptions/cyclomatic.html.

[7] Software Productivity Research LCC, “Programming Languages Table,”
Feb. 2006, version 2006b.

[8] F. Brooks, The Mythical Man-Month: Essays on Software Engineering.
Addison-Wesley Publishing, 1975.

[9] A. van Deursen and T. Kuipers, “Source-based software risk assessment,”
in ICSM ’03: Proceedings of the International Conference on Software
Maintenance. Washington, DC, USA: IEEE Computer Society, 2003, p.
385.

MAIS: an awareness mechanism for change identification on shared models

Marco A. de M. Lopes1, Cláudia M. L. Werner1, Marco A. S. Mangan2

1 System Engineering and Computer Science
COPPE – Federal University of Rio de Janeiro

P.O Box 68511 – CEP. 21945-970 – Rio de Janeiro – RJ – Brazil
2School of Computer Science – Pontifical Catholic University of Rio Grande do Sul

Porto Alegre – RS - Brazil
{mlopes,werner}@cos.ufrj.br, mangan@pucrs.br

Abstract

Awareness mechanisms could reduce the isolation
among distributed software development teams. In
particular, they can be applied to concurrent modeling
of software artifacts, where a software development
team needs to keep track of the evolution of shared
models. The developer’s conception of a shared model
can be continuously updated with this kind of
mechanism. This paper presents an awareness
mechanism that collects artifact change information
directly from the developer workspace, not influencing
his workflow. The objective of this mechanism is to
help developers to perceive concurrent artifact
changes and coordinate actions to minimize the effort
of getting a consistent global state of the shared
artifact. Change information is classified, grouped and
filtered to reduce a possible cognitive overload. An
observation study was performed, aiming to infer some
indicators about the utility of the mechanism.

1. Introduction

Due to businesses globalization, organizations had
to rethink and reevaluate their structures and
procedures, to remain competitive in the market.
Software organizations are also affected by this trend.
These organizations often search for external solutions
(e.g. outsourcing) in different locations, to explore the
advantages offered in those places.

Global Software Development (GSD) [13] takes
into account technical, social, and economical aspects
of developing software in a distributed setting. This
distribution is either geographical (members of a

software development team are dispersed spatially) or
over time (team members collaborate in alternated
schedules).

Herbsleb and Moitra [13] present some factors that
motivate GSD: (i) need to obtain scarce resources with
certain profiles; (ii) proximity to the software consumer
market; (iii) fast formation of corporations and virtual
teams, to explore business chances; and (iv) pressure to
provide time-to-market, exploring the possibility of
increasing productive work hours using the hourly
spindle differences among software development team
members. These factors are intrinsically related to the
increase of productivity and the reduction of costs on
software development. This “virtualization” of teams
and organizations leads to some difficulties on the
interaction of team members.

Despite these factors, there are tasks throughout the
software lifecycle that still require interactions among
individuals: creative brainstorming, pair-programming,
and peer review are some tasks that are usually
performed by more than one individual. In the context
of a distributed software development organization, the
enactment of this kind of task needs to be adapted in a
way that supplies the lack of some aspects found in a
face-to-face interaction (such as communication
easiness).

The software modeling activity is a software
development task that can be done in a distributed
setting. For example, delays in schedule could force the
adoption of task parallelism to meet the project
deadline. In such case, the modeling activity is divided
among different developers. More than one developer
can develop different model views, exploring
parallelism among tasks.

Developers can interact with each other through the
work (contributions) on individual copies of a shared
software model. From time to time, these copies must
be synchronized with a copy stored in a central
repository [24]. The divergence among contributions
over the shared model can cause a convergence effort,
often culminating in rework.

In Computer Supported Cooperative Work
(CSCW), an awareness mechanism for shared
workspaces is an alternative to assist tasks that present
some characteristics of the previously described
scenario. They provide information to developers about
which changes have been done, by who, when, where
and how they were done [12]. In the case of
interactions over copies of a shared software model,
change information is collected and presented to speed
up the detection of possible conflicts between the
copies of the developers. Therefore, change
information makes coordination of actions possible.
This kind of mechanism can be found in some general
groupware, but groupware task support is not as
complete as a specific single-user tool [16]. Sometimes
users have to change their way of work to use this kind
of mechanism found in general purpose groupware.

Figure 1 presents a scenario where an awareness
mechanism can be applied. Developers collaboratively
design a software model (‘M’), at different time and
location. It is assumed that developers D1 and D2 work
simultaneously on their copies in [T1, T2] period of
time. Now, suppose that developer D3 modifies ‘M’ in
a T0 instant of time, before any contribution has been
made by D1 and D2. When D1 and D2 begin to
contribute over their copies of ‘M’, they must be aware
of the changes made by D3. Also, they have to be
aware of each other's contributions, as well as who did
them. If D3 contributes again some times later (T3), he
must be aware of D1 and D2 changes. Thus, an
awareness mechanism is useful to make this change
information available to all developers.

Figure 1. Interactions over a shared model

This paper presents a Multi-synchronous Awareness
Infra-Structure (MAIS) mechanism and prototype that
aim to collect, distribute and present change
information over shared software models. This
information is offered to developers who participate in
a collaborative modeling interaction. MAIS was
developed to be integrated to an existing environment

or editor. The change information related to the state of
copies of the shared model is filtered and organized for
its presentation. It helps developers to understand
changes made over the other copies of the shared
model. The proposed approach aims to offer this kind
of support without breaking down the developer’s
workflow, registering the developer`s awareness state
in the shared group memory. The current version of
MAIS prototype considers changes over UML models
(in particular, class models) developed on the
OdysseyShare Environment [21].

The remainder of the paper is organized as follows.
The Background work is presented in Section 2. The
design of the awareness mechanisms MAIS is
discussed in Section 3, and its prototype is presented in
Section 4. An analysis of a preliminary viability study
is discussed in Section 5. Finally, Section 6 provides
the conclusion and future work.

2. Background Work

In the GSD context, developers can deal with two
sources of complexity [9]: (i) the development
complexity of a software artifact, and (ii) the
complexity of the distributed software development
process itself. So, it is important that developers have
some kind of tool support for executing their tasks.

CSCW provides many definitions to the awareness
conceptIn this paper, awareness means an
understanding of the activities of others. This provides
a context for a developer’s own activity. This context is
used to ensure that individual contributions are relevant
to the group activity as a whole, and to evaluate
individual actions with respect to the group goals and
progress. This information allows groups to manage the
process of collaborative working [7]. It is the
understanding of a system state (common artifacts
where individuals work on, including a particular
representation of these), as well as past activities,
current state and future options [26]. According to
Gutwin and Greenberg [12], the information used to
reach an awareness state could be obtained through: (i)
transference of others activities information about
collaboration; (ii) transference of the information
generated by the contributions over some shared
artifacts; and (iii) intentional communication between
collaboration members.

Rosa et al. [23] suggest that the awareness state can
be influenced by the context where the collaboration
occurs. The elements of this context must be identified
and represented to increase the awareness state of
collaborators. They consider that these elements can be
grouped into five categories of information, related to:

(i) individuals and groups; (ii) tasks previously
established; (iii) the relationship between people and
tasks; (iv) the environment where collaboration
happens; and (v) concluded tasks. This taxonomy was
proposed to help the identification of context elements
and the implementation of mechanisms that collect and
distribute these elements to collaboration individuals.

Awareness mechanisms are proposed aiming to
offer some indications about what happened, when,
how, where, and who has done something. They intend
to balance the amount of information that needs to be
presented [2]. These mechanisms are implemented to
help collaborators on the way they interact, which can
be classified as [20]: (i) synchronous, at the same time
using the same data; (ii) asynchronous, using the same
data but not necessarily at the same time; and (iii)
multi-synchronous, where each collaborator has a copy
of the shared data and, at certain periods of time,
synchronizes his copy to get an updated view of the
shared data.

To have a complete notion of a collaborative
interaction to which they belong, the individuals have
to be capable to realize: (i) the social context of groups
where they are members, (ii) the context of the
activities that they participate, and (iii) changes made
on their workspace during the interactions [2].

This approach uses the shared workspace to obtain
the awareness information, which is the immediate
understanding of actions of individuals [12]. It involves
knowing where others are working, what they are doing
and what they will probably do.

Tam et al. [28] describe the change awareness
concept as the ability of individuals to recognize
changes done in a collaborative artifact by another
participant. Keeping the change history helps the
collaboration members to remember past actions, and
contextualize new members about the progress of the
current activity.

Some approaches are found in literature to aid a
collaborative software modeling task. CO2DE tool [19]
is an implementation of a graphical editor of UML
diagrams. It is based on a "masks" metaphor, which
represents diagram versions. Another UML
collaborative editor is D-UML [3]. Tukan [25] is a
distributed environment for Smalltalk programming.
SAMS environment [20] allows collaborative edition
by synchronous, asynchronous and multi-synchronous
modes of interactions. NetEdit [31] is a collaborative
web-based text document editor.

There are collaborative tools that are non-obtrusive
while collecting and distributing awareness
information, that is, these actions do not disturb
developers when they are doing a collaborative task.

Palantír tool [24] complements configuration
management systems by offering information about
workspaces of other developers in a collaborative
session. Kobylinski et al. [15] present an approach of
an awareness system that allows collaborators to
monitor activities of others over software artifacts.

These approaches can be classified according to the
interaction mode between individuals. For example,
CO2DE, D-UML, and Tukan approaches offer support
to synchronous interaction (CO2DE also provides
asynchronous support). Palantír, SAMS, NetEdit and
the approach described in [15] work in a multi-
synchronous way, providing support to synchronous
and asynchronous modes too.

However, these approaches do not present the
developer's awareness of a given change over shared
artifacts as the approach proposed in this paper does.
This information can be useful, since it prevents
information overload to the "aware" developer.

Some studies [28] analyze the graphical
representations that illustrate changes over UML class
diagrams, besides presenting results of an empirical
study that determines strong and weak points of these
representations. These studies indicate that textual
change representations (who changes, what is changed,
when it changes) are the ones that have greater impact
among developers. The MAIS approach uses textual
change representation, as described in the next section.

3. Design

MAIS approach involves an awareness mechanism
that uses changes made on shared software models as
awareness information. It collects, distributes and
presents this information to developers that are
interacting on a shared software model.

By using MAIS, developers interact in a multi-
synchronous mode to manipulate shared software
models, offering to developers an independent way of
working. The contributions over a shared model are
done by each developer's local copy. So, it is possible
to manipulate this artifact in a concurrent way. MAIS
mechanism is meant to be used before the convergence
phase [29] of the shared model copies into a global
one, stored in a central repository.

The individual contributions over the shared model
are propagated to all developers, offering an overall
view of what is being done, which can be useful to
make a global “conscience” of the shared model. This
can help developers on the convergence phase, since
conflicts can be avoided by using this kind of
information. We assume that the convergence of the

shared model copies occurs when developers wish to
check-in their changes.

The MAIS specification is not dependent of a
modeling tool; it is a reusable software component [11]
that can be coupled to various CASE editors or
software environments. However these tools must
satisfy some basic extensibility requirements, for
instance, to provide an extensibility API. The modeling
tool must also have a notification mechanism about fine
grained model changes.

Contributions over the shared model generate the
awareness information, which are represented using an
event metaphor. It brings the idea of event notification
systems [22] [8] [6], where developers register
themselves on the collaboration to be notified when a
certain event (some contribution over the shared
model) occurs. For each event occurrence, this
awareness information is distributed to all developers
that are registered.

The awareness information is collected using a
sensor mechanism [22], which is associated to some
particular model elements. These sensors are installed
on the modeling tool and capture change information,
forwarding them to the MAIS mechanism that
broadcasts it.

The event concept is implemented using the 5W+1H
concept: an event is described by an action (How) over
a shared model (Where) element (What). These actions
are done by a developer (Who) in a certain period of
time (When). MAIS events also describe relevancy
relations; events related to changes in composite
elements are grouped in a single event.

Grouping Events

The change information can be manipulated to
highlight some “hidden” characteristics about the
interactions over the shared model. It is useful to help
developers on doing their model contributions, because
this enriches their knowledge about the context where
the interaction occurs. Grouping events by a
characteristic (for example, by developer) makes it
possible to observe where actions (represented by
events) are located over the shared model. For
example, let us consider a UML class model as the
shared model presented in Figure 1. Grouping change
information of a specific UML class by developer can
lead us to infer how much each developer knows about
each class, i.e., the volume of changes can indicate the
developer’s knowledge about the class.

Ranking Events

Apart from grouping events by some characteristics,
it is interesting that developers are provided with
information about events that are important to their
work. An event ranking can be established with this
goal. A value can be attributed to each event to
determine its importance for a given developer.

Thus, MAIS introduces the event relevance concept.
It aims to measure how important some kind of event is
to a developer by analyzing other past events.

This value, called Relevance degree (Gr), related to
the event "e" for "D", is calculated by applying the
following formula:

Gr(e,D) = Er(e,D)/Eg(D)*100

where "Er" represents the amount of events that a
developer "D" generated, relative to a shared model
element "e"; and "Eg" is the total amount of events
generated for "D".

For example, in a shared UML class model, if a
"D1" developer has generated 40 change events, being
5 of these related to the "C" class, events which involve
the "C" class (element) have a relevance degree of
12.5% for "D1".

Filtering Events

Finally, developers do not want to spend too much
time searching for relevant events, since their work
flow can be negatively influenced by long duration
searches. The grouping and relevance concepts should
help to reduce the number of events that each
developer has to analyze.

However, the amount of events grouped by category
can become very large. It is reasonable to imagine that
many of these events may have been noticed by
developers during the session and it might not be
productive to show them again. Thus, event filtering
can attenuate the overload problem.

MAIS mechanism does event filtering driven by a
certain criteria, which is defined at the design phase of
the mechanism implementation. The event aware
information concept indicates the event existence
information noticed by a developer. As such, events
can be marked as "aware". This developer's "aware
state" can be used to infer the knowledge of others
about the contributions (I know that you know/don't
know) [5].

4. Implementation

MAIS prototype was implemented as part of the
OdysseyShare Environment [21], using the Java

platform. The prototype uses a tuple space [4], which
stores the generated events. This tuple space works as a
shared workspace. The prototype uses UML class
model as the shared software model.

Figure 2 presents MAIS event model. The event
concept implementation consists of an action ("Event"
abstract class) combined with a model element
("Element" abstract class). The supported actions are:
(i) register itself on the interaction ("Register" class);
(ii) create ("Create" class); (iii) delete ("Delete" class);
and (iv) modify ("Update" class) a model element.
When an element is modified, “Change” class
represents the changes over this model element. The
supported UML class model elements are: (a) class, (b)
attribute, (c) method, and (d) relationship.

Figure 2. MAIS event model

The tuple space works as a repository of events;
objects are stored, removed and searched in this space.
This is installed in some network node, accessible to all
developers through the mechanism. When an
interaction over the shared model begins, the
developers register themselves on the mechanism, to be
notified when the objects are stored in the tuple space.

GigaSpaces server [10] is the used implementation
of JavaSpaces specification [14], which is an
application of the tuple space concept. When new
events are created, developers are notified and are able
to retrieve them from the tuple space.

Figure 3. Presentation of generated events

As mentioned in the previous section, MAIS
prototype is coupled to a software development

environment or CASE tools in the following way: the
environment/tool must provide some API that reflects
the supported changes on a certain shared model (for
example, an element creation) and it is necessary to
register MAIS to listen to these events. Thus, when a
change is made on the shared model, the
environment/tool notifies MAIS about this event.

The events are presented to developers as text
messages, describing the event that generated it, and
the model elements affected by the event. The events
are presented in two lists, depending on who generated
them. Events generated by the current developer are
presented in the left hand side list, while events
generated by others are presented in the right hand side
list (Figure 3).

5. Observation Study
Since the awareness concept is associated to an

individual’s mental state [26], it is important to observe
the usage of MAIS prototype. This observation can
provide information about the mechanism applicability
in a given scenario, identifying deficiencies and new
requirements. This section presents a qualitative
observation study about MAIS prototype use [30]. This
empirical study consists on observing its use within a
collaborative modeling session, registering data related
to aspects such as user’s satisfaction on using the
prototype, improvements suggested by users, and so
on.

This preliminary study does not aim to test
hypothesis; we aim to perform a exploratory study. It is
assumed that all developers are working on the same
version of a shared model. It is important to highlight
that it is not a prototype goal to generate a consistent
global state of the shared model. It only provides the
information about generated changes, which is used by
developers to guide their changes over the model
copies.

All MAIS users have the same role (i.e., developer).
There is no coordinator/moderator role; individuals
make contributions over the shared model trying to
generate a consistent version, discussing and deciding
how changes can be implemented.

The empirical study’s objective is described below,
following the structure presented in [30]:

Analyze the MAIS mechanism in an informal
concurrent modelling activity, related to changes
made in a shared model.
Intending to characterize the mechanism
usefulness, referring to users’ satisfaction in using it
and task applicability.
Regarding satisfaction with the performance and
efficiency in modeling activities.

In the developer's point of view.
Within the OdysseyShare environment context.

For the study enactement, ten volunteers were
invited. Four of them are computer science
undergraduate students at the Federal University of Rio
de Janeiro (UFRJ). The other six are Systems
Engineering and Computer Science graduate students
at UFRJ. Only one volunteer had previous experience
in using OdysseyShare environment. All volunteers
have some experience in object-oriented modeling.
However, no volunteer had previous experience with
the MAIS prototype.

The instruments used to execute the study were
adapted from [17] and involve: (i) a commitment term;
(ii) two questionnaires, to be answered by participants;
and (iii) a document describing the task, distributed to
each participant. All volunteers used OdysseyShare
environment (v.1.6.0) to execute the task. Four
volunteers were selected to use this environment
version combined with the MAIS prototype (v. 1.1.0).
Two volunteers’ sessions were used to calibrate the
study execution.

The following steps summarizes study: (i) each
participant signs the commitment document; (ii) they
answer the characterization questionnaire; (iii) they
read the task description; (iv) if necessary, they listen
to an oral explanation of MAIS prototype or
OdysseyShare usage; (v) they accomplish the task, and
(vi) they fill in the task accomplishment questionnaire.

The study task consists of a concurrent software
modeling session of a UML class model, where two
developers interact over the model at the same time.
Each one has some activities to do, and when they
finish, a meeting is established to merge their
contributions. The document that describes the task
presents a brief description of the model elements. The
used model was derived from MAIS event
representation class model.

Two groups of sessions were organized: (i) one with
developers that used the prototype, and (ii) a control
group without the prototype support. Each pair of
developers received the same version of the shared
UML class model. In both cases, the changes were
made using OdysseyShare environment.

Each participant reads the instructions described in
the task description document. A verbal explanation
about the prototype purpose is done for those who use
it. Participants act as developers, interacting
concurrently over the shared class model. Changes are
registered using the event metaphor, as previously
described.

Preliminary Analysis

After group (i) session (i.e., MAIS users), an
informal meeting was taken to discuss some general
points related to the prototype. All volunteers indicated
that the prototype should notify them when an
important event occurs. They suggested that an
important event should call the user’s attention (e.g.,
blink on the computer screen). This characteristic
would remind developers to turn to MAIS interface to
observe the shared model evolution. They found the
approach very useful, in the sense of situating the
possible “conflict areas” on the shared model,
concentrating their attention to the classes that they are
working with.

The same procedure (i.e, an informal meeting after
study execution) was taken to the group that didn’t use
the MAIS prototype. Due to the task simplicity, the
volunteers didn’t externalize the need of a tool to
support the task execution. The generated conflicts
were reasonable treated by using the OdysseyShare
environment alone.

Based on the data collected during the informal
meetings, the study has demonstrated some points for
improvements regarding the prototype: (i) the critical
changes for some developer must be highlighted,
possibly by playing a sound alarm or blinking on the
computer screen as suggested by some participants; (ii)
the questions must be revised, in terms of bias that was
detected in some points. For example, when the
volunteers answer the questions related to the proposed
task, they unintentionally give high grades for them.
Finnally, (iii) the task should be improved to provide
more conflicts betweens copies of the shared model.
The number of occurrences and the complexity of the
presented conficts turned out to be easy for the
execution of the task with or without the MAIS
support.

6. Conclusion

This paper described the isolation problem among
distributed developers that share software models, in
particular, UML-based models. In the CSCW research
field, the awareness concept is presented as the basis
for a technique that is meant to reduce this isolation. To
make it possible, change state information related to a
shared model is propagated through awareness
mechanisms to developers who interact over it.

Awareness support is present in groupware tools.
However, the task support offered by general
groupware is not as complete as the one found in
similar single-user applications [16]. Changing a

single-user modeling tool for an equivalent groupware
can cause a negative effect in the productivity and the
satisfaction of developers. Also, the learning curve for
using new tools can be inadequate to the team‘s
expectation.

This paper proposed an awareness mechanism for
change identification on shared models, and a
corresponding prototype named MAIS. Both were
developed to be general purpose, not being restricted to
a specific modeling tool. The kind of models supported
by the mechanism is represented using UML notation.

The MAIS awareness mechanism monitors
contributions made in the local workspace of each user.
It is non-obtrusive, using an event metaphor [22] to
propagate this information to every developer involved.
The information overload characteristic is considered
when change information is presented. MAIS
mechanism is able to identify local changes that were
not yet committed in the central version control
repository. The developers are notified in cases of
potential modeling conflicts, enabling preventive
actions [24].

Three procedures are considered by MAIS
mechanism to present the shared model evolution
information: (i) classification, (ii) grouping, and (iii)
filtering of events. Filters are established to reduce
information overload related to changes on shared
software model. The mailbox metaphor is applied in
this procedure. Events already processed by the end-
user are presented in a different area of the user
interface. Another concept adopted in filtering is the
“awareness of awareness”. The event processing
information can be accessed by the other developers.
New actions can be driven according to this kind of
information.

One of the main contributions of this paper is the
design and implementation of an independent and non-
obtrusive mechanism that collects and distributes
change information related to copies of a shared
software model. The collected events are available to
be used by other tools, being possible to do some data
analysis outside the mechanism. The use of software
models allows to detect inconsistencies in initial phases
of the software lifecycle, especially when these models
are described in a well-formed language such as UML.
The relevance and change aware information is
obtained in the interaction process over a shared
model, not impacting the developer's workflow.

The observation study highlights the importance of
notifing developers about changes. This can be done by
using some kind of alarm. This feature was reported by
all developers, because sometimes they “forget” the
existence of the tool. MAIS prototype behaves as

expected, offering a global notion of contributions over
the shared model and identifying the critical “pieces”
of the shared model that each developer works on.

As future work, we consider the need of exploring
new ways of awareness information presentation,
representing the evolution of the shared model. There
is the need to complete our work by searching for some
patterns of change information that could be useful on
the detection of conflicts and decision making. These
patterns can help the identification of a non explicit
ability of a team member and provision of information
about productivity and quality of the produced
artifacts. Some kind of automation for conflicts
detection needs to be designed and implemented. A
case study must be applied in an industrial setting. We
also realized that it is necessary to review the proposed
task in order to have more conflicts situations, to
observe the prototype behavior in this context. A
quantitative approach will be adopted in a next version
of this study, and training on the modeling tool will be
prepared.

7. References

[1] ALTMANN, J., POMBERGER, G., 1999, "Cooperative
Software Development: Concepts, Model and Tools"
Proceedings of the Technology of Object-Oriented
Languages and Systems, pp. 194-209, Santa Barbara,
California, United States, August.
[2] ARAÚJO, R. M., 2000, “Extending the Software Process
Culture - A Groupware and Workflow-Based Approach”,
DSc. Thesis, COPPE-UFRJ, Rio de Janeiro, RJ, Brazil.
[3] BOULILA, N., DUTOIT, A. H., BRUEGGE, B., 2003,
"D-Meeting: an Object-Oriented Framework for Supporting
Distributed Modeling of Software" International Workshop
on Global Software Development, International Conference
on Software Engineering, pp. 34-38, Portland, Oregon,
United States, May.
[4] CARRIERO, N., GELERNTER, D., 1989, "Linda in
context", Communications of ACM, v. 32, n. 4, pp. 444-458.
[5] DAVID, J. M. N., BORGES, M. R. S., 2001, "Selectivity
of Awareness Components in Asynchronous CSCW
Environments". In: Proceedings of 7th International
Workshop on Groupware (CRIWG 2001), pp. 115-124,
Darmstadt, Germany, September.
[6] DE SOUZA, C. R. B., BASAVESWARA, S. D.,
REDMILES, D. F., 2002, "Supporting Global Software
Development with Event Notification Servers". In:
Proceedings of 24th International Conference on Software
Engineering, International Workshop on Global Software
Development, pp. 9-13, Orlando, Florida, United States,
May.
[7] DOURISH, P., BELLOTTI, V., 1992, "Awareness and
coordination in shared workspaces" Proceedings of the 1992
ACM conference on Computer-supported cooperative work,
pp. 107-114, Toronto, Ontario, Canada.

[8] FARSHCHIAN, B. A., 2001, "Integrating geographically
distributed development teams through increased product
awareness", Information Systems., v. 26, n. 3, pp. 123-141
[9] FROEHLICH, J., DOURISH, P., 2004, "Unifying
Artifacts and Activities in a Visual Tool for Distributed
Software Development Teams". In: Proceedings of 26th
International Conference on Software Engineering, pp. 387-
396, Edinburgh, United Kingdom, May.
[10] GIGASPACES, 2006, "Gigaspaces Grid Server". In:
http://www.gigaspaces.com/docs/doc/index.htm, Accessed in
22/04/2006.
[11] GRUNDY, J., HOSKING, J., 2002, "Engineering plug-
in software components to support collaborative work",
Software: Practice and Experience, v. 32, n. 10, pp. 983-
1013
[12] GUTWIN, C., GREENBERG, S., 2001, "A Descriptive
Framework of Workspace Awareness for Real-Time
Groupware", Computer Supported Cooperative Work, v. 11,
pp. 411-446, Kluwer Academic Publishers.
[13] HERBSLEB, J. D., MOITRA, D., 2001, "Guest Editors'
Introduction: Global Software Development,", IEEE Soft., v.
18, n. 2, pp. 16-20, IEEE Computer Society Press.
[14] JAVASPACES, 2006, In:
http://java.sun.com/developer/Books/JavaSpaces. Accessed
in 22/04/2006.
[15] KOBYLINSKI, R., CREIGHTON, O., DUTOIT, A., et
al., 2002, "Building awareness in global software
engineering: using issues as context" International Workshop
on Global Software Development, pp. 18-22, Orlando,
Florida, United States.
[16] LI, D., LI, R., 2002, "Transparent sharing and
interoperation of heterogeneous singleuser applications". In:
Proceedings of the 2002 ACM Conference on Computer
Supported Cooperative Work, pp. 246-255, New Orleans,
Louisiana, United States.
[17] MANGAN, M. A. S., ARAÚJO, R. M., KALINOWSKI,
M., et al., 2002, "Towards the Evaluation of Awareness
Information Support Applied to Peer Reviews". In:
Proceedings of 7th Conference on Computer Supported
Cooperative Work in Design (CSCWD´2002), pp. 49-54, Rio
de Janeiro, Brazil, September.
[18] MANGAN, M. A. S., BORGES, M. R. S., WERNER,
C. M. L., 2004, "Increasing Awareness in Distributed
Software Development Workspaces". In: Proceedings of 10th
Groupware: Design, Implementation, and Use, v. 3198, pp.
84-91, San Carlos, Costa Rica, September.
[19] MEIRE, A., BORGES, M. R. S., ARAÚJO, R. M.,
2003, "Supporting Collaborative Drawing with the Mask
Versioning Mechanism". In: Proceedings of 9th Groupware:
Design, Implementation, and Use (CRIWG 2003), v. 2806,
pp. 208- 223, Autrans, France, September.
[20] MOLLI, P., SKAFA-MOLLI, H., OSTER, G., et al.,
2002, "SAMS: Synchronous, Asynchronous, Multi-

Synchronous Environments". In: Proceedings of 7th
International Conference on Computer Supported
Cooperative Work in Design (CSCWD 2002), pp. 80-84, Rio
de Janeiro, RJ, Brazil, October.
[21] ODYSSEY, 2006, "OdysseyShare Project". In:
http://reuse.cos.ufrj.br/odyssey, Accessed in 22/04/2006.
[22] PRINZ, W., 1999, "NESSIE: an awareness environment
for cooperative settings". In: Proceedings of the 6th
European Conference on Computer Supported Cooperative
Work, pp. 391-410, Copenghagen Denmark.
[23] ROSA, M. G. P., BORGES, M. R. S., SANTORO, F.
M., 2003, "A Conceptual Framework for Analyzing the Use
of Context in Groupware". In: Proceedings of 9th
Groupware: Design, Implementation, and Use, v. 2806, pp.
300-313, Autrans, France, October.
[24] SARMA, A., NOROOZI, Z., VAN DER HOEK, A.,
2003, "Palantír: raising awareness among configuration
management workspaces". In: Proceedings of 25th
International Conference on Software Engineering (ICSE),
pp. 444-454, Portland, Oregon, United States, May.
[25] SCHÜMMER, T., SCHÜMMER, J., 2001, "Tools for
XP Development - Support for Distributed Teams in
eXtreme Programming". In Succi, G. and Marchesi,
M.,eXtreme Programming Examined, Addison Wesley.
[26] SOHLENKAMP, M., 1998, Supporting Group
Awareness in Multi-User Environments through
Perceptualization, Msc Dissertation - Fachbereich
Mathematik, Informatik der Universität - Gesamthochschule
- Paderborn.
[27] TAM, J., GREENBERG, S., 2004, "A Framework for
Asynchronous Change Awareness in Collaboratively-
Constructed Documents". In: Proceedings of 10th
Groupware: Design, Implementation, and Use, v. 3198, pp.
67-83, San Carlos, Costa Rica, September.
[28] TAM, J., MCCAFFREY, L., GREENBERG, S., 2000,
Change Awareness in Software Engineering Using Two
Dimensional Graphical Design and Development Tools.
Report 2000-670-22, Department of Computer Science,
University of Calgary, Alberta, Canada.
[29] VIDOT, N., CART, M., FERRIÉ, J., et al., 2000,
"Copies convergence in a distributed real-time collaborative
environment". In: Proceedings of the 2000 ACM Conference
on Computer Supported Cooperative Work, pp. 171-
180,Philadelphia, Pennsylvania, United States.
[30] WOHLIN, C., RUNESON, P., HÖST, M., OHLSSON,
M.C., REGNELL, B., WESSLÉN, A., 2000,
Experimentation in Software Engineering: an Introduction,
Kluver Academic Publishers, Norwell, Massachusets.
[31] ZAFFER, A., SHAFFER, C., EHRICH, R., et al., 2001,
NetEdit: A Collaborative Editor. Report TR-01-13,
Computer Science, Virginia Tech, United States.

Exploring Coordination Structures in Open Source Software Development

Chintan Amrit, J.H. Hegeman and Jos Van Hillegersberg
University of Twente, The Netherlands

{c.amrit, j.h.hegeman, j.vanHillegersberg}@utwente.nl,

Abstract

Coordination is difficult to achieve in a large
globally distributed project setting. The problem is
multiplied in open source software development
projects, where most of the traditional means of
coordination such as plans, system-level designs,
schedules and defined process are not used. In order to
maintain proper coordination in open source projects
one needs to monitor the progress of the FLOSS
project continuously.

We propose a mechanism of display of Socio-
Technical project structures that can locate the
coordination problems in open source software
development. Using the tool TESNA (TEchnical and
Social Network Analysis) that we have developed; we
cluster the software and produce a display of the
different software clusters as well as the people
working on its constituting software classes. We then
demonstrate the technique on a sample FLOSS project
that is on the brink of becoming inactive.

1. Introduction

Distributed self-organizing teams develop most
Free/Libre Open Source Software (FLOSS).
Developers from all over the world rarely meet face to
face and coordinate their activity primarily by means of
computer-mediated communications, like e-mail and
bulletin boards [1, 2] . Such developers, users along
with the associated user turned developers of the
software form a community of practice [3]. The success
or failure of open source software depends largely on
the health of the health of such open source
communities [4, 5]. Most of the literature on open
source software development attests its success and
only a relatively small but growing number of
empirical studies exist that explain how these
communities actually produce software [2, 6, 7]. Also,
not everything is ok with open source development
projects. Out of 153579 projects registered in source

forge, only 12.24% of the projects had attained stable
status (has a stable version of their software) when we
last checked in July 2007. For an IT professional or
FLOSS project leader it seems to be crucial to know
the status of the open source project in order to
contribute or recommend the project [4]. To this extent
we provide a set of STSCs which can be checked in
order to see the coordination inconsistencies of the
work being done in an FLOSS project.

deSouza et al recognize socio-technical patterns of
work assignment among the open source community
members [7]. In this paper, we extend this research
further by identifying socio-technical coordination
problems, what we call Socio-Technical Structure
Clashes or STSCs [8] based on some of these patterns.
We provide a theoretical framework along with a
technique for the identification of such STSCs. We
then show the occurrence of the FLOSS STSCs in one
open source project called JAIM, in order to
demonstrate the technique.

2. OSS Community Structure

Although there is no strict hierarchy in open source
communities, the structure of the communities is not
completely flat. There does exist an implicit role based
social structure, where certain members of the
community take up assume certain roles by themselves
based on their interest in the project [3].

According to Crowston and Howison a healthy open
source community has the structure as shown in Figure
1 with distinct roles for developers, leaders and users.

Core Developers: Core developers are responsible
for guiding and coordinating the development of a
FLOSS project. These developers are generally
involved with the project for a relatively long period,
and make significant contributions to the development
and evolution of the FLOSS system.

Figure 1: A healthy open source community (taken

from [4]).

In those FLOSS projects that have evolved into their
second generation there exists a council of core
members that take the responsibility of guiding
development. Such a council replaces the single core
developer in second-generation projects like Linux,
Mozilla, Apache group etc.

Project Leaders: The Project Leader is generally
the person responsible for starting the FLOSS project.
This is the person responsible for the vision and overall
direction of the project.

Co-developers: Also known as peripheral
developers, occasionally contribute new features and
functionality to the system. Frequently, the core
developers review their code before inclusion in the
code base. By displaying interest and capability, the
peripheral developers can move to the core.

Active Users: Active users contribute by testing
new releases, posting bug reports, writing
documentation and by answering the questions of
passive users.

Each FLOSS community has a unique structure
depending on the nature of the system and its member
population. The structure of the system differs on the
percentage of each role in the community. In general,
most members are passive users, and most systems are
developed by a small number of developers [2].

3. STSCs in FLOSS projects

A Socio-Technical Structure Clash (STSC) occurs if
and when a Socio-Technical Pattern exists that
indicates that the social network of the software
development team does not match the technical
dependencies within the software architecture under
development. STSCs are indicative of coordination

problems in a software development organization.
Some of these problems (or STSCs) concerning
development activities have been collected and
described by Coplien et al. including a set of what they
call Process Patterns to deal with these coordination
problems. As the term process patterns is also used in
business process management and workflow, we prefer
to use the term Socio-Technical Patterns to refer to
those patterns involving problems related to both the
social and technical aspects of the software process [8].
de Souza et al. identify the following 2 socio-technical
patterns by mining software repositories [7]:

 Core Periphery Shifts: In a healthy FLOSS
project the peripheral developers more from the
periphery of the project to the core, as their
interest and contribution in the project increases
[4, 7, 9]

 Code Ownership: In a healthy FLOSS project,
the ownership of important code changes from
a group of developers to one single developer
[7, 10]

Therefore, the STSCs based on these Socio-
Technical Patterns would be:

1. If the developers in the periphery do not move
towards the center core

2. If the developers in the core move to the
periphery of the project

3. If the ownership of important modules are
shared by a large group of developers with no
developer taking sole responsibility

From now on, we would refer to these STSCs as
FLOSS STSC 1, 2 and 3 respectively.

4. Detection of STSCs in FLOSS

In order to detect STSCs related to FLOSS projects
we used a clustering algorithm based on the algorithm
by Fernandez [11] and later on used by MacCormack et
al.[12]. We implemented this algorithm (see Appendix)
to cluster the software components into 10 clusters, in
such a way that the clustered cost given by:

Figure 2: Class clustering of the JAIM software

was less than one. The resulting software clusters were
as shown in Fig 2. We then included the author
information of the components (extracted from the
project’s software repository (SVN)) in the same
diagram and displayed the authors of the individual
code modules as authors of the respected clusters (in
which the code modules lay), as seen in Fig 4. As this
clustering method is based on the dependencies
between, the software components, the central cluster
would represent the most dependent components of the
software, or in other words the software core. Thus, the
structure of the clustered software graph would
represent the actual core and periphery of the software
architecture. It has to be noted that this break up of
core and periphery is based on software dependencies
and could be different from that which was designed
(especially in commercial software development, which
generally follows traditional process of designing,
developing and testing cycles). In this paper we trace
the co-evolution of the project and the communities [9]
and show the method of detecting FLOSS related
STSCs by looking at the author-cluster figure (Fig 4-7)
at equal intervals in the development lifetime of the
project.

5. Empirical Data

In order to show the occurrences of the three STSCs
we searched Sourceforge and selected a project called
JAIM. The reason behind selecting JAIM was that it
has a low activity percentage for the last year, and has
no write activity in the repository (SVN) after 2006
(Fig 3). The public forums had 4 messages of which
two were welcome messages. The mailing lists were
empty. So were the Bug reports, support requests,
patches and feature requests. This lack of activity
showed that the project was heading towards becoming
inactive. Therefore, we wanted to investigate the task
structures over the period of the project, and see if we
can find the three STSCs in this project.
TESNA can only display the dependencies between
java modules, hence any of the .html documentation or
java script files cannot be seen in the class cluster
displays. Therefore, developers working on any of the
non-java files will appear to be unconnected in the
author-cluster displays. The software releases did not
change the dependencies between the components in
the releases 3 through 10, so the call graph and
consequently the cluster graph of the software
remained the same. So we just had to add the changed

Figure 3: Subversion activity of JAIM (taken from Sourceforge)

author information in the TESNA tool in order to get
the picture of which author was changing which
module, belonging to the particular cluster.

6. Discussion

Using the tool TESNA
1
 that we have developed we

generated the author-cluster diagrams. We analysed the
various write revisions in the repository (SVN) in order
to detect STSCs mentioned in section 3. The latest
revision of the project was 10, so we analysed revisions
at equal intervals namely revisions 3, 5, 7 and 10. We
have used TESNA to analyse the author-cluster
diagrams qualitatively. We think approach is best
suited in detecting such STSCs.

The first thing we notice in the author-cluster
diagrams is that only 3 developers contributed to the
development in the revisions 3, 5, 7 and 10 we
observed namely, coolestdesignz, root and dingercat
though 6 developers were listed as the developers in
the project had 6 developers listed. Of these developers
coolestdesignz is listed as the project administrator.

In revision 3 (Fig 4), we notice the developer
coolestdesignz altering files in the core cluster 3 and
the peripheral cluster 6. The developer root is also
visible but is not visible changing any file in any cluster
in the diagram as he/she would have
changed/contributed to a non-java file. Since the

1 http://tesnatool.googlepages.com

file(s) is not in java, it’s an .html or java script file
which would mean that root is a peripheral or co-
developer for this revision.
From figure 4 to 7, we see the occurrence of FLOSS
STSC 1 (section 2) as the peripheral developer root
does not move to the core.

We notice FLOSS STSC 2 as core cluster developers
coolestdesignz and dingercat move to the peripheral
region, as coolestdesignz disappears after revision 3
(Fig 4), while dingercat moves from being a core
developer to being a co-developer in revision 10 (Fig
7). FLOSS STSC 3 can be seen between revisions 3
and 5 (Fig 4 and 5) where coolestdesignz as well as
dingercat modify the core cluster with no single
developer responsible for the modules in the core
cluster.

Figure 4: Class Clusters along with Author information for revision 3

Figure 5: Class Clusters along with Author information for revision 5

Figure 6: Class Clusters along with Author information for revision 7

Figure 7: Class Clusters along with Author information for revision 10

7. Conclusion

In this paper, we have tried to come up with STSCs
based on FLOSS literature. We have showed a

technique (a clustering based display mechanism) that
can be used to detect STSCs in FLOSS projects. We
have tried to demonstrate this technique by detecting
STSCs in an open source project JAIM. The project
JAIM is in the beta stage of development and has all
the signs of joining the ranks of an inactive project in
the Sourceforge database. Through the detection of
STSCs, we plan to inform the project leader (of JAIM
for example) as well as potential interested developers
on the health of the open source project. Though, there
are other ways of detecting the health of an open source
community [4, 5], the techniques they use do not
display the actual task allocation of the FLOSS project.

In this paper, we display a technique using the actual
mining of data from the code repositories to see the
actual contributions of the developers. The greater the
number of STSCs found in the project the worse would
be its health. Future work could involve the
identification and detection of many more STSCs in
different open source projects enabling project
managers to manage the FLOSS development process
in a better way.

References

1. Raymond, E., The Cathedral and the Bazaar.
Knowledge, Technology, and Policy, 1999.
12(3): p. 23-49.

2. Mockus, A., R.O.Y. T Fielding, and J. D
Herbsleb, Two Case Studies of Open Source
Software Development: Apache and Mozilla.
ACM Transactions on Software Engineering
and Methodology, 2002. 11(3): p. 309-346.

3. Ye, Y. and K. Kishida, Toward an
Understanding of the Motivation of Open
Source Software Developers. 2003. p. 419-
429.

4. Crowston, K. and J. Howison, Assessing the
Health of Open Source Communities. 2006,
IEEE Computer Society Press Los Alamitos,
CA, USA. p. 89-91.

5. Crowston, K., H. Annabi, and J. Howison,
Defining Open Source Software Project
Success, in International Conference on
Information Systems. 2003.

6. Yamauchi, Y., et al., Collaboration with Lean
Media: how open-source software succeeds.
2000, ACM Press New York, NY, USA. p.
329-338.

7. de Souza, C., R. B., J. Froehlich, and P.
Dourish, Seeking the source: software source
code as a social and technical artifact, in
GROUP '05: Proceedings of the 2005
international ACM SIGGROUP conference
on Supporting group work. 2005: New York,
NY, USA. p. 197--206.

8. Amrit, C. and J. Hillegersberg, Mapping
Social Network to Software Architecture to
Detect Structure Clashes in Agile Software
Development, in 15th European Conference
of Information Systems. 2007.

9. Ye, Y. and K. Kishida. Toward an
understanding of the motivation Open Source
Software developers. in 25th International
Conference on Software Engineering. 2003:
IEEE Computer Society Washington, DC,
USA.

10. Coplien, J., O. and N. Harrison, B. ,
Organizational Patterns of Agile Software
Development. 2004: Upper Saddle River, NJ,
USA.

11. Fernandez, C.I.G., Integration Analysis of
Product Architecture to Support Effective
Team Co-location. 1998, MIT: Boston, MS.

12. MacCormack, A., J. Rusnak, and C.Y.
Baldwin, Exploring the structure of complex
software designs: An empirical study of open
source and proprietary code. Management
Science, 2006. 52(7): p. 1015-1030.

Appendix
Clustering Algorithm:

clusters findClusters (param inputDSM) {
Set clusters = one cluster for each module;
int cost = calculate initial total cost;
int failedattempts = 0;
Do {

m = a random module from inputDSM;
For every element c from clusters {
 calculate bid of c for m;

}
cmax = highest bidding cluster;
best_bid = bid from cmax;
If (best_bid > 0) {

Reassign m to cmax;
For every element c from clusters {

If (c is empty) remove c;
}
cost = cost – best_bid;
failedattempts = 0;

} else {
failedattempts++;

}
} while (failedattempts <= FAILED_LIMIT)
Return clusters;

}

Tool Support for Distributed Software Development
The past – present – and future of gaps between user requirements and tool functionalities

Miles Herrera* and Jos van Hillegersberg**
* Requirements and Process Engineer, Atos Origin The Netherlands, m.herrera@atosorigin.com

** Professor of Information Systems, University of Twente, The Netherlands,
j.vanhillegersberg@utwente.nl

Abstract

This paper presents the past, present, and our
view on future user requirements and tool
functionalities supporting Globally Distributed
Software Teams and highlights the changing
emphasis in these user requirements..

1. Introduction
Ten years ago Gartner Group predicted that by the

year 2003 [1] about 140 million global business users
worldwide would be involved in remote work. We all
have been part of the fulfillment of this 'prophecy' and
it is likely that this figure will continue its exponential
growth. The software sector is increasingly adopting
globally distributed work as a means to utilize skilled
resources around the world, speed up development and
save costs. However, Globally Distributed Software
Teams (GDST) face new challenges that were not
present in the days of co-located development. Most of
the tools created to support the work of software teams
have not specifically been designed for GDST. Also,
only recently research is giving more insight into
effective practices and processes for GDST. As a
result, establishing a comprehensive tool environment
for GDST is a challenge. As the market is rapidly
evolving, this paper provides a framework for assessing
GDST requirements. We use this framework to provide
an overview of the past, present and future of GDST
tools. The results reveal that the requirements are
shifting from support for collaborative coding and
requirements management to communication, process
management and collaboration support. In addition
there is an increasing need for various types of
integration: between both generic and special purpose
tools, between planning and monitoring tools, and
between technical (code and design) and social
(communication and management) tools. The paper
first introduces the framework and then uses the
framework to analyse the past, present and future
GDST requirements and tool offerings. We analyze the

past requirements and tool market using our earlier
survey of the tool market conducted from 1997-2002.
We base our analysis of the present and future on
recent developments in requirements and the tool
market (2002-2007) and our view on future.

2. Scope/ methodology
In this paper we present the changes of focus in the

past 10 years when looking at GDSD projects. By
taking three different views in the analysis –
management, tool vendor, and research – we present
different patterns for further research. For the analysis
the model of Globally Distributed Software
Engineering Environment (Kotlarsky et al., 2001) is
used as a framework. This framework is used to
highlight changing areas of attention over the past ten
years.
The analysis is based on a survey of tool
functionalities, empirical study (including experience in
the field, observation, and semi-structured interviews)
and literature study.

3. A framework for tool requirements
Kotlarsky et al., (2001) integrate several earlier

studies into a generic model for requirements for
Globally Distributed Software Engineering
Environments. We will use this framework for our
analysis and summarize it here. It includes the
following categories of user requirements (UR):
UR1: Describe and maintain data information during
the product development life cycle.
UR2: Coordinate and control during a project and
across projects.
UR3: Have common/remote accessibility to the project
environment.
UR4: Negotiate and reach consensus with other GDSD
team members.

The inside area of the model in Figure 1 illustrates the
common workspace, and contains the product, process,
and project organization structures that are

interconnected by plans. They are used to describe and
maintain data information required by (remote) project
members during the product development life cycle
(UR1).

The coordination and control framework (UR2),
surrounding the common workspace, includes the
following activities:
 Planning, scheduling,

allocation

 Constraint management

 Monitoring  Progress measurement and

ensuring quality

 Outsourcing management  Risk management

 Configuration

management

 Version management

 Tracing management

All these activities apply to relevant components of the
common workspace. Consequently, most of the
coordination and control activities could be considered
as product-, process- and organization-oriented. (e.g.
Tracing management provides mechanisms to trace
user requirement – to make sure that they are
implemented in design and later in coding).

The third dimension of the model, the dark gray areas,
displays the requirements of the common workspace
and coordination and control framework necessary to
make it available for working in a distributed setting
and support remote communications:

Common accessibility (UR3) is required in a
distributed environment to make product, process,
project organization structures and plans transparent
(visible) through remote sites and to allow remote
access to the required data/information.

Framework for negotiation and reaching of consensus
(UR4) provides functionality needed to support remote
communications. It applies to all elements of the
coordination and control framework and common
workspace as well. On the technical level, the above-
mentioned functionality will be provided by
collaborative technology.

Together, common accessibility and framework for
negotiation and reaching of consensus are supposed to
eliminate (or at least reduce) the perception of distance,
and unite remote project members creating a joint
project environment.

4. Past – Present – Future
This section presents our analysis of the different
periods. Each paragraph explains the characteristics
from three different points of view: management, tool
vendor, and research.

4.1. The past (1997 – 2002) – Product oriented
vendor driven market

Management
Around the Millennium, driven by the fast adoption of
Internet, the working environment of software
development projects changed. Projects became more
globally dispersed, run over different time zones, and
across organizations [2]. Also, as teams became
increasingly dispersed, new challenges were introduced
like the standardizing and sharing designs, sharing
ideas and experiences, and sharing/storing of work in a
shared repositories. To meet these challenges GDSD
teams highly relied on optimal tool support.
Traditionally software development teams have used
Computer-Aided Software Engineering (CASE) tools
and Version Management Systems (VMS). However,
these tools were usually not designed to support
dispersed teams and issues were resolved in face-to-
face meetings.
During this period much attention was paid on tools
and less on the underlying process. As there was a lack
of standardization of tools and limited alignment with
the development process, projects were often difficult
to manage.

Figure 1 The Model of GDSD Engineering Environment

Tool vendor
Our earlier research of the tool market conducted in
2002 [3] was aimed at analyzing the gap between
GDST user requirements and tool offerings. We
investigated how a GDST tool environment consisting
of a combination of tool functionalities of CASE tools,
GSS tools, and VMS tools could meet the
requirements. Ideally the resulting user requirements of
each activity identified in the model of GDSD (Fig. 1)
should be supported. For the research three commercial
CASE tools were chosen, Together ControlCenter
version 5.5 (Borland), Rose version 2001 (IBM
Rational), and TauUML (Telelogic). A fourth tool
(non-commercial), JComposer, was added to the list
and represented the category of research tools. The
VMS tools were SourceCast (Collabnet), ClearCase
(IBM Rational), PVCS Version Manager (Merant), and
Visual SourceSafe (Microsoft). In order to extend the
change tracking functionality, ClearCase was combined
with ClearQuest and PVCS Version Manager with
Tracker. The tools representing the GSS tools were
Lotus Notes integrated with Sametime, MS Exchange
2000 integrated with Conferencing Server, SiteScape
Forum, and eRoom 5.0 integrated with eRoom Real
Time Services.

Table 1_ Enhancements to CASE tools

Our study concluded that no single tool came close to
covering the needs of GST. Also, no combination of
tools could provide an ideal environment. Tools in
various categories had overlapping functionalities and
also gaps existed. Moreover, as a result of limited
standardization integration between tool functionalies
was lacking or primitive. The research concluded with
advice on how to improve the existing CASE tools to
fit better to the user requirements. This was done by
closing the gap in functionality by adding functionality
to the tool or integrating with other tools (Table 1).

Research

Mostly outside the area of software development
Group Support Systems (GSS) emerged specially
focused on supporting teamwork. However, the
integration or support of GSS functionality in CASE
tools was in this period in its infancy and received
more attention from the research community then from
the vendor community. Examples are the Knight
tool[4] and JComposer[5].

4.2. The present (2002 – 2007) – Process
oriented vendor driven market Quality – Costs
– Time

Management
The last five years and after the ‘ Internet Bubble’ have
been characterized by the emphasis on the development
process rather then tooling. Having the process as the
central nerve in GDSD, management is able to select
the right tools. Companies fighting to maintain their
competitive advantage have become more rigorous in
keeping the balance between quality – costs – and time
to market. The ‘hype’ behind outsourcing and off
shoring in search of lowering development and services
costs, have forced IT management to improve and
redesign their software development process.
Project risk management has also received more
attention in the Coordination and Control area of the
framework. Risk management introduces three ‘new’
risk factors in GDSD – trust, culture, and collaborative
communication. Cultural differences are primarily a
risk source (an origin for problems), whereas trust is
primarily a risk driver (a manifestation for problems).
Communication can be a source (e.g. mistranslation of
requirements) or a driver (manifesting lack of
management support), or both[6]. To implement risk
management successfully the theoretical aspects of
project risk management have to be integrated with
practical challenges of the organization. At the end risk
management process will succeed by changing the
organizational culture to motivate the individual.
Cultural changes require time and repetition before
they are firmly embedded in the organization [7].

Tool vendors
A market consolidation caused by the take over of
several small players by the market leaders IBM and
Microsoft has reshuffled the tool vendor landscape.
The two important market players have been working
on an integrated collaboration platform, respectively
IBM Workplace with Eclipse Lotus Notes/Domino
technology and Microsoft Vista [8]. Community
software allows the usage of low cost single tools for
collaboration between project sites. Tools like jabber &

msn chat, groupware like yahoo groups, Google shared
docs en spreadsheets, the new Sharepoint/Office 2007,
to mention a view. Experiences from nine different
GDSD projects at Siemens show promising results
about the usage of synchronous tools like chat and
asynchronous tools like wikis and discussion boards
when working in different time zones [9]. Another
study [10] reaffirms the effective usage of synchronous
communication. Content analysis shows that chat was
used for work discussions or for articulation work to
coordinate projects and meetings, and to negotiate
availability. This resulting in a better fit to the common
workspace requirements (UC4) in current GDSD.
Both tool vendors also compete in the tools supporting
the software development process.
IBM has gained market share by supporting the Open
Source and Java community and becoming the
company behind Eclipse platform and integrating
different new tools, existent tools and acquired
Rational tools. Microsoft is coming up with a new
integrated suite on top of Visual Studio, called Visual
Studio Team Systems and supporting dotNet.
The change in tool vendor strategy also reflects the
move from a tool centric strategy to a process centric
strategy.
Microsoft has build its new Visual Studio Team
Systems around its own process, while IBM has been
developing different flavors of the Rational Unified
Process (RUP). RUP has been on the market for more
than a decade and has been remarketed in the Method
Composer (commercial tool) and the Eclipse Process
Framework1 (EPF) (open source tool). Interesting in
EPF is the flexibility to build company specific
processes and integrate this into different software
tools.

Research
GDSD tools have complex issues to address, such as
user interface design, varying levels of collaboration
requirements, varying expectations between developers
within a group, support of multiple artifact types, and
potentially multiple views of artifacts. There are also
technical aspects to address such as concurrency
control and distributed system design, along with the
standard software engineering technicalities such as
parsing, semantic modeling and source code
management [11].

On the other hand, the ideal tool to support
collaborative software engineering is still a challenge
for tool vendors and researchers. Research projects like

1 www.eclipse.org

CAISE architecture provides an infrastructure with the
potential to support the entire software engineering
process [11]. In opposite to commercial tools, the
CAISE architecture is not built on top of a source code
repository. This brings new light to the integration
discussion, but at the same time researchers recognize
that the costs involved for the development of a
commercial platform are high and without a clear
business case for tool vendors.

4.3. The future (2007 -) – Orchestrating global
development
Unfortunately nobody can look in the future. In this
paragraph combine some studies that have attempted to
do so, including several reports by Gartner on future
developments around GDSD.

Management
Gartner predicts that through 2009, 30 percent of
Global 2000 enterprises will have reached a high level
of maturity (institutionalized) in supporting telework
practices, services, and infrastructures[12]. This trend
will help managers to save on different type of
employee costs (e.g. Cisco Systems’ distributed work
strategy reports a return on investment of 300 percent
resulting from real estate savings and reduced
employee turnover). Characteristics of this type of the
institutionalized maturity level are: strategic business
imperative, 100 percent participation, fully integrated
workplace organization, and virtual work as a ‘way of
life’. During next years management will be focused on
managing the different organizational structures of
GDSD projects, new development processes and the
way projects are managed [13].
Collaboration between teams will become more mature
and one can assume that GDSD teams will benefit from
it.
In addition other challenges like increasing complexity
in software and architectures, technological changes
(paradigm shifts), knowledge management, growing
cultural and language differences (e.g. upcoming
outsourcing countries like China) and IT workforce
management [15] will affect the further development of
tool support for GDSD projects.

Tool vendor
In the future, shared and customized workspaces will
give more value if integrated in the processes and
needs of the companies [14]. The needs are different by
teams and by companies and no one tool vendor will
provide all functionalities. For example, peer-to-peer
products such as Microsoft Office Groove 2007
support offline collaborative work among dispersed

teams, while SiteScape’s offering includes native
workflow functions.

Research
Recent developments in research will also have an
impact on tool environments of the future. After
decades of emphasis on design and coding tools,
visualization of architectures, business rules and
requirements receives increasing attention. Under the
umbrella of Model Driven Architecture (MDA), more
attention is being payed to models that can be semi-
automatically translated into other abstractions,
providing a different view on the system.
Highly specialized team members which can be located
anywhere on the globe should be enabled to contribute
to a project on highly flexible contracts, e.g. conduct a
security audit of a system design. To empower such
work, development environments should provide these
individuals with quick insight into the proper system
views and at the same time only provide visibility to
parts of the system needed to conduct the task.
The increasing complexity of systems requires tools
that provides powerful monitoring and analysis
capabilities. E.g. tools that provide automatic testing,
longitudinal analysis of system complexity metrics etc.
Although tools that support collaboration have been
around for decades, these have usually not been
integrated to technical CASE. Recently, we witness
research into tools that combine ideas such as social
network analysis, to architecture and design tools.
To manage the vast amount of information present and
created during a systems development project, ideas
from knowledge management and information retrieval
will be integrated into future environments, e.g. to
retrieve reusable requirements or design specifications.
Finally, standardization or advanced translators need to
enable integration between various advanced tool
components. Each organization will have a wish to
integrate various types of generic and special purpose
tools, planning and monitoring tools, technical (code
and design) and social (communication and
management) tools.

11. Conclusion

Requirements are shifting from support for
collaborative coding, and requirements management to
communication, process management and collaboration
support (four user requirements introduced in
paragraph3) . In addition there is an increasing need for
various types of integration: between both generic and

special purpose tools, between planning and
monitoring tools, and between technical (code and
design) and social (communication and management)
tools. As common software architecture for one generic
tool is very expensive and different tool vendors like
Microsoft and IBM are providing collaboration tools
on the desktop level, it is assumed that each market
player will focus on specialization rather than
generalization and will in the long run support the
integration requirements.

With the further globalization new management
organizational structures for GDSD teams emerge and
become interesting topics for further research. In these
new structures tool support and mainly collaborative
support remains important, software development
process will become more mature as the need for
governance increases and common understanding of
requirements between different locations, cultures, and
knowledge levels.
We also see the service oriented architectures (SOA)
and service on demand as an interesting topic of
research that will ad a new dimension to the model of
GDSD and the way product, process, and organization
are approached.

10. References
[1] Carmel, E. ‘Global Software Teams: Collaborating
Across Borders and Time Zones’. Upper Saddle River, NJ,
Prentice-Hall PTR. 1999

[2] Fenema. ‘Exploring the Nature of Globally Distributed
Collaboration’. 2001

[3] Herrera Miles. “Globally Distributed Software
Development Project: Gap between CASE tools and GSS
tools”. Master Thesis Erasmus University. May 2002.

[4] Damm, Ch.H., Hansen, K.M., and Thomson, M. ‘Tool
Support for Cooperative Object-Oriented Design: Gesture
Based Modeling on an Electronic Whiteboard’, in: Chi
Letters, Vol. 2, issue 1, pp 518-525. 2001

[5] Grundy, J. ‘Engineering Component-based, User
configurable Collaborative Editing Systems’, Thesis
Publishers Amsterdam, pp 16. 1998

[6] Mohtashami, M.; Marlowe, M.; Kirova, V.; Deek, F.:
“Risk Management for Collaborative Software
Development”. Information Systems Management. Fall 2006.

[7] Kwak, Y.H.; Stoddard, J.: “Project risk management:
lessons learned from software development environment.” .
Technovation 24 p.p. 915 – 920, 2004.

[8] Mann, J. and T. Austin. Management Update: Microsoft
and IBM share Similar Collaboration Goals, but Follow
Different Paths. Gartner Research ID Number G00132087
2005.

[9] Herbsleb, J.; Paulish, D.; Bass, M.: “Global Software
Development at Siemens: Experience from Nine Projects”.
ICSE’05. May 15-21, 2005.

[10] Handel, M. and J. Herbsleb.; “What Is Chat Doing in
the Workplace” . CSCW’02. 2002

[11] Cook Carl, Churcher Neville: “ Constructing Real-Time
Collaborative Software Engineering Tools Using CAISE, an
Architecture for Supporting Tool Development”. 2006.

[12] Bell, Michael: Gartner’s Telework Maturity Model
Defines the Stages Toward Telework Effectiveness: 2006:
Gartner Research ID Number G00136640.

[13] Herbsleb, J.: “Global Software Engineering: The
Future of Socio-technical Coordination”. FOSE’07. 2007.

[14] Smith, David Mario: “Customize Shared Workspace
Software to Users’ Needs”. 2006: Gartner Research ID
Number G00141049.

[15] Morello, Diana: “IT Workforce Management: Prepare
for a Future Unlike the Past” .Gartner Research ID Number
G00126450 2005.

International Workshop on Tool Support and Requirements Management
in Distributed Projects (REMIDI'07)

Eva Geisberger, Patrick Keil, Marco Kuhrmann

Technische Universität München, Institut für Informatik, I-4
Boltzmannstrasse 3, 85748 Garching b. München, Germany

{geisberg,keil,kuhrmann}@in.tum.de

Abstract

Today, distributed projects, often subsumed under

terms like global software development (GSD), global
collaboration, offshoring etc. are common ways to
overcome time and budget restrictions or lack of per-
sonnel. Thus, today's projects take place in a global
context. But developing software with geographically
distributed teams presents a unique set of challenges
that influence virtually all aspects of a project and
make them more complex. This workshop addressed
topics relevant in multi-site projects like tooling, proc-
ess support, economic aspects, project management
and collaboration and communication.

1. Introduction

Developing software with geographically distrib-
uted teams presents a unique set of challenges influ-
encing all aspects of a project and increasing complex-
ity. In these projects, many aspects of project members'
daily work have to be reconsidered. For example, there
is a lack of proven requirements engineering (RE) con-
cepts and practices in the context of global software
development (GSD). Also aspects like knowledge
management and project tracking ask for appropriate
tools to help project members reaching their goals.

Besides other challenges, planning, coordinating
and controlling of requirements engineering, imple-
mentation and testing in distributed settings are far
more complex than in one-site projects.

First, the processes of requirements elicitation, sys-
tem modeling, coding, testing and rollout need to be
planned and organized differently. Second, the meth-
ods used to share and discuss early design ideas, cod-
ing decisions or test results need to take into account
the fact that some project members involved in these
phases and tasks are spread over multiple sites and
organizations and don't have contact to end-users. For
all these tasks, a sophisticated tool chain is needed.

Experience shows that an adequate tool chain in-
creases efficiency and success of distributed projects
and need to be properly supported. This is why we

focused on this aspect. This workshop walked through
methods, tools and concepts that are or should be used
in requirements engineering, software development
and testing in global software development projects.

2. Topics

One of the main objectives of this workshop, held at

ICGSE 2007 in Munich, was to structure the major
research topics and to define a research agenda for
further work in the area of tool support in distributed
system development. To this end, we solicited position
papers presenting field reports, case studies, analytical
frameworks and key research questions, which serve to
improve our knowledge on the different aspects of in-
frastructure and tools in a GSD context, e.g.:
• Tooling: Which are the issues inherent with GSD?

How to support global development project with
tools in an appropriate way? Are the tools for pro-
ject management or workflow-support different to
those used in on-site projects?

• Administration and tracking of architectural doc-
uments: What are the consequences for the process
and the design tools if the process of architecture
definition is distributed?

• Process support: What does an adequate process
for distributed development look like and how
should it be supported by tools and techniques?

• Economic aspects: How can we evaluate the effi-
ciency of geographically dispersed requirements
engineering, also compared to on-site projects?
What is Return on Investment in dedicated tools in
distributed development?

• Project management: Which tools can help to
plan, control and track a project? Are risk man-
agement or workflow management tools different
to those used in on-site projects?

• Collaboration and communication: How do RE
and software development need to be organized
when teams are spread over two or more sites?
How can projects achieve efficient collaboration?
What are the lessons learned on tools and infra-
structures for aligning in RE, development or test?

3. Workshop Presentations and Discussions

The topics mentioned above were discussed based

on presentations by participants. Four position papers,
from ten authors based in four countries, were accepted
to be published in the workshop proceedings (available
in hardcopy from CTIT and in PDF format at
http://www4.in.tum.de/~kuhrmann/remidi07.shtml).
The papers covered a wide range of topics, including:
• Communication Tools in Globally Distributed

Software Development Projects
• Groupware System for Distributed Collaborative

Programming: Usability Issues and Lessons
Learned

• Sensitivity Analysis Approach to Select IT-Tools
for Global Development Projects

• Requirements Management Infrastructures in GSD
One of the main objectives of this workshop was to

define structure the major research topics and to define
a research agenda for further work in the area of tool

support in Global Software Development. In addition
to the papers from researchers and practitioners, we
therefore invited two keynote speakers who have in-
depth knowledge and manifold experiences with dis-
tributed development. Daniel J. Paulish of Siemens
Corporate Research gave a thrilling introduction into
the pitfalls and experiences of distributed software
development. Rupert Stuffer, CEO of ACTANO Group
reported on the challenges his company faces when
developing software that is specifically used to help
managers planning and controlling software develop-
ment projects. Their presentations are also available at
http://www4.in.tum.de/~kuhrmann/remidi07.shtml.

After the keynotes, paper presentations and a joint
session with TOMAG 2007 workshop, the participants
discussed the research areas which are most relevant
for practitioners in their work in distributed software
development.

A Sensitivity Analysis Approach to Select IT-Tools for

Global Development Projects

Céline Laurent

BMW Group

Knorrstr. 148

80788 München, Germany

Celine.Laurent@bmw.de

Abstract

Globalisation is accorded increasing interest and

importance in contemporary world affairs and

industrial concerns. Subsequently, engineering

projects involving different companies, cultures and

disciplines are becoming more complex and require

interaction and communication between all project

participants. Collaboration-tools are instruments to

support distributed projects successfully. However,

selecting the correct IT-tools which correspond to the

characteristics of globally-distributed projects is not

an easy task. In fact, supporting global development

projects in an appropriate way can be difficult, since it

is influenced by many factors. For this reason this

paper first proposes a taxonomy of influencing factors

on global development projects and applies a

sensitivity analysis method on empirical data to assess

the degree to which influencing factors determine the

choice of IT-tools.

1. Introduction

Globalisation implies a strong networked and

distributed development process; it offers high

potential for businesses due to its innovation,

flexibility, cost reduction, time reduction, and

improving quality. At the same time, it continues to be

a challenge to utilise this potential nowadays. Practice

has shown that various influences like spatial distance,

differences in culture and language, inconsistency of

processes, as well as intransparency of information and

communication can be responsible for the lack of

cooperation at the operative work level alone.

Coordination and an exchange of information between

participants in a distributed product development team

are technically difficult and time consuming, especially

when different locations and time zones further

complicate communication.

Information and communication systems help such

projects to become successful in supporting exchange

between multiple partners. The most common way to

support these standard processes is to use Groupware

Systems or Computer Supported Cooperative Work

(CSCW, cf. [1] and [2]). It’s obvious, however, that

every project has a specific character and that a single

IT-tool cannot support each and every engineering

activity. Moreover, choosing the most appropriate IT-

support is quite difficult, since technology is

continually in evolution and its complexity makes the

depiction of precise requirements on collaboration

software hard. This paper discusses the main

influencing factors and their weight regarding the

choice of IT-tools to support global development

projects.

2. Method and instruments

To outline the method, we will first present the

factors and the IT-tools under consideration. This will

be followed by an empirical study which has been

conducted to establish a correspondence between these

factors and the IT-tools which have been selected.

Finally, we explain the method used to determine

which factors are the most influential.

2.1. Influencing factors

We base our analysis on a taxonomy of 16

influencing factors of distributed and interdisciplinary

development projects according to [3]. Table 1 shows

these factors with their parameter values. It combines

the typical characteristics of distributed engineering

processes with their possible conditions according to

[4][5][6], as well as the factors resulting from the

interaction of different domains presented in [7].

Table 1. Influencing factors

2.2. Empirical study

In the empirical study 18 standard IT-tools which

support global development projects have been rated

by experts for their support of cooperation projects

with respect to the influencing factors of Table 1. The

survey was carried out by interviewing experts in

distributed projects, interdisciplinary projects,

cooperation projects, and Information Technology (IT).

The results of this empirical study are presented in [3].

A brief glance of the entire results (c.f. [8]) shows

that some influencing factors have a larger impact on

the selection of the experts than others. Moreover, the

same factors do not always have the same impact on

the choice of one tool or another. To evaluate the

significance of each factor we have to quantify the

dependence of the output on the input parameters. To

this end a sensitivity analysis is carried out.

2.3. Sensitivity analysis

In general, sensitivity analysis is the study of how

the uncertainty in the output of a model can be

attributed to different sources of uncertainty in the

model input. Various questions can be answered by

means of a sensitivity analysis. According to [9] it is

important to specify the purpose of the analysis before

starting it. A sensitivity analysis can be carried out to

simplify models and fix factors, to prioritise factors, to

identify critical factors, etc. We want to determine a

ranking of the influencing factors. In this context one

setting of sensitivity analysis is interesting: factor

prioritization.

In Factors Prioritisation (FP), the question

addressed is: which factor, once fixed to its true albeit

unknown value, would provide the greatest reduction in

the uncertainty of the output? This factor is then the

most important factor. Likewise the second most

important factor can be defined and so on (cf. [10] and

[11]). The ideal use of the setting FP is for the

prioritisation of research, which is also one of the most

common uses of sensitivity analysis in general. Given

the hypothesis that all uncertain factors are susceptible

to determination, setting FP allows the identification of

the factor that most deserves a better experimental

measurement in order to reduce the target output

uncertainty the most. Hence, we can determine those

factors that should be measured most precisely in our

empirical study. (cf. [12]).

There are various methods of sensitivity analysis

available. The Fourier amplitude sensitivity test

(FAST) is a commonly-used approach that is based on

the Fourier series which describes the output functions

(cf. [12]). When the results of the FAST are applied to

our influencing factors, they not only give a qualitative

ranking, but also a quantification of these factors.

We use the sensitivity analysis tool SimLab (cf.

[13]) for the analysis. According, we must define all

the inputs parameters which are needed and their value

sets. The tool then generates the samples needed for the

FP analysis. Our goal is to determine with the help of

the expert data which factors have more impact on the

selection of each tool.

The input factors are shown in Table 1. Their value

sets are derived from the results of the survey in [8].

Experts gave us a rating for each tool and each value of

a factor. These ratings compose the value sets of the

factors. With the help of any simple model which uses

each factor once with the same significance, we are

capable of determining those factors which have the

most impact. Toward this end we have generated

50000 samples.

3. Results

The FP setting gives us a ranking of the factors for

each IT-tool under consideration. For example, Figure

1 shows the indices for the tool “Workflow System”.

The factor Skill level in IT-tools is responsible for 35%

of the experts’ decision for this tool; the second most

important factor is Terminology with 10% and the third

one Cooperation partners with 9%.

Figure 1. Factor prioritisation for the tool

“Workflow System”

However, another example clearly shows that this

factor prioritisation is not the same for each tool. For

example, for the tool “Online-Conferencing”: the factor

Location is responsible for 26% of the experts’

decision for this tool; the second most important factor

is Skill level in the agreed language with 22% and the

third one Skill level in IT-tools with 19%.

Figure 2. Factor prioritisation for the tool

“Online-Conferencing”

These two examples demonstrate that each tool has

its own characteristics and that their implementation

doesn’t depend on the same boundary conditions of

global development projects.

Subsequently, each factor doesn’t have the same

influence on each tool. For example, in Figure 1 the

factor Skill level in the agreed language only

influences the selection of the tool “Workflow System”

with 1 %, whereas it influences the choice of “Online-

Conferencing” with 22%. Such considerations

substantially aid project and IT-managers in decision-

making regarding the right IT-support-platform for

global distributed development projects. In fact, to

evaluate whether a tool is appropriate for their project

or not they have the possibility of considering only the

most relevant factors (e.g. factors having more than 5%

of influence) instead of all the 16 factors, which would

be more time-consuming. E.g., to evaluate whether an

“Online-Conferencing” tool would be appropriate for

the support of a specific project, the consideration of 4

factors as opposed to 16 is sufficient: Location, Skill

level in the agreed language, Skill level in IT-tools, and

Intensity of collaboration. The other way around, if

they already have analyzed their project characteristics,

they can very quickly eliminate some IT-tools, since

they know which conditions of the influencing factors

are not fulfilled.

4. Application of the results to a real

industrial global development project

A cooperation project between BMW and another

Original Equipment Manufacturer (OEM) needs a set

of appropriate IT-tools to support their information,

communication, and coordination processes. We want

to use the results presented in section 3 to propose a set

of IT-tools. Toward this end we will first describe the

project with respect to the factors presented in Table 1.

Each of the main cooperation partners has, of

course, suppliers involved in the development process,

but they are not involved together at the global

cooperation level. The suppliers only have

bidirectional interfaces with their respective OEM.

Subsequently, the two partners are from different

companies, each of which has a very marked culture,

belongs to the category of large-scale enterprises and is

located either in Germany, in England (by BMW) or in

France. Their level in the agreed project language is

more or less good.

The participants are integrated in SE-Teams

(Simultaneous Engineering) and work on their tasks

parallely. This is in fact one of the main characteristics

of SE-Teams. For the same reason the collaboration is

substantially integrated into the daily work schedule.

The tasks are equally distributed between both OEMs.

Organisational as well as technical interfaces are

quite striking. In fact, the partners are competing

enterprises, a circumstance, which complicates their

relationship, flexibility and facilities. The technical and

organisational ability to access the relevant data is,

therefore, also very restricted.

The skill level in the use of IT by the participants is

quite low. It is not in fact their specialty, and very few

participants are really capable of dealing with IT.

The development of the motor is a single project

and considered to be time-critical, because of possible

repercussions on the companies’ profits.

The vocabulary employed by the participants varies

since each of them is a specialist in a different domain.

They also use different methods and instruments

depending on their respective domain and their mother

company. However, they follow the same industrial

standards. The dependence of the participants on their

original company is very high due to the tight

organisations’ culture.

Let us first consider the factor Skill level in the IT.

This factor inherently eliminates 4 of the 18 IT-tools

under consideration: Workflow System, Change

Management Tool, Electronic Meeting System, and

Knowledge Management System. Taking the factor

Terminology also into consideration eliminates 4 more

tools. Repeating this step again refines our selection

one more time. In a very short period the tools that

come into consideration are left over: Electronic

Calendar, Online-Translator, Project Management

System, and E-Mail. Hence, we are able to sort out

quickly a set of IT-tools appropriate for specific project

configurations and merely only with the results of the

sensitivity analysis.

5. Conclusion

In global development projects communication,

coordination, and cooperation processes between

participants are technically difficult to support as well

as being time consuming. Information and

communication systems help such projects to become

successful. However, choosing the most appropriate

IT-support can be quite difficult since many

influencing factors must be considered and the defining

of precise requirements on collaboration software

proves to be extremely complex.

To simplify this decision the paper presents the

results of a sensitivity analysis on influencing factors

for global development projects; this analysis showed

that some influencing factors have much more impact

on the selection of a specific IT-tool than others.

Moreover, it is not always the case that the same

factors have the same impact on the selection of one

tool or another. Each tool has its own characteristics

and its implementation doesn’t depend on the same

boundary conditions of global development projects.

These findings can simplify the decision-processes

of project and IT-managers considerably. It aids

project- and IT-managers in decision-making regarding

the right IT-tools for global development projects

substantially and thus influences the phase in which the

user requirements of collaborative-software are

defined. In fact, users often want to collaborate, but do

not know how to go about this. The classification of

implementation’s conditions regarding each IT-tool

aids the project leader in defining the requirements for

the collaborative-software to develop. Moreover, with

the help of the classification, the evaluation of a tool

only requires the consideration of its relevant factors

instead of carrying out a time-consuming analysis of

the entire project which is in need of support. It is of

great significance for time-reduction processes in the

early phases of development projects, especially if the

project must get started quickly, and the managers lack

time to wait for an analysis of the project’s

configuration and possible IT-support.

6. References

[1] Grudin, J., “Computer-supported cooperative work: Its

history and participation”, IEEE Computer 27(5), 1994.

[2] Ellis, C. A., Gibbs, S. J., Rein, G., “Groupware: Some

issues and experiences”, Communications of the ACM, 34(1),

1991.

[3] Laurent, C., “Design of IT-Collaboration-Platforms with

Fuzzy Logic”, Current Research in Information Sciences and

Technologies Multidisciplinary approaches to global

information systems, Open Institute of Knowledge, Merida,

Spain, 2006.

[4] Anderl, R., Lindemann, U., Thomson, B., GAUL, H.-D.,

Gierhardt, H., Ott, T., “Investigation of Distributed Product

Design and Development Processes”, Proceedings of the

12th International, Conference on Engineering, 1999.

[5] Gierhardt, H., Gaul, H.-D., Ott, T., “Distribution in

Product Design and Development Processes”, Proceedings of

the 1999 ASME Design Engineering Technical Conferences

and Computers in Engineering Conference, 1999.

[6] Gierhardt, H., Global verteilte

Produktentwicklungsprojekte – Ein Vorgehensmodell auf der

operativen Ebene, München, Dr. Hut 2001

(Produktentwicklung München, Band 46), TU München,

2001.

[7] Hartmann, Y., Controlling Interdisziplinärer

Forschungsprojekte, 1998.

[8] Laurent, C., “Analysis of the Survey: IT-Platforms for

Cooperation Projects”, Technical Report, TU München,

2007.

[9] Saltelli, A., “Global Sensitivity Analysis: An

Introduction”, Proc. 4th International Conference on

Sensitivity Analysis of Model Output (SAMO ’04), Los

Alamos National Laboratory, 2004.

[10] Saltelli, A., Chan, K., Scott, E.M., “Sensitivity

Analysis”, Probability and Statistics series, John Wiley &

Sons publishers, 2000.

[11] Saltelli A. Tarantola S., Campolongo, F., Ratto, M.,

“Sensitivity Analysis in Practice. A Guide to Assessing

Scientific Models”, Probability and Statistics series, John

Wiley & Sons publishers, 2004.

[12] Wagner, S., Cost-Optimisation of Analytical Software

Quality Assurance, Technische Universität München, 2007.

[13] SimLab 2.2., http://webfarm.jrc.cec.eu.int, 2005.

 - 1 -

Requirements Management Infrastructures in Global Software Development
Towards Application Lifecycle Management with Role-Oriented In-Time Notification

Matthias Heindl, Franz Reinisch
Support Center Configuration Management
Siemens Program and Systems Engineering

Vienna, Austria,
matthias.a.heindl@siemens.com

Stefan Biffl
Institute of Software Technology

and Interactive Systems, TU Wien,
Vienna, Austria,

stefan.biffl@tuwien.ac.at

Abstract

Global software development can be characterized by
globally distributed project teams (e.g., project man-
agement, development and test teams). Each of these
teams has requirement-related tasks (e.g., developers
implement requirements, testers test requirements) and
workflows that need tightly integrated tool support
(requirements management, IDEs, test management).
In this paper we describe from the perspective of a
large GSD software development company: (a) major
requirements management needs in GSD, (b) current
approaches for requirements management in GSD and
their insufficiencies;(c) an initial approach to improve
these insufficiencies; and (d) further research steps to
better address the needs based on a common data ex-
change format between development/management
tools and a role-oriented notification system.

1. Introduction
Siemens Program and Systems Engineering (PSE) is a
research and development entity within the Siemens
group with more than 6,000 employees. PSE software
and systems development projects cover a broad range
of application domains, such as: telecommunication
and information technologies, automation and control,
power, transportation, medical solutions, components,
and space technology. In recent years Siemens PSE
increasingly started globally distributed development
(GSD) projects supported by new permanent offices in
Eastern Europe, Turkey, and China.
We characterize a highly distributed development pro-
ject as a project with team members in 2 or more coun-
tries. Such projects typically exhibit the following
characteristics: 1. By definition not all team members
can work at the same location; travel delay between the
project headquarter and other locations is significant,
e.g., more than 2 hours. 2. Thus, there is less opportu-

nity for flexible direct (face-to-face) communication:
regular meetings occur less often than bi-weekly; ad
hoc meetings are very hard to achieve due to the trav-
eling delay or high costs to establish meetings, e.g.,
considerably more than 1,000 Euro even for a short
meeting [5].

The Support Center Configuration Management
(SCCM) unit provides PSE-internal consulting for
employees and facilitates experience exchange among
development teams on core topics like configuration
and requirements management. PSE Support Centers
address success-critical topics to (a) bring employees
with similar problems together, and (b) support com-
munication of experience that could help to solve a
current problem. There are multiple other Support
Centers like project management, configuration man-
agement, usability, and testing. Over the years, SCCM
staff has gained experience on needs in GSD projects
for requirements management tool support and on
strengths and limitations of currently used approaches.

We report on the requirements management needs in
GSD projects based on data that the SCCM collected
from project participants during our consulting and
support activities for these projects. Major needs are:
timely and effective information exchange; cheap re-
quirements tracing across tool borders; and of tool in-
tegration that allows retrieving data from one tool, e.g.,
a test management tool, and display it in another tool,
e.g., a requirements management tool.

The remainder of the paper is structured as follows:
Section 2 summarizes needs for automating require-
ments management in GSD projects compared to one-
site projects. Section 3 reports experiences with current
approaches to manage requirements in GSD projects.
Section 4 proposes the concept of tool-supported role-

 - 2 -

based notification to provide in-time the right level of
information to the roles involved in a work task. Sec-
tion 5 summarizes the contributions of the paper and
suggests further research work.

2. Requirements Management Needs in
GSD projects
In GSD projects typically multiple distributed teams
work on the realization of requirements: e.g., project
management (at site A), development teams (at sites B,
C), and test teams (at site D) [4]. Typically these teams
have many requirements-related tasks: project manag-
ers deal with the specification of requirements, change
management, and requirements traceability; developers
develop source code based on the provided set of re-
quirements and report progress to project management:
which requirements are already implemented. Testers
create test cases for requirements, execute test cases,
and report tests, e.g., which test cases were completed
successfully and thereby which requirements have
been covered so far by testing

Typically, these roles use tools that facilitate their
work. A typical tool set in such projects may consist of
a requirements management (REQM) tool, a configu-
ration management tool, development tools (IDE), test
management tools, collaboration platforms, and com-
munication tools (like email and Netmeeting).

The SCCM frequently receives requests for REQM
and configuration management (CM)-related support
from GSD projects. During these consulting and sup-
port activities and in expert network meetings, where
project participants from different projects come to-
gether to exchange and discuss current project-related
REQM problems, the SCCM frequently receives feed-
back about REQM needs in GSD. Based on this feed-
back, we present the following list of main require-
ments management needs of PSE project participants
in GSD projects:

Timely and effective information exchange (re-
quirements awareness). Notification about changes of
relevant information, e.g., for change propagation as
requirements are likely to change while developers
work on their dependent implementation. As a conse-
quence developers may implement outdated require-
ments, wasting effort on re-work of the code. Informa-
tion about changes or other events at one site that are
relevant for roles at other sites shall be provided
timely, to avoid unnecessary rework. Furthermore, this
information exchange shall be effective in the sense
that each role gets exactly the information it needs

(neither “flooded with email” nor “starving for infor-
mation”), which is a challenge for project management
in general but even more in GSD projects due to the
limited availability of synchronous communication
(geographical distribution across several time zones).
Essential in that context is permanent accessibility of
relevant information, e.g., a developer implementing a
change request (CR), should have easy access to the
task description tracing back to the original CR and, if
necessary, further back to the documentation of related
decisions and contact persons like stakeholders who
may provide background information. It is important to
maintain a clear picture of responsibilities in the pro-
ject and dependencies (between artifacts, persons, and
tasks) to allow the timely notification of relevant roles.
Damian and Zowghi [2] support the importance of
such “requirements awareness mechanisms”. Co-
located teams usually benefit from social mechanisms
and processes that facilitate the work practice and di-
minish the perceived need for explicit requirements
awareness activities. However, this kind of access to
informal communication is significantly limited in
geographically distributed teams [3].

Requirements traceability. Tracing requirements [5]
back to their origin or having rationale for them helps
to better understand the meaning of requirements. In
GSD projects traceability is even more important than
in collocated projects, because requirements cannot be
clarified easily during informal “corridor talks”. Fur-
thermore, captured traces between requirements and
other artifacts like source code elements and test cases
give the project manager hints for progress monitoring
(“is requirement A already implemented and tested?”),
change impact analysis (“which artifacts do I have to
change when requirement B changes?”), or coverage
analysis “(is every requirement sufficiently covered by
test cases?”).

Integration of tools. Comprehensive tool support is
needed to enable consistent, error-free, and up-to-date
information exchange, requirements awareness, and
traceability in a GSD context. Tool support mostly
consists of tool sets (requirements, development, and
test tools) that can interact in principle providing the
basis for redundancy-free, consistent storage of data
and exchange of data between tools (via tool inter-
faces). However, tighter tool integration than provided
is needed, e.g., for project managers who want to see
certain parts of test data from within the requirements
management tool, so they do not have to use the test
management tool itself.

 - 3 -

In summary, tool support for requirements manage-
ment in GSD projects has to meet the following suc-
cess criteria: (1) permanent access to relevant informa-
tion, e.g., history of a requirement; who worked on
which requirement when, which decisions were made
why (requirements awareness); (2) timely notification
of relevant role on occurrence of specified events and
conditions, e.g., changes to some requirements or de-
pendent documents; (3) easy means to facilitate re-
quirements tracing across tool borders as a prerequisite
to manage dependencies; and (4) the right, i.e., higher
than currently available, level of tool integration.
In the following section we will outline current ap-
proaches for requirements management and their short-
comings.

3. Current REQM Approaches in GSD
Currently the major approaches for requirements man-
agement (REQM) in GSD projects can be sketched as:
a) point-to-point integrations of tools (instead of an
homogeneous tool platform), b) lots of telephone calls
and c) lots of emails. Based on SCCM’s experiences,
this section provides an overview on REQM ap-
proaches and outlines our work-in-progress to improve
these approaches. The SCCM’s knowledge about
REQM in GSD projects comes from their consulting
and support services (tool setups and customizations)
for some 100 projects per year, most of them highly
distributed.
From our point of view, the basic problem of REQM
in GSD projects is mostly insufficient integration of
data between development and management tools.
REQM is mainly is a communication task (require-
ments communication [8]), e.g., informing people
about requirements changes. However, fast and effec-
tive information exchange is not well supported by the
tools used routinely (e.g., Requisite Pro, TestDirector,
Eclipse, Sharepoint). As a result, data kept in different
repositories get inconsistent, which hinders project
managers, developers, and testers to achieve and main-
tain a consistent view on dependencies between arti-
facts.
While lots of interesting information exists in these
tools, the weak integration makes it hard to communi-
cate this information and data to interested project par-
ticipants by way of tool infrastructure. Therefore, pro-
ject managers and others have to exchange informa-
tion, e.g., notifications about change requests or identi-
fied bugs, by external communication tools, such as
telephone, email, and Netmeeting. This communication
effort can be significant: a GSD project manager may
often have telephone conferences which take hours
with all relevant sites for a current issue. Furthermore,

there is the risk that sometimes people simply forget to
notify other roles about important change events.
With a proper tool infrastructure that provides access
to relevant information across tool borders and timely
notification in case of important events, we see the
possibility to the reduce costs for communication,
avoid a significant part of rework, and mitigate the risk
of non-communication: on an average project overall
effort could be lowered by up to 10% and variability of
project cost and quality significantly reduced.

The currently available point-to-point integration mode
between tools allows only limited data exchange and
does not provide notifications for relevant users in case
of important events. These integration approaches also
introduce new challenges [11]:
• For each new tool that should be used in the pro-

ject, new integration instances have to be built to
all the existing tools, which is often difficult to es-
tablish and costly to maintain.

• A single tool for each role. The problem with role-
based tools is that roles are anything but uniform,
varying by company, by business unit, by devel-
opment team, and even by individual. When a cus-
tomer’s role set (e.g., analyst and architect in a
combined role) does not match the roles for which
vendors have built tools (e.g., a requirements man-
agement tool that does not provide modeling fa-
cilities), the IT organization has to choose between
changing its roles, licensing multiple tools for a
single role, or purchasing more features than a
given role is likely to need. To provide an audi-
ence of diverse practitioners with all the features
they need, vendors end up stuffing tools with so
many features that they get very hard to use in
practice, e.g., a configuration management (CM)
tool that can be customized for multiple purposes,
may be overly hard to use. The results are com-
plex and expensive tools that have more function-
ality than any individual is likely to need, which
may hinder potential users to use the tool most ef-
fectively and efficiently.

• Redundant features locked in practitioner tools,
e.g., each tool has its separate user management
system, which incurs extra effort for tool adminis-
trators to keep privileges up-to-date and consis-
tent.

In order to address the limited data exchange possibil-
ity of available tool integrations, which is a main hur-
dle to fulfill the needs identified above, we have, as a
first step, developed an Eclipse plug-in that provides
an interface between a requirements management tool

 - 4 -

(Requisite Pro) and Eclipse to allow developers easily
to trace requirements into source code within their IDE
and without the need to access an external require-
ments management tool. The plug-in serves as a basis
to evaluate how integrations between tools can be im-
proved. The plug-in provides the following features
[6]: The tool support automatically imports a list of
requirements from Requisite Pro into Eclipse. Thus,
traces between requirements (requirements information
is displayed directly in Eclipse) and source code can be
created in the developer’s environment (Eclipse) with-
out the necessity to open other tools or look up refer-
ences in requirements documents. Developers can cre-
ate a trace via selecting a requirement from the re-
quirements list. The traceability information is auto-
matically re-imported into Requisite Pro, where the
project manager can view it as a traceability matrix.
Clear benefits of this approach are:
• Significantly reduced effort for tracing;
• Facilitation of tracing as unobtrusive part of de-

velopers’ usual work practices (process-driven
tracing);

• Reduced mental efforts for correctly selecting
traces from a list, which is on average much less
error-prone than traditional manual tracing;

• Avoid making users use extra tools for tracing.

The plug-in is an approach to coordinate activities be-
tween requirements engineering or project managers,
who work on the requirements in the requirements
management tool, and the developers working with the
IDE. Furthermore, the plug-in also facilitates a change
notification system: when a developer works on a cer-
tain requirement from the requirements list in Eclipse
and the project manager works on that requirement in
the requirements management tool, e.g., changes the
requirement, the plug-in can propagate this change to
the IDE and highlight the particular requirement.
Thereby, the developer is notified and can clarify the
requirements state. Thus, he can avoid risky work on
potentially outdated or inconsistent requirements.

Our initial experiences with the plug-in-based re-
quirements tracing approach indicate a significant
systematic influence on requirements tracing (RT) in
larger projects. E.g., a daily reduction of trace efforts
from 30 down to 3 to 5 minutes is likely to result in
significantly higher tracing acceptance and hence more
detailed daily information for the project manager,
compared to expensive manual tracing in bi-weekly
cycles. Due to the positive experiences with the plug-in,
namely cheaper and easier tracing across tool borders,
information exchange (exchange of requirements data

and traceability information, and display in both tools),
and change notifications, we want to extend this ap-
proach to other tools, e.g., test management tools, so
that requirements data exchange is possible within all
tools in the tool set. We follow an application lifecycle
management (ALM) strategy [10] to accomplish that
goal: concretely, we will in a next step use a common
data format to exchange requirements-related data be-
tween tools (like in the Eclipse plug-in). For this we
will reuse the requirements interchange format (RIF)
[9], an XML standard for requirements data exchange
from the automotive area. Based on RIF, we will build
interfaces that support data exchange between the tools
via RIF. By adapting (and maybe extending) RIF we
can then provide “richer” tool integrations that enable
requirements awareness.

4. Role-Oriented Notification System
In order to fully address the REQM needs GSD project
participants need a generic mechanism to ensure timely
notifications about changes to requirements or other
artifacts in addition to the common data exchange for-
mat mentioned above [13][14]. Multiple requirements-
related events may happen concurrently at several sites
across a GSD project (see overview in Table 1), which
would seem relevant for project team members at other
sites. For example, when requirement 4711 in the re-
quirements management tool changes (event in the
requirements management tool), the developer who
works on this requirement can be notified, e.g., by dis-
playing and highlighting the requirement in the IDE
(notification).
Another scenario is build automation: there is a tester
that monitors test execution. If a test run fails, the pro-
ject manager, who needs information about test pro-
gress, and the responsible development team, which
will have to correct the bugs, need to be informed. In-
stead of forcing the tester to actively inform the project
manager and developers by telephone or mail, it would
be much cheaper if the tool infrastructure notifies them
automatically, e.g., send the project manager a notifi-
cation within his requirements management tool and
let him view test results there, too. The developers get
a notification with in their IDE and can view failed test
cases in order to correct the relevant code.

Notifications are currently often triggered by persons,
e.g., via telephone calls or emails. As explained above,
this way of notification is often costly and unreliable;
effective tool-based notifications promise to reduce the
communication effort. Of course, the concept of notifi-
cation is not new, e.g., there are already database trig-
gers that implement some form of notifications. A nov-

 - 5 -

elty is the integration of events coming from heteroge-
neous systems as input to a rule engine that can corre-
late, aggregate, and filter events in order to provide
triggers for relevant role-oriented notifications.
Based on the implementation of a common data ex-
change format, which can form a tool integration bus,
we develop a notification system that can assist project
users in defining useful notifications across GSD sites.
The notification system should be role-based, so that a
user can define which kinds of notifications are rele-
vant for him. As main challenges we see:
• Provide useful notifications (correct, helpful; e.g.,

receiver would be willing to pay for getting a cer-
tain kind of message);

• Avoid information overload with irrelevant or
wrong notifications;

• Keep an overview on the correctness of a large
rule set; e.g., which rules should be active.

Events in the REQM tool
new requirement is inserted
Existing requirement is changed
New user is added
User privileges are changed
Events in the IDE
Trace is created between source code element and re-
quirement
Events in the Configuration Management tool
New change request was submitted
State of an artifact changed
Check-in of an artifact
Events in the test management tool
Bug report is inserted
Test cases for a particular requirement are reported as
successfully tested.

Table 1. Examples for events in GSD tool support.

Notification can work based a rule engine, e.g., a “cor-
related events processor” (CEP) [7][12], which is con-
nected to the set of tools used in a project via a com-
mon “tool integration bus”. Figure 1 illustrates how the
used tools are connected via that bus. The rule engine
receives events from the other tools and generates noti-
fications for relevant roles/users via the tools used
(eventually an ontology can be help to bridge the lan-
guages of the different system users). Thereby, a good
part of notification efforts are shifted from the users to
the tool infrastructure.
A role-based notification system should provide three
types of information: (1) artifact information: accurate
information about the current state of a document; (2)
event information: when an event occurs (e.g., change
to a document) relevant roles can be notified by the

system; (3) artifact history: events are stored in a data-
base and related to artifacts so that users can search the
database for events that happened to requirements and
other documents in the past.

Figure 1. Role-oriented notification system.

We plan the following next steps to implement such a
role-oriented notification system:

1. Definition of notification rules based on a syntax
to formulate rules that determine when to trigger a no-
tification: Notification rules describe <whom> (list of
persons or roles) to notify <in what way> (e.g., e-mail,
SMS, entry in change log)
<when> (e.g., immediately; batch every hour/day) due
to <what change>. Change can be an observable event
or state change regarding an artifact or project state,
e.g., some expected event did not happen during the
specified time window. (see further examples in Table
1). An SQL-like example rule for the build automation
scenario in section 3 could be:

if TESTRUN 0815 FAILS NOTIFY (PM, Peter
Mayer) BY (ReqPro, IDE) and SEND FAILED
TEST CASES.

The rule says: in case of an erroneous test run the pro-
ject manager (whoever has this role) should be notified
via Requisite Pro, and Peter Mayer (a developer) gets
notified via his IDE. The “send” option defines which
data to send with the notification, e.g., the failed test
cases as info for the PM and the developers, so that
they know, which code to check.

2. Escalation. If a condition in the rule set indicates a
state that the system cannot handle automatically, the

 - 6 -

default is to escalate the issue with appropriate context
information to a role that is expected to have enough
overview and competence to provide a reasonable de-
cision.

3. Tool support. Tools can support role-oriented noti-
fication by interpretation of machine-readable depend-
ency information (that would be cumbersome for hu-
mans to follow). In a next step we want to use the CEP
to enable notifications. CEP correlates related events to
efficiently filter “interesting” events as basis for notifi-
cation. Recent notifications can be stored in a database,
so users can choose whether to
• receive change notifications immediately or sum-

marized in regular time intervals;
• look at recent changes in the change database;
• look at the current version of artifacts (if there are

many changes and/or major structural changes).
The CEP receives events from the tools, processes
them according to a rule set and sends notifications to
users via the tools. The processing of the events is
based on user-defined notification rules. Each user can
define for which events he wants to be notified. The
challenge is to configure the CEP so users can get the
most relevant [1] information in a timely manner.

5. Conclusion and Further Work
The Support Center Configuration Management
(SCCM) collected data from GSD projects about re-
quirements management needs: timely and effective
information exchange, requirements awareness, re-
quirements traceability across tool boarders, and com-
prehensive tool integrations. Currently, these needs are
only weakly fulfilled, due to insufficient tool integra-
tions and notifications on important events, e.g., re-
quirements changes, whose delivery mainly depends
on team members.
In this paper we outlined requirements management
needs in GSD, as collected by the SCCM and illus-
trated current approaches for requirements manage-
ment in GSD. Furthermore, we proposed a require-
ments tracing plug-in, which systematically improves
data exchange, tracing, and notification facilities of
currently available tool integrations for significant im-
pacot on trace quality in a project. Next research steps
are to put the ideas of the plug-in on a firm footing by:
(1) developing a common data exchange format, so
requirements information and related data can be
viewed in the tools used in the GSD project, (2) de-
signing and prototyping a role-oriented notification
system.
By implementing both, a common comprehensive data
exchange format and the role-oriented notification sys-

tem, we can strongly improve currently used REQM
approaches by providing: (1) flexible information ex-
change between used tools (2) timely tool-based noti-
fications which disburdens the project participants
from actively notifying others, (3) improved traceabil-
ity across tool borders. Expected systematic effects on
GSD projects are to increase the speed and reliability
of important parts of project communication and to
reduce risks coming from inconsistent data stored in
different tools.

References
[1] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, P. Grünbacher,
“Value-Based Software Engineering”, Springer, 2005

[2] D. Damian, D. Zowghi, “Requirements Engineering challenges in
multi-site software development organizations”, Requirements Engi-
neering Journal, 8, pp. 149-160, 2003

[3] D. Damian, J. Chisan, P. Allen, B. Corrie, “Awareness meets
requirements management: awareness needs in global software de-
velopment”, GSD workshop, International Conference on Software
Engineering (ICSE), 2003

[4] J. D. Herbsleb, D. J. Paulish, M. Bass, Global software develop-
ment at siemens: experience from nine projects, International Con-
ference on Software Engineering, 2005

[5] M. Heindl, S. Biffl, “Risk Management with Enhanced Tracing
of Requirements Rationale in Highly Distributed Projects”, ICSE,
GSD Workshop, 2005, Shanghai.

[6] M. Heindl, F. Reinisch, S. Biffl, “Integrated Developer Tool
Support for More Efficient Requirements Tracing and Change Im-
pact Analysis”, Technical Report – Vienna University of Technoloy,
January, 2007

[7] D. Luckham “The Power of Events” Addison Wesley, 2002

[8] V. Mikulovic, M. Heiss, "How do I know what I have to do? the
role of the inquiry culture in requirements communication for dis-
tributed software development projects”, ICSE 2006: 921-925

[9] http://www.automotive-his.de/rif/doku.php

[10] C. Schwaber, “The Expanding Purview of Software Configura-
tion Management”, Forrester Research, July, 2005

[11] C. Schwaber, “The Changing Face of Application Life-Cycle
Management”, Forrester Research, August, 2006

[12] www.senactive.com

[13] de Souza, et al., “Supporting Global Software Development
with Event Notification Servers”, International Workshop on Global
Software Development, 2002

[14] de Souza, et al., “Management of Interdependencies in Collabo-
rative Software Development”, International Symposium on Empiri-
cal Software Engineering, ISESE 2003

Communication Tools in Globally Distributed Software Development Projects

Tuomas Niinimäki
Helsinki University of Technology

Software Business and Engineering Institute
P. O. Box 9210, FIN-02015 TKK, Finland

tuomas.niinimaki@soberit.hut.fi

Abstract

This paper presents a research proposal on globally dis-
tributed software development projects. The research stud-
ies the communication tools in such projects, the prac-
tices, challenges and problems associated with using these
tools in globally distributed software development. The re-
search method is a multiple case study of three software
companies. The data will be collected with interviews and
questionnaires from the software development practitioners.
The proposed research methodology is based on action re-
search.

1 Introduction

The overall trend in software companies since the 1990s
has been to outsource and offshore software development.
The main driver for this development has been the signifi-
cantly lower software development costs in less developed
countries. In many cases, however, also other factors con-
tribute to this trend, such as the availability of trained work-
force, necessity of getting closer to customers and foreign
markets, and the possibility of around-the-clock develop-
ment. [6, 9, 3]

Distributed software development does not come with-
out cost. Working on software products even on collocated
teams is difficult due to the properties of computer software
itself, such as its invisibility, constant change, ambiquously
defined scope and the large amount of tacit information
on the software product and development process. Com-
panies and teams developing software face many problems
and challenges during software projects, many of which are
not of technical nature. It is also known that software de-
velopment involves a large amount of communication and
collaboration between different stakeholders and within the
software development team itself. [6, 8]

Furthermore, in software engineering, the software pro-
cesses play an important role, as every organization has a
slightly different view on how to make the software, and

there are no standardized processes [1]. In addition to de-
scribing the software product itself, the software process
must often be communicated. There are also commonly
interdependencies between various tasks and activities in
software development projects [9]. The amount and im-
portance of tacit knowledge thus becomes even larger in
software projects than it is in more traditional engineering
projects. The issue with tacit knowledge comes even more
important when cultural differences are larger: there can be
completely different views about the practicalities of work
as well as different level of expectations within the parties
of globally distributed software development project [2, 4].

Even while it is widely understood, that communication
is important, and in most cases the main source of chal-
lenges in distributed projects, communication is rarely dis-
ciplined as rigorously as many other aspects of software en-
gineering. We argue, that this is caused by not identifying
the need for both formal and informal communication, as
well as the specific needs caused by geographical and time
zone distance. Communication planning is also difficult due
to lack of understanding in communication tool properties.

This paper describes a proposed research focusing on
communication challenges in globally distributed software
development projects. We study the current state-of-the-
practice in selected software projects from three software
companies, and evaluate their communication challenges,
and the tools and practices used to solve these challenges.
Based on this and the literature survey for the state-of-the-
art communication tools and practices, we actively collabo-
rate with the practitioners using the action research method-
ology to improve the communication process in the studied
projects.

2 Previous work

The proposed research builds on previous research con-
ducted by Maria Paasivaara in her doctoral dissertation [10].
She studied 12 projects from manufacturing and software
development industries. Her research identified eighteen

1

successful communication practices used in distributed col-
laboration between organizations.

Communication is very important in software engineer-
ing, and especially so in distributed software development
[6]. Globally distributed software projects use many differ-
ent communication tools. These tools include e-mail, in-
stant messaging, telephones, teleconferencing, video con-
ferencing, groupware applications, version control sys-
tems, integrated development environments and shared
workspaces [2, 5, 3, 13, 12]. These communication tools
can be classified in several ways. Classification can be
based communication content type: some tools provide
only one media type, while others may combine audio,
video and text [13]. Synchronism is another property, that
affects the tool use: e-mail is asynchronous in comparison
with instant messaging, and thus less suitable for tasks re-
quiring intensive interaction, but more suitable for commu-
nicating across time zones [13, 7, 1]. There is, however,
very little empirical data on how and when these communi-
cation tools are actually used in the industry.

A survey on global software development companies
studied the problems and challenges in distributed projects.
The study classified problems into eight categories. It was
found that 74% of the problems in distributed projects were
caused by "communication and contacts". These problems
were caused by two major factors: cultural differences and
physical distance. Problems caused by cultural differences
include language difficulties in this study. It was often the
case, that language skills were so low, that fluent conversa-
tion became impossible, most notably in teleconferences.
The survey reports, that 30% of the problems in studied
projects were related to "communication tools". This was
the problem category receiving the least responses. How-
ever, there were a number of difficulties in using especially
video conferencing, that were reported in the study, but
were not included in "communication tools" category. The
reason for this was not reported. [8]

It can be argued, that a number of problems that were
reported as "non-tool" -related, could be solved by appro-
priate use of communication tools. Even while the chal-
lenges related to the technology, implementation and avail-
ability of communication tools suitable for global collab-
oration have been mostly solved, the adoption and use of
communication tools deserve more attention and care. This
requires understanding the limitations and specific proper-
ties of selected communication tools [7]. Earlier research
has reported that there is lack of communication tools de-
signed especially for global software development projects
[3], but it can be argued whether this still is the case, as the
communication technology has advanced greatly since the
research was done. Even though the technology is available
and easier to use, it has been reported that the barriers in
communication still include the adoption and setup time for

communication tools [13].
It has been reported that software developers spend an

average of 75 minutes per day in "unplanned interpersonal
interaction" [11]. In general, face-to-face meetings were
considered as the best way to communicate [8]. Physical
distance reduces the number of face-to-face meetings [6, 8].
E-mail, teleconferences and video conferences are the most
common tools used to substitute the lack of face-to-face
meetings in distributed projects [8, 1]. The lack of face-to-
face communication causes several problems, such as mis-
understandings between people in different sites, redundant
work to be done in the projects or even work not done at all
[8]. In distributed projects, especially the informal commu-
nication is reduced significantly. This causes challenges un-
derstanding the context in different sites and reduced aware-
ness of work done by distant team members [5]. However,
in addition to the lack of communication, different cultural
background, different work histories, different educational
backgrounds and language barriers affect this issue [5]. It
can be argued, that proper application of communication
tools and practices could support informal communication,
building team spirit and trust as well as leverage the diffi-
culties in understanding, cultural differences and language
barriers. The previous research provides very little empiri-
cal research on this subject.

Previous work provides a view on the state-of-the-
practice and the state-of-the-art communication tools and
practices. Previous research however provides very little
discussion on how these tools are used in distributed soft-
ware projects, what are the specific considerations and prac-
tices for each communication tool, and can these tools re-
ally help in solving the challenges in globally distributed
software development.

3 Methodology

The proposed research is a multiple case study on com-
munication challenges on globally distributed software de-
velopment projects.

The case study is conducted by interviewing practi-
tioners from several globally distributed software projects.
These projects are selected in co-operation with the practi-
tioners in software companies, and the selection of projects
is based on the experiences gained from the projects so far.
The projects to be studied include both successful and chal-
lenged projects. Based on the interviews, two surveys are
planned to be done to the practitioners participating in the
selected software projects.

The main research goals in the proposed research are to
identify the tools and practices used in communication in
selected globally distributed software development projects,
the best practices to use these communication tools, the
challenges and problems in the both adoption and use of

2

these communication tools, and the challenges and prob-
lems these communication tools cannot solve.

A communication tool is defined widely in this research:
term "communication tool" covers both traditional methods
of communication, such as face-to-face meetings, telecon-
ferences and electronical mail, and more novel communica-
tion tools, such as three-dimensional virtual environments,
virtual collaboration environments and wiki pages. In addi-
tion to forementioned tools that can be clearly understood as
communcation tools, the research also includes the less ob-
vious means of communication in distributed software de-
velopment, such as issue tracking and version control sys-
tems.

3.1 Research questions

The research to be conducted is based on following re-
search questions:

1. What are the communication challenges globally dis-
tributed software development projects experience?

2. What are the communication tools and practices used
in globally distributed software development?

(a) How communication tools are used in globally
distributed software development?

(b) How does the use of communication tools and
practices change between various stages and ac-
tivities of a software project?

3. What are the challenges with communication tools in
globally distributed software development projects?

(a) How do these challenges make the adoption of
communication tools more difficult?

(b) How do these challenges affect the use of com-
munication tools?

4. What are the communication tools and practices that
specifically support globally distributed software de-
velopment projects?

5. What are the challenges and problems these communi-
cation tools do not solve?

The motivation for the first research question is to find
out the current communication challenges in GSD projects.
The second question tries to find out the communication
tools and practices used to overcome these challenges in
the studied software companies as well as in the industry in
general. The combination of first two research questions
should provide a view on the state-of-the-practice in the
studied software companies. Based on this view, we try to

identify the main challenges and problems in the communi-
cation and the use of communication tools in selected soft-
ware projects with the third research question. The fourth
research question aims to find out the useful and applica-
ble communication tools and practices which could support
the globally distributed software projects. The fifth research
question tries to find out the issues current communication
tools and practices are not able to handle, even if applied in
a proper, disciplined way.

The proposed research can be divided roughly into two
stages. The first stage is about collecting the research data
and the assessment of current situation in the studied soft-
ware companies. The first stage of proposed research tries
to address the first two research questions. The second
stage, addressing the last three research questions, tries to
find solutions or conclude the absence of solutions related
to challenges on communication tool use.

3.2 Collecting research data

These research questions will be answered based on both
a literature survey on previous research, and interviews and
questionnaires on participating software companies.

The research will be conducted in several software com-
panies. A set of projects will be selected from these com-
panies co-operatively with the representatives of respec-
tive companies. The proposed research uses interviews and
questionnaires to collect research data. The selected key
personnel of these software projects, both the in-house and
the offshore, will be interviewed. The interviews are semi-
structured, they are recorded and notes are made during the
interview session.

The interviews are made in several rounds. The first
round of interviews is aimed at drawing an overview of
the projects, to gather information about the currently used
communication practices and their applicability, and the
current challenges and best practices in communication.
Consecutive interview rounds are aimed to focus on some
of the communication practices in use, and to study their
use during the project.

Together with the interviews, the proposed research con-
tains action research cycles. During these cycles new com-
munication tools and practices can be introduced to the
teams, and the experiences and evaluations of these prac-
tices are gathered during the interviews.

The interviews will be analysed qualitatively. The writ-
ten notes from the interviews are read through, and the ma-
terial is arranged into categories. During the first round, the
analysis will focus on gathering information on the projects
and their members, but consecutive interview rounds con-
centrate more on the actual communication tools and their
use in the globally distributed software projects.

The interviews are accompanied with questionnaires,

3

which will be introduced after the first interview round. The
questionnaires will be used to gather quantitative and quali-
tative data from the organizations, including the frequencies
of use of various communication tools and practices, the at-
titudes towards them and their fitness for activities of a soft-
ware project. The results from the analysis of this data will
be used further to focus the qualitative research to pinpoint
the most relevant phenomenon related to the communica-
tion tools and practices in the studied software projects.

3.3 Conducting the research

The research methodology builds on action research. We
aim to foster active participation and collaboration with the
researchers and the practitioners from the software compa-
nies. As the research is organized to be composed of several
rounds, we seek to give feedback to the software compa-
nies during the research project, not only at the end of it.
The feedback we aim to give to the companies includes the
analysis of their current situation and the main challenges in
their globally distributed software projects as well as some
solutions for these challenges. Especially during the con-
secutive interview rounds we aim to introduce new commu-
nication practices and tools as seen necessary, and to en-
hance the use of existing tools. This work will be done in
collaboration with the practitioners, based on the research
findings as well as experience from the software companies.

To support and facilitate this collaboration, we aim to de-
sign the questionnaires and further interview rounds based
on the findings from the studied projects as well as based on
the issues and aspects identified during the interviews and
discussions with the practitioners. We aim to use both the
interviews and questionnaire results as a base for discussion
and research planning. The discussion within and between
the participating software companies will be facilitated in
workshops, which we aim to arrange twice a year.

In addition to these results, this research will produce
a doctoral dissertation, a number of scientific publications
and a workbook.

3.4 Schedule

The proposed research can be seen as two stages: first
stage being identified by research questions 1, 2 and 3, and
the second stage by research questions 4, 5 and 6. The time
dimension on these two stages is interleaved due to the num-
ber of studied projects, but it can be fairly assumed, that
only answering the first three research questions in fairly
complete extent enable the research on the latter three re-
search questions.

The timeframe for the MaPIT research project is three
years, spanning from January 2007 to December 2009. The
preliminary schedule for the proposed research is shown on

Table 1. Schedule

Date Activity

01/2007 Initiation of the research
project

03/2007 - 09/2007 First interview round
05/2007 - 11/2007 Analysis of first interview

round
01/2008 - 04/2008 Second interview round
03/2008 First survey
06/2008 Stage 1 research data col-

lected
09/2008 - 11/2009 Consecutive interview

rounds
03/2009 Second survey
12/2009 Stage 2 research data col-

lected

Table 1. The proposed research will be made as a part of
MaPIT project, and thus its schedule follows the schedule
of the research project. The first interview round is expected
to be finalized in September 2007. Consecutive interview
rounds are planned to be conducted in cycles of six months.
The questionnaire round will take place after sufficient re-
search data is collected on the current situation of the par-
ticipating software companies. This may be finalized by the
spring 2008 earliest. The interview rounds are accompanied
with active collaboration between the researchers and the
practitioners in action research cycles. The actual schedule
for this is to be determined later in collaboration with the
practitioners.

4 Potential findings

First ("What are the communication challenges globally
distributed software development projects experience?")
and second ("What are the communication tools used
in globally distributed software development?") research
question will be answered based on the first interview
round. Based on the analysis of the interviews, we will
draft a communication tool / software project activity ma-
trix. This matrix will contain the available communication
tools on one axis and the activities mandated by the soft-
ware process on the other axis. Consecutive rounds are also
used to further refine and add more detail to the commu-
nication tool/software process matrix drafted after the first

4

interview round.
Consecutive interview rounds as well as a questionnaire

round are used to address the research question "How com-
munication tools are used in globally distributed software
development?". For each project we study in the proposed
research, we will select a number of communication tools
used in the project. The selection of tools will be done based
on analysis which tools seem the most important and rele-
vant in the project work, as well as the tools that project
personnel has challenges with.

For these tools, we will assess their current use in the
project, and the attitudes towards using the tool as well as
experience on the tool suitability for different activities in
the software project. We will also conduct a quantitative
research on user experience about the communication tools
and their use in the projects. This research is done by send-
ing out the questionnaires to the personnel of studied soft-
ware projects. Based on this research data, we aim to an-
swer to research question "How does the use of communi-
cation tools change between various stages and activities of
a software project?".

Research questions three "What are the communication
tools that should be used in a globally distributed software
development project?" and four "What are the challenges
with communication tools in globally distributed software
development projects?" aim to find out the challenges re-
lated to the communication tools found in the first three re-
search questions. The answers to these questions should
also benefit the participating software companies to im-
prove their software development processes and especially
the use of communication tools.

The answer to fifth research question "What are the
challenges and problems these communication tools do not
solve?" is used both to evaluate and verify the research
on other research questions as well as motivate further re-
search.

References

[1] R. D. Battin, R. Crocker, J. Kreidler, and K. Subramanian.
Leveraging resources in global software development. IEEE
Software, 18(2), 2001.

[2] M.-C. Boudreau, K. D. Loch, D. Robey, and D. Straub.
Going global: Using information technology to advance
the competitiveness of the virtual transnational organization.
Academy of Management Executive, 12(4):120–128, 1998.

[3] C. Ebert and P. DeNeve. Surviving global software develop-
ment. IEEE Software, 18(2), 2001.

[4] R. Heeks, S. Krishna, B. Nicholson, and S. Sahay. Synching
or sinking: Global software outsourcing relationships. IEEE
Software, 18(2), 2001.

[5] J. D. Herbsleb and A. Mockus. An empirical study of speed
and communication in globally distributed software devel-
opment. IEEE Transactions on Software Engineering, 29(6),
2003.

[6] J. D. Herbsleb and D. Moitra. Global software development.
IEEE Software, 18(2), Mar-Apr 2001.

[7] L. Kiel. Experiences in distributed development: A case
study. International Workshop on Global Software Develop-
ment, 2003.

[8] S. Komi-Sirvio and M. Tihinen. Lessons learned by partic-
ipants of distributed software development. Knowledge and
Process Management, 12(2):108–122, 2005.

[9] A. Mockus and J. D. Herbsleb. Challenges of global soft-
ware development. METRICS, Proceedings of the 7th Inter-
national Symposium on Software, pages 182–184, 2001.

[10] M. Paasivaara. Communication Practices in Inter-
organizational Product Development. PhD thesis, Helsinki
University of Technology, Software Business and Engineer-
ing Institute, 2003.

[11] D. E. Perry, N. A. Staudenmayer, and L. G. Votta. People,
organizations, and process improvement. IEEE Software,
11(4):36–45, 1994.

[12] V. Sinha, B. Sengupta, and S. Chandra. Enabling collabo-
ration in distributed requirements management. IEEE Soft-
ware, 23(5), 2006.

[13] M. R. Thissen, J. M. Page, M. C. Bharathi, and T. L. Austin.
Communication tools for distributed software development
teams. SIGMIS-CPR 07, 2007.

5

A Groupware System for Distributed Collaborative Programming: Usability
Issues and Lessons Learned

Crescencio Bravo, Rafael Duque, Jesús Gallardo, Javier García, Pablo García
CHICO Research Group. Department of Information Systems and Technologies

College of Computer Science Engineering. University of Castilla – La Mancha (Spain)
{Crescencio.Bravo, Rafael.Duque, Jesus.Gallardo}@uclm.es; javintx@hotmail.com;

Pablo.Garcia@uclm.es

Abstract

The advances in network and collaboration
technologies enable the creation of powerful
environments for collaborative programming. This
article describes one such environment, called
COLLECE, primarily used for collaborative learning.
This system supports collaborative edition, compilation
and execution of programs in a synchronous
distributed fashion, and includes advanced tools for
communication, coordination and workspace
awareness. The article analyzes some usability issues
as well as limitations and weak points as the basis for
developing future versions of the system.

1. Introduction

The advances in network and collaboration
technologies enable the creation of powerful
collaborative environments, of which many activities
and disciplines can take advantage. Thus,
Programming, which is a complex and creative task,
can be supported and enhanced using groupware
systems and distributed architectures.

According to Johnson [10], the process of analysing
and criticising software artefacts produced by other
people is a powerful method for learning programming
languages, design techniques and application domains.
The increasing complexity of software projects and the
more frequent distribution of the members of the
development teams lead to increasing problems and
difficulties in the programming phase. Collaborative
Programming (CP) is illuminating these scenarios by
allowing distributed programmers to work jointly on
the same program or application. Previous studies [19,
15] indicate that CP does not only accelerate the

problem solving processes, but it also improves the
quality of the programs.

Many CP systems have been developed up to the
present. We propose the system COLLECE for use in
software factories and, above all, in teaching-learning
processes in educational centres. COLLECE supports
synchronous distributed collaboration and provides
shared workspaces for the tasks of edition, compilation
and execution of programs. This article describes this
system. Its main contribution consists of the use of
proposal-based tools to coordinate the carrying out of
shared tasks, the inclusion of a structured chat for
communication during collaborative programming and,
lastly, the availability of a wide support for
synchronous work awareness.

The first part of the article reviews some systems
that support distributed or collaborative programming.
The COLLECE system is presented in Section 3 and a
study of the utilization of COLLECE in collaborative
programming activities is described in Section 4.
Section 5 looks at some usability problems; and,
finally, Section 6 draws some conclusions.

2. Related systems

A number of studies have approached the problems
of supporting collaborative programming on the
Internet. RECIPE (REal-time Collaborative Interactive
Programming Environment) [16] allows geographically
distributed programmers to participate concurrently in
the design, coding, testing, debugging and
documentation of a program. To do this, RECIPE
allows the easy conversion of single-user compilers and
debuggers in collaborative applications and the
integration of existent collaborative editors into the
system. However, it does not register the programmers’
work in order to draw conclusions; neither does it offer

specialized tools for communication and awareness,
which is important for productive collaboration. The
DPE environment [9] is quite similar to COLLECE.
This system supports collaborative edition, compilation
and execution of programs, and incorporates text-based
and audio communication. However, DPE presents
limited support for task coordination and awareness.

Some attempts (e.g., [4]) have been aimed at
incorporating collaborative support (forum, chat,
instant messaging, collaborative editing, etc.) in
Eclipse [3] through plug-ins, but these are still in their
initial stages. On the other hand, some highly
interactive synchronous collaborative editors offer
advance tools for text edition, including syntax
highlighting. One of these is Gobby [5], which includes
an IRC-like chat for communication, and another is
SubEthaEdit [17], with member panels, tele-cursors,
group scrollbars, and chat. However, neither of these
provide support for program compilation and
execution.

In the scope of collaborative programming learning,
we can find JeCo. JeCo [14] is an integration of two
systems: Jeliot 3 and Woven Stories. The former
animates the execution of Java programs. The latter is a
co-authoring tool with which users create documents
(programs) and connections among them. In so doing,
Woven Stories supports asynchronous collaboration,
and a chat incorporated in the system for students’
discussion allows synchronous collaboration. The
system lacks facilities for shared edition and animation.

3. The COLLECE system

COLLECE (COLLaborative Edition, Compilation
and Execution of programs) overcomes some of the
limitations of the systems mentioned above. COLLECE
allows the users to edit a program or code fragment, to
compile it and to run it collaboratively. Up to now, the
languages supported are Java and C.

The system, developed using Java technology,
operates on client/server architecture. The data
management as well as the synchronization services for
implementing the synchronous collaboration are
centralized in a server, whereas the distributed clients
(the users executing the system) access the system from
a web page. The synchronization subsystem utilizes the
Java Shared Data Toolkit (JSDT) [11].

The system is used by two different actors: teacher
and student. The teacher defines the work sessions and
arranges the users participating in them by using
management tools. A session is defined by means of a
name, a type, a file containing the formulation of the
problem to be solved and a schedule in which the

session has to be carried out. The problem formulation
includes a textual description of the objectives,
requirements and constraints to be fulfilled with the
creation of a program. When the students access the
system, the session management tool is opened,
showing a list with the sessions available. Some of
them are public and others are private. Any user can
access a public session, whereas it is necessary to be a
member to access private sessions.

When a session is accessed in the scheduled time,
the COLLECE workspace is opened (Figure 1). In
order to design it, we took the semi-structured model
for synchronous collaborative problem solving
proposed by Bravo et al. as a base [2]. This model
proposes Scripting (Collaboration Protocols) [18] to
structure the high-level tasks, Language/Action
Perspective [20] to express and categorize actions for
users’ coordination, and Flexible Structuring [12] for
communication between users.

In order to carry out the programming tasks, an
explicit collaboration protocol must be followed. First,
the students create a program using the collaborative
editor; after which they are able to compile the
program, receiving a list of compilation errors. Finally,
they can execute the program provided a compiled
program is available. Iterations are possible between
these three tasks [1]. However, despite this script, the
students are free to make their own decisions on when
to edit, compile and execute, and to decide who is
responsible for each task. To do so, coordination tools
are available in the workspace to regulate the
navigation through the collaboration protocol.

Such coordination processes are modelled with a
simple protocol of actions extracted from language. In
order to regulate the edition turn assignment (see
Figure 1-3), we identified the acts Request the edition
turn, Give and Don’t give. With these acts, a user can
request the edition turn and his/her fellow users can
express his/her agreement or disagreement. When all
the users in the group agree, the assignment is made.
Similar acts are used for coordinating when to compile
and when to execute the program (see Figure 1-4, 1-5).
These coordination tools support multiple proposals,
that is to say, proposals coming from more than one
user and, as a result, lists are required to contain the
historical proposals, enabling a user to select the
proposal to which he/she wants to respond.

The communication during the tasks is materialized
by means of a structured chat. This chat is called
structured because it offers a pre-established set of
communication acts, aimed at providing explicit
communication acts that encourage the users’
participation, by reducing the writing load and focusing

the users on the task. Apart from the so-called
structured messages, the chat also provides the users
with free text messages and the possibility of selecting
one of the last messages sent in order to reuse it.

Besides coordination and communication support,
awareness support is also available so that the users can
easily perceive and gain knowledge of the interaction
carried out by other people in the shared workspace
[6].

Figure 1. The main user interface of COLLECE (a snapshot of a real session).

We worked with three teachers of Programming in
the participative design of the user interface. First,
some paper prototypes were designed and evaluated by
these teachers. A software prototype was then
elaborated and put to the test in a formative evaluation.
In so doing, a final design was implemented in
accordance with the following main design principles:
– The three main tasks (edition, compilation and

execution) are contained in a single window (the
main user interface) (see Figure 1).

– The edition area consists of a shared text editor
whose floor control is regulated by a turn-taking
mechanism based on a coordination tool.

– The console area shows both the compilation errors
and the execution outcome.

– The edition and console areas are not fully
WYSIWIS (What You See Is What I See), since
each user can decide which part of these areas to
visualize.

– The awareness is provided mainly in the form of
tele-pointers, state labels, lists of past interactions
and beeps.

– The user interface also contains a structured chat, a
session panel and coordination tools.

 Following its implementation, a number of teachers
and students used the system to carry out some
collaborative programming activities with the purpose
of evaluating it. Thus, some important conclusions
were drawn regarding the user interface effectiveness
and some refinements were made. Among them, we
highlight the following improvements:
– The inclusion of a semaphore in the coordination

tools, so that the users can perceive easily (with a
green light) when and where there are proposals of
other users still pending an answer.

– The addition of a visual indicator to the edition
scroll bar of the remote users to indicate where the
editor user is working.

– The refinement of the set of pre-defined messages
included in the structured chat (see Section 4.1).

In the final COLLECE user interface four main
areas are identified: the edition area at the top (Figure
1-1), the console in the middle (Figure 1-2), the chat at
the bottom (Figure 1-6) and the session panel on the
right (Figure 1-7). Two system functions allow the
users to consult the problem formulation and the
compilation statistics. The former shows a textual
description of the problem to solve. The latter displays
an ordered list of compilation errors and their
frequency, so that the students are aware of their more
frequently made mistakes.

Herbsleb and Grinter [7] see the lack of awareness
as one of the major problems in distributed software
development. COLLECE deals with the problem of
awareness by providing a number of techniques to
inform about people, their state and their actions.
Specifically, COLLECE awareness is materialized by
means of a number of elements: (i) session panel
(Figure 1-h); (ii) global state (editing, compiling or
executing) (Figure 1-k) and individual state (Figure 1-
i); (iii) tele-pointers, in the form of a coloured rectangle
drawn around the source line (Figure 1-b); (iv) lists of
interactions (Figure 1-e); (v) semaphores (Figure 1-f);
(vi) beeps, when actions occur; and (vii) other
mechanisms (Figure 1-a, 1-c, 1-d, 1-g, 1-j).

4. The system in action

We carried out a study aimed at evaluating the
system at general level and specifically the use of the
chat, the utilization of the coordination tools and the
quality of the awareness support. Students (N=34)
enrolled in the fifth year of Computer Science studies
(MSc) of Computer Science Engineering at the
University of Castilla – La Mancha in Spain took part
in the study. These students were organized in 17 pairs.
Firstly, they received a training course in COLLECE.
Then, they were asked to create a program for sorting
ten previously read numbers and calculating the
median. The time available for this activity was 45
minutes. The use of the system was logged for later
analysis and some questionnaires were prepared to
collect information from the users.

Of the 17 pairs, 14 pairs (82%) completed the
activity in the time available, generating a program. We
selected three variables for evaluating the programs
created:
– Well_Formed: Quantifies to what degree a solution

is well built, i.e., it does not contain compilation
errors.

– Accuracy: Assesses whether the solution solves the
problem by satisfying the requirements (sorting ten
numbers).

– Quality: Gives an indication of the general quality
of the solution.

We calculated these variables with a mixed method
of quantitative and subjective analysis, and used a five-
point scale ranging from 1 (very poor) to 5 (very good)
to give them a value. Thus, the 14 solutions created by
the students obtained an average value for
Well_Formed of 4.71, for Accuracy of 3.29 and for
Quality of 3.57.

4.1. Use of the chat

As in real life, people need to communicate when
carrying out a complex task such as programming in a
group. The sentence-openers approach has proved to
be a potentially effective mechanism for structuring
communication in a number of systems [13]. As a
result, we chose to incorporate a chat with sentence
openers in COLLECE. However, the study described
here aims to evaluate the suitability of such a chat.

To derive a set of chat messages (sentence openers)
for use in the Programming domain, we first met with
some programming teachers in order to identify
potentially interesting chat messages. Thus, 19
messages were initially formulated. They were filtered
when considering the messages interchanged between
the users during the tests of the formative evaluation
(see Section 3). Finally, the teachers were interviewed
again to validate a final set of 10 messages, whose texts
are shown in Figure 2.

In the study, the most used message type was the
free message (92%), and the least used was the
structured message (3%). Analyzing the structured
messages (Figure 2), “I think that…” was the most used
(17 times, 38 %) and “In the loop …” was not used.

Structured messages
17

2
4

6

2
1 0 1 1

12

0

2

4

6

8

10

12

14

16

Tipos de Mensajes

I think that … Why …
I miss a … I see a mistake in …
Revise the { } We must control …
In the loop … Correct errors top-bottom
Do we test more cases? This already works!

Figure 2. Use of the structured chat in the
experiment.

4.2. Use of the coordination tools

Table 1 shows the number of proposals (requests of
turn, compilation proposals, and execution proposals)
and answers made with the coordination tools. There
are two surprising results. Firstly, the number of
agreements is less than expected with respect to the
number of proposals. Secondly, the number of
disagreements is very low. The difference between the
number of proposals and the number of total responses
(agreements and disagreements) means that some
proposals were not answered.

Table 1. Number of coordination actions.

Proposals Agreements Disagreements
Edition 205 99 3
Compilation 320 202 9
Execution 190 103 4

4.3. Students’ evaluation

The students who participated in the experiment
were requested to fill in a questionnaire after the
working sessions. This questionnaire contained both
open and closed questions to register the students’
opinion about different issues of the system, such as its
weak points, facility of use and of learning, and
messages of the chat.

Many students identified many strong points of the
system. However, our interest lies more in the weak
points. At user interface level, the students indicated
that there are too many areas in which to interact, and
therefore that they had to pay attention to too many
things at the same time. They felt the need for a better
editor for editing the source code, which included the
number of each line and had syntax colouring. They
pointed out that the requests for edition turn,
compilation and execution as well as their possible
answers should be better highlighted. In regard to the
structured chat, they would have liked shortcuts to
select the structured messages using the keyboard, but
they also suggested that structured messages are not
useful since in most cases they preferred to write their
own messages. The students identified some structured
messages as being of little use whilst others were more
interesting, something which will be considered in the
future. Another issue mentioned was the CP approach:
some of the students considered a more concurrent
programming would be a promising advance, and
others found it interesting for the users to be able to

work separately, and afterwards integrate or compare
their work. However, these approaches follow an
instructional design different to which the system is
presently based on.

Two closed questions of the questionnaire were
aimed at evaluating indirectly the system usability.
They were “Do you think that the user interface is easy
to use?” and “Do you think that the user interface is
easy to learn?”. 92.68% of the students replied
positively to the first question, and 97.56% thought that
the user interface is easy to learn.

The students were also requested to evaluate the
quality of the awareness information that some specific
components of the user interface provide. Table 2
shows the averages scores once again using a five-point
scale. The remote tele-pointer is the highest scoring
mechanism, and the semaphore is the lowest. The
session panel also scored highly, while the lists of
proposals were not considered to be an efficient way of
providing awareness information.

Table 2. Students’ scores for the awareness tools
and mechanisms of COLLECE (M: mean; SD:

standard deviation).

Category M SD
Program with which users are working (Figure 1-a) 3.3 0.7
Remote user’s tele-pointer in the edition area (1-b) 3.9 0.8
Remote user’s tele-pointer in the editor’s scroll bar (1-c) 3.4 0.8
Line number in which the editor user is editing (1-d) 3.5 1.1
Lists of proposals, agreements and disagreements (1-e) 3.3 1.0
Semaphore indicating proposals pending answer (1-f) 3.0 1.1
Information about who is the editor user (1-g) 3.4 0.9
Session panel (1-h) 3.8 0.7
Session panel, individual state (1-i) 3.5 0.7
Session panel, who are you? (1-j) 3.3 0.8
Global state (1-k) 3.4 1.0

5. Usability issues and lessons learned

Within the Human-Computer Interaction discipline,
usability plays a crucial role in assuring the quality and
success of any interactive system [8]. In collaborative
systems, usability is especially important, and different
evaluations are required to guarantee the best usability
of a product.

Structured chat tools are frequently incorporated in
synchronous collaborative systems. Despite providing
some benefits, we did not find them particularly useful
in our approach. The frequencies of both structured and
reused messages were too low. This may have been due
to us having included in the chat the possibility of
writing free text messages, which were preferred by the
users. Further studies are required to analyze to what
extent it would be advisable to have a chat with only

structured messages, thus making the users focus on the
programming task and advising them with the
information contained in specific messages. Also the
inclusion of an audio (and even video) channel should
be further investigated.

We found significant data about the coordination
tools that shows that the students did not use them
properly. The low number of disagreements suggests
considering the use of other coordination models that
do not require two possible answers to a proposal (OK
/ Not OK), such as a request-release model that assigns
resources when requested if they are not in use, and
that are released by the owner user when he/she wants.
In the specific case of the edition turn, an interesting
possibility in teaching-learning settings is the mediation
of the system to assign the turn.

In collaborative systems, awareness support is a
component of the system’s usability. Usability is
related to awareness, and our hypothesis is that by
improving awareness support the usability is increased.
From the beginning we recognized the importance of
awareness in the design of COLLECE, and thus we
incorporated in the system a significant number of
mechanisms. However, the students participating in the
experiments were more critical as reflected in the
questionnaires. In an informal and subjective way, they
said that the system was easy to use and to learn, but
during the experiments they had problems in using
specific components such as the coordination tools. We
can conclude that the system has in theory good
awareness tools, but in practice they do not contribute
to generate awareness information of quality, at least
according to the students’ opinion.

6. Conclusions

In this article we have presented COLLECE, a
synchronous distributed collaborative system for
supporting programming tasks (edit, compile and run
programs). The system is primarily aimed at supporting
collaborative learning of programming. In order to
recreate classical face-to-face pair (or group)
programming in a distributed configuration and, in so
doing, obtain its benefits, the programming tasks are
complemented with communication, coordination and
awareness tools. The different designs and solutions
adopted for implementing the synchronous
collaboration support of COLLECE represent a
proposal for synchronous groupware user interfaces.

COLLECE has been put to the test in different kinds
of evaluations and studies. Good and not so good
results have been obtained from them. Some specific
tools have not provided the expected benefits, such as

the coordination tools, the communication tool
(structured chat) and the awareness mechanisms. For
instance, the coordination tools require more training in
the users, or even a new coordination model or a new
user interface to implement them.

The aforementioned usability problems and lessons
learned are a starting point for the new versions of the
system. However, empirical studies to give a more
rigorous estimation of both the quality of the awareness
information and the usability of the system are
required. Along this line, COLLECE is presently being
used by university computer science students enrolled
in the subject matters of Programming Fundamentals
and Data Structures, so that a significant amount of
evaluation data will be available. Accordingly, further
work on usability and awareness problems in
COLLECE will follow. For instance, radar views to
improve perception and understanding of the users’
work (programming tasks) need to be explored. The
complexity of the system’s user interface and the
availability of better edition tools are aspects which
will also be taken into consideration for future
versions.

Finally, it is necessary to reflect on the use of the
COLLECE system for professional purposes. We
believe that its general approach is suitable for industry
since it can support extreme programming and
particularly distributed pair programming. For instance,
COLLECE could be used in real projects for shared
error correction, discussion of solutions or explanation
of programs. Such a system would have an impact not
only in the immediate productivity or quality of
programming but also in the control and analysis of the
process. The structuring incorporated in the system
opens the door to easy analysis of the behaviour of the
programmers in order to understand it and improve the
programming practices (e.g., error correction
behaviours, programming best practices) within a
development team in future projects.

However, at present the system still has to overcome
some shortcomings as regards its use in the industry.
Synchronous work from different locations is allowed,
but this could be a limitation when it is not possible for
all the participants to work at the same time due to their
different working conditions because of their different
countries/regions, timetables, etc. As far as the user
interface is concerned, a more advanced collaborative
editor and better mechanisms for coordination,
communication and awareness would be required in
order for the system to provide the necessary
productivity for professional contexts. From a
programming point of view, the system would be
enriched by supporting a greater number of

programming languages besides Java or C, and by
facilitating the management of more complex
programming projects made up of many programming
objects of multiple types (e.g., source, object or
documentation files). Regarding the whole
development life-cycle, COLLECE should be easily
integrated with other CASE (Computer-Aided Software
Engineering) tools supporting other development tasks
such as design or testing.

Acknowledgements

This research is supported by the Comunidad
Autónoma de Castilla-La Mancha (Spain) in the PCI-
05-006 and PAC07-0020-5702 projects, and by the
Ministerio de Educación y Ciencia (Spain) in the
TIN2005-08945-C06-04 project. The authors would
like to thank the teachers and students from University
of Castilla – La Mancha who participated in the
experiments and evaluation activities.

References

[1] Bravo, C., Redondo, M.A., Mendes, A.J., Ortega, M.:
Group Learning of Programming by means of Real-
Time Distributed Collaboration Techniques. HCI related
papers of Interacción 2004. Springer-Verlag (2004)
289-302

[2] Bravo, C., Redondo, M.A., Ortega, M., Verdejo, M.F.:
Collaborative environments for the learning of design:
A model and a case study in Domotics. Computers and
Education 46 (2) (2006) 152-173

[3] Eclipse. http://www.eclipse.org/
[4] GILD: Groupware enabled Integrated Learning and

Development. http://gild.cs.uvic.ca/
[5] Gobby: A collaborative text editor.

http://darcs.0x539.de/trac/obby/cgi-bin/trac.cgi
[6] Gutwin, C., Greenberg, S.: Workspace Awareness.

Position paper for the ACO CHI’97 Workshop on
Awareness in Collaborative Systems. Georgia, USA
(1997)

[7] Herbsleb, J., Grinter, R.: Architectures, coordination,
and distance: Conway’s law and beyond. IEEE Software
16 (5) (1999) 63-70

[8] ISO/IEC 9126-1. Software engineering - Product quality
- Part 1: Quality model (2001)

[9] Jo, C.H., Arnold, A.J.: A portable and Collaborative
Distributed Programming Environment. International
Conference on Software Engineering. Las Vegas,
Nevada, USA (2003) 198-203

[10] Johnson, P.M.: Reengineering Inspection: The Future of
Formal Technical Review. Communications of the
ACM 41 (1998) 49-52

[11] JSDT: Shared Data Toolkit for Java Technology.
https://jsdt.dev.java.net/

[12] Lund, K., Baker, M.J., Baron, M.: Modelling dialogue
and beliefs as a basis for generating guidance in a CSCL
environment. Proceedings of the International
Conference on Intelligent Tutoring Systems. Montreal,
Canada (1996) 206-214

[13] McManus, M:, Aiken, R.: Monitoring computer-based
problem solving. Journal of Artificial Intelligence in
Education 6 (4) (1995) 307-336

[14] Moreno, A., Myller, N., Sutinen, E.: JeCo, a
Collaborative Learning Tool for Programming.
Proceedings of the 2004 IEEE Symposium on Visual
Languages - Human Centric Computing (VLHCC'04).
Washington DC, USA (2004) 261-263

[15] Nosek, J.T.: The Case for Collaborative Programming.
Communications of the ACM 41(3) (1998) 105-108

[16] Shen, H., Sun, C.: RECIPE: a prototype for Internet-
based real-time collaborative programming. Proceedings
of the 2nd Annual International Workshop on
Collaborative Editing Systems. Philadelphia,
Pennsylvania, USA (2000)

[17] SubEthaEdit: Collaborative text editing.
http://www.codingmonkeys.de/subethaedit/

[18] Wessner, M., Hans-Rüdiger, P., Miao, Y.: Using
Learning Protocols to Structure Computer-Supported
Cooperative Learning. Proceedings of World
Conference on Educational Multimedia, Hypermedia &
Telecommunications (ED-MEDIA’99). Seattle,
Washington, USA (1999) 471-476

[19] Williams, L.A., Kessler, R.R.: All I really need to know
about pair programming learned in kindergarten.
Communications of the ACM 43(5) (2000) 108-114

[20] Winograd, T.: A Language/Action Perspective on the
Design of Cooperative Work. CSCW: A Book of
Readings. Morgan-Kaufmann (1988)

