
PROCESS ALGEBRAIC APPROACH TO

HYBRID SYSTEMS

Ed Brinksma
∗

Tomas Krilavičius
∗,1

Yaroslav S. Usenko
∗

∗ FMT, EEMCS, University of Twente, P.O.Box 217, 7500
AE Enschede, The Netherlands,

{brinksma,usenko,t.krilavicius} at utwente.nl

Abstract: Process algebra is a theoretical framework for the modelling and analysis
of the behaviour of concurrent discrete event systems that has been developed
within computer science in past quarter century. It has generated a deeper
understanding of the nature of concepts such as observable behaviour in the
presence of nondeterminism, system composition by interconnection of concurrent
component systems, and notions of behavioural equivalence of such systems. It has
contributed fundamental concepts such as bisimulation, and has been successfully
used in a wide range of problems and practical applications in concurrent systems.
We believe that the basic tenets of process algebra are highly compatible with the
behavioural approach to dynamical systems. In our contribution we present an
extension of classical process algebra that is suitable for the modelling and analysis
of continuous and hybrid dynamical systems. It provides a natural framework for
the concurrent composition of such systems, and can deal with nondeterministic
behaviour that may arise from the occurrence of internal switching events. Stan-
dard process algebraic techniques lead to the characterization of the observable
behaviour of such systems as equivalence classes under some suitably adapted
notion of bisimulation.

Keywords: Formal specifications, Formal methods, Behavioural science

1. INTRODUCTION

The growing interest in hybrid systems both in
computer science and control theory has gener-
ated a new interest in models and formalism that
can be used to specify and analyze such systems.
A prominent framework for hybrid systems is pro-
vided by the family of hybrid automata models
(hybrid automata (Alur et al., 1993; Henzinger,
1996), hybrid behavioural automata (Julius et
al., 2002), hybrid input/output automata (Lynch
et al., 2003)). More recently process algebraic

1 Supported by the NWO project CASH, http://fmt.cs.

utwente.nl/projects/CASH/

models have been put forward as a vehicle for
the study of hybrid systems (Cuijpers and Re-
niers, 2003; Bergstra and Middelburg, 2003).

Process algebra (Milner, 1989; Hoare, 1985; Berg-
stra and Klop, 1984; Bolognesi and Brinksma,
1987) is a theoretical framework for the mod-
elling and analysis of the behaviour of concurrent
discrete event systems that has been developed
within computer science in past quarter century.
It has generated a deeper understanding of the
nature of concepts such as observable behaviour in
the presence of nondeterminism, system composi-
tion by interconnection of concurrent component
systems, and notions of behavioural equivalence

of such systems. It has contributed fundamental
concepts such as bisimulation, and has been suc-
cessfully used in a wide range of problems and
practical applications in concurrent systems.

We believe that the basic tenets of process algebra
are highly compatible with the behavioural ap-
proach to dynamical systems. In our contribution
we present an extension of classical process alge-
bra that is suitable for the modelling and analysis
of continuous and hybrid dynamical systems that
can be seen as a generalization of the behavioural
approach in a hybrid setting. It provides a natu-
ral framework for the concurrent composition of
such systems, and can deal with nondeterministic
behaviour that may arise from the occurrence of
internal switching events. Standard process alge-
braic techniques lead to the characterization of the
observable behaviour of such systems as equiva-
lence classes under some suitably adapted notion
of bisimulation, yielding a potentially interest-
ing mathematical interpretation of the notion of
hybrid behaviour. A technical advantage of our
approach is that, in contrast to (Cuijpers and
Reniers, 2003; Bergstra and Middelburg, 2003)
strong bisimulation is a congruence relation with
respect to the parallel composition of subsystems,
i.e. substitution of a subsystem by a bisimilar
subsystem does not affect the behaviour of the
composition.

2. BEHAVIOURAL HYBRID PROCESS
CALCULUS

In this section hybrid transition systems and a
related notion of strong bisimulation relation are
defined. Then a hybrid basic language based on
the transition systems is defined. The syntax of
the language is presented and its operators are
explained.

2.1 Trajectories

To make this process algebraic framework work
our concept of trajectory should be explained a
bit. We assume that trajectories are defined over
bounded time intervals (0, t], and map to a signal
space to define the evolution of the system. Com-
ponents of the signal space correspond to differ-
ent aspects of the continuous-time behaviour, like
temperature, pressure, etc. They are associated
with type names that identify them.

Definition 1. (Signal space). Let W be a set of
signal domains (typically ⊆ R), and T be a set
of signal type names. A signal space W is a tuple
(W1×· · ·×Wn, t1×· · ·×tn) with Wi ∈ W, ti ∈ T ,
where ti denotes the signal type of Wi, and ti 6= tj
for i 6= j, i.e. all Wi have a different type.

Definition 2. (Trajectory). Let W be the signal
space. Then a trajectory is a mapping ϕ : (0, t] →
W, where t ∈ R

+ is the duration of the trajectory,
also denoted as t(ϕ).

The signal space W specifies the potentially ob-
servable continuous-time behaviour of the system.
We will use Φ to denote a set of trajectories.

Definition 3. (Projection). Let ϕ : (0, t] → W be
a trajectory. Then a projection of trajectory to a
type ti of W is the trajectory πti(ϕ) : (0, t] → Wi,
with Wi = (Wi, ti).

If the signal types of two trajectories coincide,
they can be concatenated to one trajectory, which
is not necessary continuous.

Definition 4. (Concatenation of trajectories). Let
ϕ : (0, t] → W and ψ : (0, u] → W be trajectories.
The concatenation of ϕ and ψ is given by the
trajectory φ;ψ : (0, t + u] → W defined as:

ϕ ; ψ(t′) =

{

ϕ(t′), 0 < t′ 6 t

ψ(t′ − t), t < t′ 6 t + u

2.2 Definition of hybrid transition system

A hybrid transition system is a labelled transition
system with two types of transitions.

Definition 5. (HTS). A hybrid transition system
is a tuple HTS = 〈S,A,−→,W,Φ,−→c〉, where

• S is a state space,
• A is a set of (discrete) action names,
• →⊆ S × A × S is a (discrete) transition

relation,
• W is a signal space,
• Φ is a set of (initial) trajectories ϕ : (0, t] →

W for t ∈ R
+,

• −→c⊆ S × Φ × S is a (continuous time)
transition relation,

where we write s
a
−→ s′ iff (s, a, s′) ∈−→ and s

ϕ
−→ s′

iff (s, ϕ, s′) ∈−→c.

The set of discrete action names includes a silent
action, denoted τ . It does not represent a po-
tential communication and is not directly ob-
servable. Silent action may be used to specify a
nondeterministic behaviour (as internal actions
in (Milner, 1989, Pages 37–43)).

Density is required, i.e. for all 0 < u < t : s
ϕ
−→t

s′ ⇔ ∃s′′, ϕ1, ϕ2 : ϕ = ϕ1 ; ϕ2 ∧ s
ϕ1

−→u s′′ ∧

s′′
ϕ2

−→t−u s′. This requirement allows us to split
every trajectory into arbitrarily many parts.

Remark 6. (Notation). Greek alphabet symbols
(like ϕ,ψ) are used to denote trajectories, which
are taken on a continuous transition, and Latin
alphabet (like a, b) for an action.

The label ϕ in s
ϕ
−→ s′ is a semantic object, viz.

the set theoretic graph of the function ϕ.

Remark 7. The above property of density does
not suffice in general, because it allows patholog-
ical transition systems, see (Jeffrey et al., 1993).
However, the process calculus that we define can-
not describe such pathological cases, so that our
definition suffices.

Remark 8. Note that the trajectory transitions
can be non-deterministic.

2.3 Bisimulation

One of the main tools to compare systems is
strong bisimulation. The bisimulation for contin-
uous dynamical systems is presented in (van der
Schaft, 2004). The process algebraic version is
nicely explained in (Milner, 1989). A strong bisim-
ulation for hybrid transition systems requires both
systems to be able to execute the same trajecto-
ries and actions and to have the same branching
structure.

Definition 9. (Strong bisimulation). A binary re-
lation R ⊆ S × S on the states is a bisimulation,
if for all p, q ∈ S, such that p R q, holds

p
a
−→ p′ =⇒∃q′ such that q

a
−→ q′ and p′ R q′

q
a
−→ q′ =⇒∃p′ such that p

a
−→ p′ and p′ R q′

p
ϕ
−→ p′ =⇒∃q′ such that q

ϕ
−→ q′ and p′ R q′

q
ϕ
−→ q′ =⇒∃p′ such that p

ϕ
−→ p′ and p′ R q′.

The first two statements define bisimulation re-
quirements for the discrete actions, and the last
two for the continuous-time transitions.

Definition 10. (Bisimilarity). Two states p and q
are bisimilar (denoted p ↔ q), if there exists a
bisimulation R, containing the pair (p, q).

2.4 Language

To define evolution and interaction of systems,
a language, based on hybrid transition system
(Subsection 2.2) is introduced. The syntax of
language is presented in BNF notation (Backus-
Naur form).

P ::= 0 | a.P | [ϕ] .P |
⊕

i∈I

Pi | P ‖H
A P | B

¡
ϕ

+

@ψ
” = ”

¡
ϕ

or

@ψ

choice made

6

¡
ϕ

⊕

@ψ
” = ” ¡ϕ + ψ

@

choice made

6

Fig. 1. Superposition

The language can be easily extended with re-
naming, hiding operators (like in (Brinksma et
al., 2004)).

We will use syntactic functions L(P) and N (P)
for collecting action and signal type names occur-
ring in P , respectively.

2.4.1. Action-prefix a.P The ordinary well-
known action-prefix. Process a.P describes a pro-
cess which engages in the action a and then be-
haves as described by P.

2.4.2. Trajectory-prefix [ϕ] .P It denotes the
hybrid behaviour that starts with a continuous
trajectory denoted by ϕ and is followed by the
behaviour specified by P .

2.4.3. Superposition
⊕

{P (v) | v ∈ I} Su-
perposition is a generalized operator on sets of
behaviour expressions. To generate the set we
allow arbitrary index sets I. It can be thought
of as a generalization of the choice or summation
operator Σ in ordinary process algebra. Indeed, if
all P (v) are of the form av.P (v) then the intended
interpretation of
⊕

{P (v) | v ∈ I} or
⊕

v∈I

P (v) is Σv∈IP (v)

The inactive process 0 or STOP can be intro-
duced as

⊕

∅.

The difference between
⊕

and Σ becomes appar-

ent in the case of trajectory-prefixes: when two
trajectories are superposed the choice between
them is not made at the time of superposition, but
at the time when the trajectories start bifurcating.
This is illustrated in Figure 1. If it is necessary to
make a choice before at the beginning, it can be
done using silent action. In τ. [ϕ] ⊕ τ. [ϕ] choice is
made at the beginning of trajectory.

2.4.4. Parallel composition P1 ‖H
A P2 Parallel

composition models concurrent evolution of sev-
eral processes. During the evolution they may
interact with each other via synchronization
on discrete and continuous-time transitions. In
BHPC synchronization on identical names is as-
sumed as the basic synchronization concept. In
order to avoid context-dependent interpretations
of operators, the set of action names A and the
set of signal type names H that are subject to

synchronization, are made explicit in the parallel
operator ‖H

A .

This form of synchronization implies that parallel
components jointly execute identical actions or
trajectories with common signal evolutions that
occur in their transitions and are subject to syn-
chronization.

The basic idea of synchronizing trajectories is
not much different than that of synchronizing on
actions. Let W be a set of signal domains and

ϕ : (0, t] → Wϕ, ψ : (0, t] → Wψ

Tϕ = {t | ∃W ∈ W, πt(ϕ) = (W, t)}

Tψ = {t | ∃W ∈ W, πt(ψ) = (W, t)}

χ : (0, t] → W such that

∀t ∈ Tϕ ∩ Tψ πt(ϕ) = πt(ϕ) = πt(χ),

∀t ∈ Tϕ πt(ϕ) = πt(χ),

∀t ∈ Tψ πt(ψ) = πt(χ)

The static constraint is imposed, that P1 ‖H
A P2

is only well-formed iff L(P1) ∩ L(P2) ⊆ A and
N (P1) ∩N (P2) ⊆ H.

Let P1 and P2 can have trajectories ϕ and ψ,
respectively. If Tϕ ∩ Tψ ⊆ H and ∀t ∈ Tϕ ∩
Tψ πt(ϕ) = πt(ψ), then χ is a synchronized
trajectory of P1‖

H
A P2 that simultaneously changes

the states of P1 and P2.

2.4.5. Recursion The ordinary process alge-
braic recursion extended to work with trajectory
prefix. It allows to define processes in terms of
each other, like in equation B =def P , where B is
a process identifier and actions and signal types
of P are only allowed actions and signal types in
B.

2.5 Congruence Property

The bisimulation relation (equivalence) defined
for the HTSs in Subsection 2.3 is a congruence
relation w.r.t all operations defined in Subsec-
tion 2.4. It is shown in (Brinksma et al., 2004)
using the existing meta-theory (Aceto et al., 2001)
of congruence formats for the transition sys-
tems defined by means of SOS rules. It can be
done because the definition of bisimulation for
HTSs coincides with the bisimulation relation in-
duced by the transition relations used in SOS
rules (Brinksma et al., 2004).

Theorem 11. Strong bisimulation equivalence on
HTSs is a congruence w.r.t the operations of
BHPC defined by the in Section 2.4.

'

&

$

%

Off

d
dt

l = −Kl

l > tempMin

'

&

$

%

On

d
dt

l = K(h − l)

l < tempMax

-
init

l = l0

.

...........................

..........................

.........................

........................
.......................

.....................
...

...............
..........

...........
...........

....

.........
.........

........

~

on

l < tempOn

.

.........
.........

........

...........
...........

...

..............
..........

....................
...

.......................
........................

.........................

..........................

...........................} off

l > tempOff

Fig. 2. A thermostat

3. APPLICATIONS

3.1 Derived constructs

BHPC is an assembly language for a specification
of hybrid systems. Additional language constructs
should be added to make it more readable and
easier to use.

3.1.1. Set of Continuous Behaviours The tra-
jectory-prefix defines a trajectory with fixed du-
ration. To define set of trajectories additional con-
struct is introduced. It defines a set of trajectories,
for which certain conditions hold.

[ϕ | Φ ⊲ Pred] .P (ϕ) =def

⊕

ϕ∈Φ
Pred(t(ϕ))

([ϕ] .P (ϕ))

where ϕ defines evolution of dynamics, and Pred
defines exit conditions.

3.1.2. Infinite Continuous Behaviour Trajecto-
ry-prefix defines only finite continuous behaviour.
To define an infinite continuous behaviour addi-
tional construct is necessary.

Definition 12. Let ϕ : (0, t] → W then the infinite
continuous behaviour is defined as follows [ϕ] =def
⊕

t>0
[ϕ ↾ (0, t]]t .0 where 0 =def ⊕∅.

3.2 Examples

To illustrate application of BHPC several exam-
ples are given.

3.2.1. Thermostat

Example 13. (Thermostat). A thermostat is one
of the main introductory examples of hybrid
systems. It is used in many sources (Alur et
al., 1994; Henzinger, 1996; Bergstra and Middel-
burg, 2003; Schiffelers et al., 2003). The temper-
ature of a room is controlled by a thermostat,
which continuously senses the temperature and
switches a heater on and off. When the heater
is off, the temperature decreases according to the
exponential function l(t) = l0e

Kt, where t is time,
l is the temperature in the room, l0 is the initial
temperature, and K is a constant determined by
the room. When it is on, the temperature in-
creases according to the function l(t) = l0e

−Kt +

.........
..........
.........
..................

..
.........
..........
.........m1

s1, v1

.........
..........
.........
..................

..
.........
..........
.........m2

s2, v2

..............
............
...

............
...
............
...

............
...

l, C

Fig. 3. Two masses and a spring

h(1 − e−Kt), where h is a constant depending on
the power of the heater. The temperature should
be maintained between tempMin and tempMax .
tempOn and tempOff are a maximal temperature
and the minimal temperatures, when the heater
can be turned on and off, respectively.

A hybrid automaton of the thermostat is shown
in Figure 2. It starts with the initial temperature
l0 ∈ [tempMin, tempMax]. In locations Off and
On the heater is off and on, respectively, and
the temperature changes according to the flow
conditions. And the same model in BHPC:

ThOff (l0) =def

[l | ΦOff (l0) ⊲ tempOn > l > tempMin] .

on.ThOn(l)

ThOn(l0) =def

[l | ΦOn(l0) ⊲ tempOff 6 l 6 tempMax] .

off.ThOff (l)

ΦOff (l0) = {l : (0, t] → R | l(0) = l0, l̇ = −Kl}

ΦOn(l0) =

{l : (0, t] → R | l(0) = l0, l̇ = K(h − l)}

3.2.2. Two Masses and a Spring

Example 14. Consider a simple system, depicted
in the figure 3 consisting of the two masses and a
spring. Let weights be m1 and m2, displacements
from the reference points be s1 and s2 , and speeds
be v1 and v2 correspondingly of the first mass and
the second mass. The length of spring in the state
of rest is l, and C is an elasticity of the spring.
Then the system can be modelled as follows.

Mass(m, s0, v0) =def

[s, v, f | s(0) = s0, v(0) = v0, ṡ = v, v̇ = mf]

Spring(l, c) =def

[sl, sr, fl, fr | fl = c(sr − sl − l), fr = −fr]

System =def new fl, fr
(

Mass(m1, s01, v01)[sl/s, vl/v, fl/f]

‖sl,fl
Spring(l0, C)

‖sr,fr
Mass(m2, s02, v02)[sl/s, vl/v, fl/f]

)

4. RELATED WORK

There are several different ways to work with
hybrid systems. Overviews of different approaches
are given in (Labinaz et al., 1996; Antsak-
lis and Koutsoukos, 1998; van der Schaft and
J.M.Schumacher, 2000).

In (Cuijpers and Reniers, 2003) HyPA ACP is ex-
tended with a disrupt, a flow and a reinitialization-
clause to cope with hybrid behaviour. Alterna-
tive composition in HyPA is non-deterministic
for both discrete and continuous actions. The
passage of time influences the valuation of the
model variables and can introduce choices in the
system behaviour. Choice is done before action.
In parallel composition flow-clauses are forced to
synchronize, and can only do it if they accept the
same solutions. In contrast to our calculus the
strong bisimulation is not a congruence relation
with respect to the parallel composition of sub-
systems.

χ (Schiffelers et al., 2003) is a process algebra,
with a two ways for a choice between the pro-
cesses: a choice and an alternative composition
operators. The first one is a non-deterministic
for discrete actions and does not make choice for
continuous actions. The second is the same for dis-
crete actions, but uses the weak time-determinism
principle, i.e. the passage of time cannot result in
making a choice, if both alternatives can perform
the transition with the same trajectory and the
same time step. If one of the processes can perform
a time transition and the other cannot, then the
alternative is lost. Closed world assumption is
used in modelling systems in hybrid χ.

ACPsrt
hs (Bergstra and Middelburg, 2003) is an

ACP extension for hybrid systems. One of the
main differences is in the choice of operations. The
definition of hybrid transition system is almost the
same. But instead of having a trajectory prefix
operation, a continuous signal insertion operator
(ϕ y x) is used, in order to decorate the process
x by a logical formula. This formula defines a
class of trajectories the process can follow by
remaining in the initial state location (state) of
x. (σr

rel(x)) denotes a relative time delay of r time
units, during which the continuous signal could be
emitted. And in contrast with BHPC , the strong
bisimulation is not a congruence relation with
respect to the parallel composition of subsystems.

One of the most popular approaches to model
and analyze hybrid systems is (Alur et al., 1993;
Henzinger, 1996) hybrid automata. In (Brinksma
et al., 2004) is shown, that hybrid automaton can
be translated to BHPC . Inverse translation may
be a lot more complex, if possible at all, because
there are no corresponding constructs for the
superposition and a continuous part of the parallel
composition in hybrid automata. In (Julius et al.,
2002; Julius, 2005) hybrid behavioral automata –
a modification of hybrid automata based on use
of behavioral theory is presented.

In (Lynch et al., 2003) well known Input/Output
Automata approach is extended to cope with

hybrid systems resulting in Hybrid Input/Output
Automata.

5. CONCLUSION AND FUTURE WORK

In this paper we have introduced the hybrid pro-
cess calculus BHPC and the underlying concept of
a hybrid transition system, and illustrated their
application by a number of small examples. To-
gether with a suitable adaptation of the classi-
cal notion of bisimulation this approach yields a
mathematical interpretation of hybrid behaviour,
viz. as equivalence classes of hybrid transition
systems modulo bisimulation, that can been inter-
preted as a generalization of the behavioural ap-
proach to classical dynamic systems. In particular,
this introduces a notion of nondeterminism into
(hybrid) behaviour that has proved indispensable
for the study of discrete concurrent systems in
computer science.

Future work will have to evaluate the conceptual
and practical implications of our approach. In
particular, our plans include:

• detailed comparison with related models and
formalisms, such as hybrid automata and
other applications of process algebra to hy-
brid systems;

• development of analytical techniques for hy-
brid systems in the BHPC framework.

Related to the last point we are working on the
reformulation and generalization of the results
of (Langerak et al., 2003) on the stability analysis
of hybrid automata.

REFERENCES

Aceto, L., W.J. Fokkink and C. Verhoef (2001).
Structural operational semantics. In: Hand-
book of Process Algebra (J. A. Bergstra,
A. Ponse and S. A. Smolka, Eds.). Chap. 3,
pp. 197–292. Elsevier.

Alur, R., C. Courcoubetis, T.A. Henzinger and
P.-H. Ho (1993). Hybrid Automata: An Al-
gorithmic Approach to the Specification and
Verification of Hybrid Systems. In: Hybrid
Systems. Vol. 736 of LNCS. Springer. pp. 209–
229.

Alur, R., C. Courcoubetis, T.A. Henzinger, P.-
H. Ho, X. Nicollin, A. Olivero, J. Sifakis and
S. Yovine (1994). The algorithmic analysis of
hybrid systems. In: ICAOS 1994. Vol. 199 of
LNCIS. pp. 331–351. Springer.

Antsaklis, P. J. and X. D. Koutsoukos (1998). On
hybrid control of complex systems: A survey.
In: Automation of Mixed Processes: Dynamic
Hybrid Systems. pp. 1–8.

Bergstra, J.A. and J.W. Klop (1984). Process al-
gebra for synchronous communication. Infor-
mation and Computation 60(1/3), 109–137.

Bergstra, J. A. and C. A. Middelburg (2003).
Process algebra for hybrid systems. Technical
report. Dept. of Mathematics and Computer
Science, Technical University Eindhoven.

Bolognesi, T. and E. Brinksma (1987). Introduc-
tion to the ISO Specification Language LO-
TOS. Computer Networks 14, 25–59.

Brinksma, E., T. Krilavičius and Y.S. Usenko
(2004). Behavioural hybrid process calculus.
http:\\www.cs.utwente.nl\˜krilaviciust.

Cuijpers, P.J.L. and M.A. Reniers (2003). Hybrid
process algebra. Technical report. Dept. of
Mathematics and Computer Science, Techni-
cal University Eindhoven.

Henzinger, T.A. (1996). The Theory of Hybrid
Automata. In: LICS 1996. pp. 278–292.

Hoare, C.A.R. (1985). Communicating Sequential
Processes. Prentice-Hall, Inc.

Jeffrey, A.S.A., S.A. Schneider and F.W. Vaan-
drager (1993). A comparison of additivity ax-
ioms in timed transition systems. Report CS-
R9366. CWI. Amsterdam.

Julius, A. A. (2005). On interconnection and
equivalence of continuous and discrete sys-
tems: a behavioral perspective. PhD thesis.
Systems Signals and Control Group, Univer-
sity of Twente.

Julius, A. A., S. N. Strubbe and A. J. van
der Schaft (2002). Compositional modeling
of hybrid systems with hybrid behavioral au-
tomata. http:\\www.math.utwente.nl\˜julius.

Labinaz, G., M. M. Bayoumi and K. Rudie (1996).
Modeling and Control of Hybrid Systems:
A Survey. In: IFAC 13th Triennial World
Congress.

Langerak, R., J.W. Polderman and T. Krilavičius
(2003). Stability analysis for hybrid automata
using conservative gains. In: ADHS, preprints
(S.Engell, H. Guéguen and J.Zayton, Eds.).
pp. 377–382.

Lynch, N.A., R. Segala and F.W. Vaandrager
(2003). Hybrid I/O automata. Inf. Comput.
185(1), 105–157.

Milner, R. (1989). Communication and concur-
rency. Prentice-Hall, Inc.

Schiffelers, R. R. H., D. A. van Beek, K. L. Man,
M. A. Reniers and J. E. Rooda (2003). Formal
semantics of hybrid chi. In: Int. Workshop
on Formal Modeling and Analysis of Timed
Systems. Springer.

van der Schaft, A. (2004). Bisimulation of dynam-
ical systems. In: HSCC 2004. Vol. 2993 of
LNCS. Springer. pp. 555–569.

van der Schaft, A. J. and J.M.Schumacher (2000).
An Introduction to Hybrid Dynamical Sys-
tems. LNCIS. Springer. London.

