
Chapter 1

AUTOMATED TESTING IN PRACTICE:
THE HIGHWAY TOLLING SYSTEM

René G. de Vries, Axel Belinfante and Jan Feenstra
University of Twente – Formal Methods and Tools group
Department of Computer Science
P.O. Box 217, 7500 AE Enschede, The Netherlands
{rdevries, belinfan, feenstra}@cs.utwente.nl

Abstract In this paper we study the application of automated test derivation
and execution based on formal specifications. The object of testing is
the Payment Box (PB) of the Highway Tolling System, a device which
handles electronic payments. Challenges of testing the PB are the trans-
action speed, parallelism and encryption. We describe a methodology
for automated testing and apply this methodology to test the PB. We
conclude that automation of the test process is feasible and beneficial,
and evaluate our techniques, theory and tools for automated testing.

1 INTRODUCTION
In this paper we study the deployment of methods, techniques and

tools which support specification based testing of reactive software sys-
tems. Systematic testing of the functionality of reactive systems is cru-
cial in order to check whether they operate correctly. Our research goal
is to develop methods and tools to support and, whenever possible, to
automate the conformance testing process of reactive systems. Confor-
mance testing involves assessing the correctness of a system with respect
to its functional specification by means of experimentation. For it we
need tools for algorithmic derivation of test suites from specifications
and tools for automatic test implementation, execution and analysis.

∗This research was partly supported by Interpay Nederland B.V. and by the Dutch Tech-
nology Foundation STW under project STW TIF.4111: Côte de Resyste – COnformance
TEsting of REactive SYSTEms.

1



2

Our challenge is to develop test tools based on a well-defined theory
which are well suited for practical applications. Consequently, it is im-
portant that the developed tools are applied to realistic case studies from
industry in order to validate their practical usefulness. In this paper we
report on testing a complex industrial device, for which we have not only
generated but also executed the tests. We emphasize on the process of
setting up and performing automated testing and evaluate how succesful
the tools and techniques are.

Automated testing. Test derivation and test execution become in-
creasingly laborious activities, while the complexity of reactive systems
grows. Automation of both processes seems to be a solution to reduce
the labour. Besides, automated testing is flexible and enables automatic
regression testing when a system is modified.

Given the specification of a system, we derive test experiments and
execute them on the Implementation Under Test (IUT). For automated
derivation we need a formal specification of the IUT and formal test
theory. Several theories for automated derivation from specifications
are known, like [6; 9]. In this paper we adopt the test theory of [9] and
use the test tool TorX [1], which exploits this theory.

TorX is also able to execute tests automatically. We use TorX in the
on-the-fly testing mode. During on-the-fly testing, test derivation and
execution occur simultaneously. Instead of deriving a complete test case
(one test scenario of a test suite), the test derivation process derives test
primitives from a specification. These test primitives are actions that are
immediately executed in the test run. In this way only the necessary part
of a test case is considered, which reduces the amount of computation
needed. An important remark is that all computations for one-the-fly
testing have to be done at run-time. This can be critical when we need
to satisfy an IUT’s real-time requirements. An elaborated discussion of
test automation based on formal methods and a description of TorX,
its architecture, testing modes and configurations can be found in [1].

Highway Tolling System. As case study for the assessment of our
approach we will evaluate the testing of the Payment box (PB), which
is a part of the Highway Tolling System (HTS). The Dutch government
considers to charge toll on highways as an instrument to reduce the
increasing traffic jams. For this purpose, the Highway Tolling System is
developed. This system automatically charges fees from vehicle drivers
who pass a toll gate on a highway. The fee is paid by an electronic
payment which consists of exchanging digital certificates between the
PB at the toll gate and an electronic purse on a smart card in the



Automated Testing in Practice: The Highway Tolling system 3

vehicle. When a vehicle passes the toll gate, the system should debit the
purse and register a balance increment at the PB.

Interpay B.V., a company owned by the Dutch banks that exploits the
electronic purse smart cards, needs to test the system to ensure that the
PB processes the money transactions correctly. Because many vehicles
can pass a toll gate simultaneously and the vehicles travel at high and
different speeds, the number of parallel transactions in progress can be
large. Furthermore, for security reasons, the messages exchanged for an
electronic payment transaction are encrypted. These issues (speed, par-
allelism and encryption) contribute to the complexity of the generation,
execution and analysis of test experiments to test the PB.

Automated test derivation can make the test generation process faster
and more reliable. Test generation is usually done manually by designing
and writing test scripts. This is a very laborious and error-prone process,
especially in systems with a high level of concurrency. Interpay B.V.
tested the PB using traditional test design techniques, although there
was automation involved. In order to meet the speed requirements they
executed their tests in a dedicated automated execution environment.
However, they desire more support for their test process.

Overview. In this paper we report on the testing of the PB using
the test tool TorX. We describe the methodology of this approach in
Section 2 and report on its application in Section 3. Subsequently, in
Section 4 we describe the difficulties and challenges that we encountered
and propose some (partial) solutions. In Section 5 we describe the results
and observations we made and we finish with some concluding remarks.

2 METHODOLOGY
In this section we describe on an abstract level the process of how to

automatically test a system. In the next section we will apply this pro-
cess to test the PB. Because we test on-the-fly our process does not have
the explicit test design phase which is present in batch-oriented test-
ing. Although the process is presented sequentially, in practice it turns
out that the process is iterative. We distinguish four phases: preparing
the IUT, preparing the test tools, preparing the test environment and
performing test execution. We describe them in more detail:

1. IUT study. In this phase, firstly we study the system that we are
going to test. We investigate all potential interfaces from which we
can stimulate and observe the IUT, and study the IUT’s observable be-
haviour. This behaviour may have many features which we do not want
to test. So we restrict ourself and identify the behaviour that we are



4

interested in. Secondly, we formalize the behaviour by specifying the
system by means of Formal Description Techniques (FDTs), e.g. lo-
tos [5] or Promela [4]. Since at this stage (in general), all available
system descriptions are informal, we will have to resolve all imprecise-
ness, incompleteness, ambiguities and inconsistencies from which infor-
mal specifications suffer. During the development of the formal specifi-
cation we use automated validation tools to simulate, verify properties
of, and model check the formalized behaviour. This gives us insight in
obscurities and in anomalous behaviour that was introduced during the
functional design phase. Furthermore, these tools support the design of
test purposes, i.e. means to guide the test derivation.
2. Tools. In this phase we determine which tools we are going to
use. We investigate what the underlying theory of the tools is, which
shall be the basis of interpretation of the test results. Furthermore we
investigate the openness of the tools, i.e. the interfaces that the tools
have to connect with an IUT.
3. Test environment. The test environment is the setup of the test
architecture and the application specific test tool components. The test
architecture describes the relevant aspects of how the IUT is embed-
ded into other systems during the testing process, and how the tester
interacts with the IUT. In general we cannot connect the test tool di-
rectly with the IUT, but have to use additional devices/components to
interface the test tool with the IUT. This phase is decomposed into the
following four activities:
Test architecture design. A precise knowledge of the test architecture is
required for the test derivation. Usually the tester does not communi-
cate directly but indirectly with the IUT, via a so called test context.
The IUT interacts at the implementation access points (IAPs) which the
tester controls via the test context at the points of control of observation
(PCOs). Consequently, the test primitives should be derived with re-
spect to the PCOs. The IUT together with its test context is called the
System Under Test (SUT). The tests are derived from a specification
of the SUT, instead of the IUT. The components that are necessary to
interface the test tool with the IUT and their functionality have to be
identified. These components range from existing generic ones like net-
work services to application specific ones, e.g. for the en- and decoding
of messages exchanged between tester and IUT.
Test architecture implementation. In this phase all interfacing compo-
nents will have to be designed and developed. This is a software engi-
neering task.
System under Test specification. The test context has to be taken into
consideration when we derive tests. So, the formal specification of the



Automated Testing in Practice: The Highway Tolling system 5

IUT is extended into a formal specification of the SUT.
Testing the test architecture. We have to check the correctness of our
automated test environment. In this phase we debug the text context
components and adjust the specification from which we derive tests.
This activity is iterative.
4. Test execution. In this phase we design campaigns, instantiated test
environment setups with test goals and strategies. We execute these
campaigns and analyse the results.

3 TESTING THE PAYMENT BOX
Here we tell how we tested the PB using the process presented above.

3.1 IUT STUDY

This phase consists of a global IUT study and the construction of a
formal specification of the system using an FDT.

RoadSide Equipment

Payment BoxSmart Card

OnBoard Unit

UDP/IPWireless

Figure 1.1 Highway Tolling System

Study IUT. The basic setup of the system is shown in Figure 1.1. A
smartcard containing an electronic purse is inserted into the OnBoard
Unit device (OBU) in the vehicle. The OBU communicates wirelessly
with the Roadside Equipment. The Roadside Equipment is the base
station in the wireless network that offers a connectionless communi-
cation service. The Roadside Equipment itself is connected to the PB
by UDP/IP. During a transaction, i.e. an electronic payment, several
messages are exchanged between the PB and the OBU, following the
PbObu protocol rules. The protocol is simple. A payment consists
of the exchange of a few messages, and there are no message recovery
mechanisms. In case of message loss, the message exchange will stop,
acknowledged by an error message. The subject of testing is the PB.
We want to check the correctness of the electronic transaction process-



6

ing between multiple smart cards and the PB. So, we will attempt to
connect the tester to the PB at the UDP/IP interface and assess the PB
for conformance on the PbObu protocol level.

Formal model of IUT. The informal specification of the PB consists
of about 50 pages of text. Since the PbObu protocol is simple it was not
laborious to make a formal specification of this protocol. The PbObu
protocol has been specified in lotos and in Promela. Every transac-
tion is handled by a separate process instantiation. We used the tools
Cæsar [3] and Spin [4] to simulate and validate the protocol.

3.2 TEST TOOLS

In this phase we determine the tools that we are going to use, investi-
gate the underlying theory, and identify the facilities offered by the tools
to interface with the IUT. In this case study we use TorX.

TorX Theory. TorX is based on the test theory for input output
transition systems. In addition to input and output actions, TorX dis-
tinguishes the special action δ. The δ action, called quiescence, models
the absence of output of a system. This absence of output can be ex-
plicitly observed by TorX (implemented by a time-out). The notion of
correctness between specification and implementation is defined by the
implementation relation ioco. Intuitively, an IUT is considered correct
if after a sequence of input, quiescence and output actions, the observed
output (including δ) of the IUT is predicted by the specification.

TorX Architecture. The main characteristics of TorX are its flex-
ibility and openness. Flexibility is obtained by using a modular archi-
tecture with well-defined interfaces between the components. Openness
is achieved by connecting components by pipes over which textual com-
mands and responses are exchanged. The textual interfaces make it sim-
ple to debug and test individual components, to experiment using (Unix
style) filters to massage the information exchanged, and to distribute
the tool over several machines. When needed to link legacy components
in the tool environment, we use existing interfaces.

The TorX architecture (in on-the-fly testing configuration) is de-
picted in Figure 1.2. The Explorer is a specification language-specific
component that offers functions (to the Primer) to explore the transition-
graph of a specification. The Primer uses these functions to implement
the test derivation algorithm that generates the test primitives from the
transition-graph. The optional Partitioner is used to steer the on-the-
fly derivation process. Normally, when we want to stimulate the SUT,



Automated Testing in Practice: The Highway Tolling system 7

Partitioner Driver Adapter

SUT

PB
Context

Test
Explorer PrimerSPEC

pc1:Linux pc2:NT

udptcp

PB

Figure 1.2 TorX tool architecture

we choose from the set of inputs randomly with a fixed distribution.
With the Partitioner we guide this selection by dividing the possible
input test primitives into partitions to which weights (probabilities) are
assigned. These weights are taken into account when an input is chosen.
Partitioners can be cascaded to partition input actions according to
multiple criteria. Similar ideas on probabilities are published in [2]. The
Driver is the central component of the tool architecture. It controls
the testing process, by deciding whether to stimulate or to observe and
check the observation. The Driver can be run in two modes: a manual
mode, in which the user is in full control, and an automatic mode, in
which the Driver makes all necessary choices randomly. The Adapter
is the test application specific component that provides the connection
with the SUT. It is responsible for sending inputs to and receiving out-
puts from the SUT on request of the Driver, and for encoding and
decoding of abstract actions from the Driver into the concrete bits and
bytes for the SUT, and vice versa, including the mapping of time-outs
onto quiescent actions. This clearly makes the Adapter dependent on
both the specification (version, language), and the SUT.

3.3 TEST ENVIRONMENT

In this phase we identify the test architecture and implement and test
the test environment.

Test architecture design. The PB communicates via UDP/IP, and
cannot be approached otherwise. One of the underlying assumptions of
testing is that the tester can synthesize every input stimulus for the IUT
and can interpret every possible output. This assumption does not hold
here. Due to security imposed on electronic transactions, the exchanged
messages contain encrypted fields. We can not synthesize nor interpret
these fields, since the encryption keys and encryption methods are clas-
sified and thus not available. We can indirectly observe and stimulate
the PB using the ObuSim, a tool running on a Windows NT workstation
containing smart cards that host the handling of encryption and decryp-



8

tion. We extend the ObuSim with a (TCP/IP) interface to control the
ObuSim using textual commands. We stimulate and observe the IUT
now indirectly. To stimulate, we request the ObuSim to synthesize a
message (for which it uses the smart cards) and to send it to the PB.
Messages from the PB are received by the ObuSim, decrypted using the
smart cards, and the interpretation results are forwarded to the tester.

Exchanged messages and their encryption are mutually related within
one transaction, i.e. the format of a message depends on preceding ex-
changed messages. As a result we can only synthesize, and thus only
send, messages for the PB in a particular order. This restriction limits
the possibility to exercise the PB behaviour. For example, we can not
test for robustness (send arbitrary messages), although it is part of the
system’s conformance requirements.

UDP/IPTCP/IP

Payment BoxTester

ObuSim

Test Context

PCO IAP

IUT

SUT

Figure 1.3 Test architecture

Test architecture implementation. The ObuSim is part of the au-
tomated test execution environment developed by Interpay B.V for test-
ing of the PB. The major implementation activity for the test environ-
ment was extending this ObuSim with the interface by which TorX
can control it. We also developed and parameterized a generic TorX
Adapter component that endecodes the abstract specification actions
on the message format of this ObuSim control interface.

SUT specification. A UDP/IP service can be modeled as queues,
assuming that in our laboratory setting the service is FIFO and reliable.
So, a first refinement of the specification is the addition of queues to our
model [8]. As previously explained, we should add the behaviour of the
ObuSim to the specification from which we derive the tests. The full test
architecture is depicted in Figure 1.3. The tester communicates with PB
via the test context (TCP/IP service, ObuSim,UDP/IP service). The
PB together with this test context composes the SUT.



Automated Testing in Practice: The Highway Tolling system 9

Testing the test architecture. Before we can start the “real” test
execution, we need confidence in the correctness of both the specification
and the test architecture implementation. To gain this confidence we use
an iterative debugging process, in which we alternate between running
TorX in manual mode and repairing inconsistencies in the specifica-
tion (where changes made to abstract actions necessitate corresponding
changes in the Adapter), and bug fixing the test architecture imple-
mentation. In this phase we encountered many problems.

3.4 TEST EXECUTION

Here we report our experiences during the test execution phase.

Introduction to campaigns. In the test environment debugging phase
of our process we create multiple versions of specifications and Adapters,
and run experiments using multiple configurations. When the test envi-
ronment is ready and real testing starts, we perform many test execu-
tions with varying tool, specification, and possibly also implementation
configurations. Previous case studies (e.g. [1]) have shown that it is a
laborious task to keep track of the relation between execution results and
the tool configuration (including specification and Adapter versions).

We set up a semi automatic bookkeeping system to manage the exe-
cution phase. In a test campaign specification language we specify a test
campaign which contains all configuration details needed for automatic
execution together with archiving information of the execution results.
A test campaign tool supports the automatic execution of the specified
campaign, i.e. the sequential execution of all experiments specified in
the campaign. Related work has been reported in [10].

Campaign design. We designed a test campaign using a single (pa-
rameterized) Promela specification of the SUT. The configurations in
the campaign vary over two parameters: 1) whether or not error stim-
uli are included, and 2) 78 different values for the random number seed
parameter of TorX. So, the campaign describes 2 times 78 executions.

Campaign execution. Due to a minor tool problem (now fixed), and
time constraints, of this test campaign only two test executions were
performed, consisting of resp. 56167 and 27718 test steps.

Result analysis. During testing we found one conformance violation
of the PB. At a certain moment the PB was silent (quiescence), while
we expected output. This failure is still under analysis by Interpay B.V.
Other conformance violations have not been found.



10

4 PRACTICAL ISSUES
When we executed the case study, we encountered many difficulties

related to the gaps between theory, practice and tool support. We de-
scribe some problems in this section.

Model representation. The model of the SUT is decomposed into
two main processes: the PB and the ObuSim. Inside both processes we
made a decomposition for every transaction, i.e. every possible transac-
tion is modeled by a separate process. This approach is most convenient
since it makes the model finite, which is required for both the lotos and
the Promela tools. Additionally, we benefit from the abstraction mech-
anism of parallelism. Unfortunately, during experimenting with many
concurrent transactions, it turned out that for the relatively small model
of about 50 processes the lotos primer did not perform fast enough to
meet the timing constraints of the PB. For the rest of the experiment
we used the Promela primer, which performed better.

Instantiation of parameters. When we test a system, concrete val-
ues have to be given for all data fields of all messages sent to the IUT.
However, on specification level, we may abstract from values (free vari-
able) in such input messages, for reasons of generality. Such an abstrac-
tion is often applied in writing formal specifications of systems, e.g. for
model checking. Here, we have chosen to specify concrete values explic-
itly in the specification of the PB, to avoid having to instantiate with
them elsewhere in the tester (e.g. in the Adapter).

Preprocessing specifications. Unfortunately, Promela and lotos
do not support structuring concepts on meta level, e.g. to instantiate a
number of processes or to include/exclude a partial behaviour descrip-
tion. As workaround we have used the m4 macro preprocessor [7]. It
eases syntactical structuring and consistency keeping of the specification,
and offers flexibility when the specification is used for test derivation.

Satisfying time-outs. The PbObu protocol contains time-out sce-
narios. When an expected message is not received within t0 seconds,
the PB will respond with a timeout message. A typical example of this
behaviour is depicted in Figure 1.4.a. After the reception of the message
SendA by the PB, the PB expects the message SendB. If this message
does not arrive within t0 seconds, the PB responds with the message
TimeOut. The timeout value t0 (less than 100 milliseconds) is very short
compared to the speed with which TorX can deliver test primitives. Es-
pecially when we test for many parallel transactions, it can happen that



Automated Testing in Practice: The Highway Tolling system 11

between the delivery of SendA and SendB, many other messages of other
transactions are exchanged, so the chance of delivery within the time
bound t0 is very low. To solve this problem, we introduce an “artificial”
event SendAB and refine it in the ObuSim. This refinement translates
the new SendAB event to a transmission of SendA immediately followed
by SendB. However, for various reasons, it can still happen that an er-
ror message will be sent after the SendA message. Because we can only
observe after we have finished sending a stimulus, and the refinement al-
ways sends both SendA and SendB, the observation of this possible error
message is delayed, which we have to model explicitly. We do that by
adding a queue to the model (Figure 1.4.b).

Action Refiner

IUT

SUT

ObuSim

SendB

SendA
SendAB

SendA

TimeOut

SendB

Unexpected
SC PB

(a) (b)

Figure 1.4 Timing and action refinement

Quiescence and time-outs. The observation of absence of output
(quiescence) is implemented by starting a timer when trying to observe
any output. If the timer expires after tq seconds we expect that no
output will occur anymore and conclude that we observed quiescence
(δ). However, this assumption is too strong for testing the PB. If we
choose tq longer than the timeout t0 of the PB, we will never make
progress in the protocol, i.e. never exercise all behaviour. We prefer to
choose tq shorter than t0. As a result we might conclude that the PB
fails for conformance since after the observation of δ we conclude that we
cannot detect any possible output anymore. However, the TimeOut error
message may occur after that δ observation. As a pragmatic solution we
introduce an additional action Tick. When the IUT is in a state with a
time-out scenario, i.e. expects an input, then we generate a Tick output
action as long as no other output occurs. The Tick action is explicitly
modeled in the specification.

Guarded inputs. Initially we specified parts of the behaviour by a
state-oriented machine in Promela, i.e. transitions are enabled based



12

on the value of a (global) state variable. However, Promela inter-
nally translates a predicate into an internal event that blocks based on
the evaluation of the predicate, instead of being a blocking condition of
an observable action. As a result, the set of actions predicted by the
specification is incorrect (this goes wrong with the quiescence predic-
tions), leading to invalid tests. Based on our notion of the semantics
of Promela and the ioco theory, we avoid the use of predicates as
internal events. We specified the SUT in a non state-oriented style.
Unfortunately this extends the state exploration space.

Probabilistic choice. When running TorX in automatic mode, we
noticed that its random input selection strategy (that gives all input
actions the same chance of being chosen) did not give us the tests we
were interested in. The input actions in our specification fall apart into
two categories: one for normal behaviour, and one for error behaviour.
In our tests, we do want the main focus on normal behaviour, with-
out completely ignoring error behaviour. The random selection strategy
of TorX pays too much attention to error behaviour. To solve this
problem, we added the Partitioner tool component to TorX, and
configured it such that error related actions have a lower chance of be-
ing selected. The open architecture of TorX (and the textual interfaces
in particular) allowed integration of this new tool component.

Results review. The first execution consisted of 56167 test steps. Of
the 17099 transactions which were started, 2200 were successfully com-
pleted, 10676 did not meet the timing constraints of the PB, and 4211
did not succeed due to permanent or transitional (21) problems with
the smart cards, e.g. insufficient balance. At the end of the execution
12 transactions were still in progress. No error was detected in the PB.
Only 61 Tick actions occurred, and only once quiescence was observed.

For the second execution, consisting of 27718 test steps, these numbers
are respectively 8429 started, 1195 completed, 5237 time constrained,
1992 smart card problems, and 5 still in progress; 24 Tick actions, and
one quiescence observation. No error was detected in the PB.

The large number of transactions that timed out can be explained by
the large number of transactions occurring in parallel, combined with
the problems that we had in constructing a specification from which the
test events can be derived fast enough.

The low number of Tick actions can be explained by the small period
of time in which the PB is in a state in which it is waiting for input while
all output produced by the PB already has been consumed. The even
lower number of quiescent observations is explained in the same way.



Automated Testing in Practice: The Highway Tolling system 13

5 RESULTS AND OBSERVATIONS
We described automated test derivation and test execution for con-

formance testing of the PB. We described stepwise the actions that are
involved in setting up an automatic on-the-fly test environment and the
difficulties and peculiarities that we encountered. We evaluate these:

1. A formal specification for testing differs from a formal specification
for validation. This is based on two observations. Firstly, a specification
for validation is a model of the IUT. For test derivation we need a model
of the SUT. Secondly, a specification for validation can abstract from
details which are not of interest for showing a particular property of the
system. A specification for conformance testing should describe all pos-
sible behaviour at the abstraction level of stimulation and observation.
2. One of the expected benefits of automated derivation, its flexibility,
was demonstrated during the engineering phase of the test environment.
Since it was hard to identify the SUT in advance , the SUT specification
was developed iteratively during the test phase of the test environment
and the engineering of the ObuSim. Adaptations of behaviour, needed
to resolve misinterpretation of the informal specification, or to derive
specific experiments for validation of the test environment, could easily
be solved on specification level, and the proof testing could proceed
immediately, since we did not have to rewrite test cases.
3. The flexibility of automated derivation was also shown during test-
ing. By small adaptations of the specification we could easily scale up
the experiment (increase the number of concurrent transactions) and
direct the tests to a particular test goal. An example of the latter is
the disabling of the error generation by the environment, resulting in
the increased probability of successful electronic payments transactions.
Another issue in the flexibility was shown at the start of the case study.
Since we have a formal specification, debugging the specification was
easy thanks to the tool support of Spin and Cæsar. During the model
checking phase, we encountered a functional error in the protocol, which
would lead to erroneous money balances. This error has been fixed and
new specifications of the HTS have been released.
4. The development of the specification is an iterative process. During
the implementation of the Adapter more detail of the representation of
abstract actions gets known, and our understanding of the SUT increased
in the test environment debugging phase.
5. In this case study timing constraints, i.e. handling of time-outs, are
dealt with in an ad hoc way. The ioco test theory does not offer any
theory for handling time-out; neither does TorX. In this application



14

we encountered problems related with the observation of quiescence and
specifying time-outs. Since many reactive systems, e.g. protocols, have
time-out behaviour, more fundamental theory is needed for testing this
real-time class of systems.
6. The assumption that we can synthesize every stimulus and ana-
lyze every observation is strong. Because of the encryption involved we
delegated the synthesis and analysis to the ObuSim. To resolve tim-
ing constraints we used action abstraction and action refinement. More
theoretical background on the synthesis of test primitives and action
abstraction and refinement in testing is needed to implement generic
Adapters for automated test environments.
7. The on-the-fly test approach is challenged when testing systems
with real time requirements where the computation of test primitives
has to meet certain time bounds to meet an IUT’s timing constraints.
Although we used an ad hoc solution to cope with the real-time require-
ments of the PB (stimulate in time), we were not able to generate test
primitives fast enough using a Cæsar Primer. A reason could be that
the rendez-vous synchronization, where more than 20 processes were in-
volved, slowed down the computation of test primitives. The Promela
Primer performed better. Fast computation of test primitives requires
efficient handling of the state graph by the Explorer.
8. The automated test derivation from system specifications with a
high degree of parallelism is fast and reliable, compared to traditional
manual test derivation, which is complex due to the bookkeeping of
all interleaving scenarios. By parameterizing the specification we could
easily scale up the experiment with respect to the number of concurrent
transactions. TorX can handle models of concurrent systems well.
9. The engineering of the automated test execution environment, i.e.
the implementation of the Adapter is a laborious task. The hard part
was to synthesize the concrete test primitives, i.e. dealing with the smart
cards. This conclusion is supported by the conclusions of the traditional
test of the PB by Interpay B.V. Also there the whole test execution
environment was automated and the implementation of the automated
environment was very laborious. Further decomposition into domain
specific components of the Adapter can decrease the labour of the
development of the application dependent Adapter.
10. The TorX architecture is very flexible. Due to the standardized
textual interface between Driver and Adapter the implementation
effort was minimal with respect to this interface. Furthermore, it was
easy to cope with multi-platform constraints, i.e. TorX running on a



Automated Testing in Practice: The Highway Tolling system 15

Unix workstation and the Adapter on a Windows NT computer. The
other TorX components could be reused easily.
11. Due to automation we can execute many tests fast. Since we may
use different specifications, TorX tool instantiations (in this case not
fully utilized), configurations etc., we will obtain many test executions
and test results. Adding the dimension of time, e.g. different releases of
the system, specifications etc., even increases the amount of test data. To
cope with this complexity we started structuring the test executions and
their parameters into test campaigns for which we developed prototype
tool support. Initial experiments using campaigns and its tool support
demonstrate both the feasibility of such test execution management, and
the need for more development on practical and theoretical level.
12. The test campaigns currently only specify (and capture) the ele-
ments of the testing process that can be formalized and controlled au-
tomatically. Of course, this is not sufficient. Sometimes it is needed to
extend the formal experiment description with plain text descriptions of
critical test environment parameters that can only be influenced (set up
before testing starts) by a human test operator.
13. The results obtained from the execution of a test campaign are
large in size and comprehensive to interpret. We need advanced tool
support for in-depth analysis of the results, to cope with the complexity.

6 CONCLUDING REMARKS
Summarizing all partial conclusions, we conclude that automated for-

mal test derivation and test execution is beneficial because of the high
number of tests that we can execute, and the reliability of these tests
(8). Furthermore, automation is feasible due to its flexibility. Adapta-
tions and parameterization of specifications, and test environment con-
figurations are easy (2,3,10). We see the testing of Payment Box as a
step ahead in testing realistic industrial applications. However, we need
more techniques, theory and tools to support automated testing of real
industrial applications. On theory level we need more support for real
time behaviour (5,7). On technical and tool level we need more sup-
port for system specification (1), result analysis (11,12) and Adapter
implementation (4,6,9).

Acknowledgments
The authors thank Cornel van Mastrigt and Rommert Jorritsma from Interpay

B.V. for their help and support. The anonymous reviewers and Jan Tretmans are

acknowledged for their comments.



16

References

[1] A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N. Goga, L. Feijs,
S. Mauw, and L. Heerink. Formal test automation: A simple experiment.
In G. Csopaki, S. Dibuz, and K. Tarnay, editors, 12th Int. Workshop on
Testing of Communicating Systems. Kluwer Academic Publishers, 1999.

[2] L.M.G Feijs, N. Goga, and S. Mauw. Probabilities in the TorX test
derivation algorithm. In Claude Jard Susanne Graf and Yair Lahav, edi-
tors, SAM2000 - 2nd Workshop on SDL and MSC, pages 173–188, Col de
Porte, Grenoble, 6 2000. VERIMAG, IRISA, SDL Forum Society.

[3] H. Garavel. Open/Cæsar: An open software architecture for verifica-
tion, simulation, and testing. In B. Steffen, editor, Fourth Int. Work-
shop on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’98), pages 68–84. Lecture Notes in Computer Science 1384,
Springer-Verlag, 1998.

[4] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-
Hall Inc., 1991.

[5] ISO. Information Processing Systems, Open Systems Interconnection, LO-
TOS - A Formal Description Technique Based on the Temporal Ordering
of Observational Behaviour. International Standard IS-8807. ISO, Geneve,
1989.

[6] D. Lee and M. Yannakakis. Principles and methods for testing finite state
machines – a survey. The Proceedings of the IEEE, 84(8):1090–1123.,
August 1996.

[7] René Seindal. GNU m4, version 1.4. Free Software Foundation, 59 Temple
Place – Suite 330, Boston, MA 0211, USA, 1.4 edition, November 1994.
Available from URL: http://www.gnu.org.

[8] R. Terpstra, L. Ferreira Pires, L. Heerink, and J. Tretmans. Testing theory
in practice: A simple experiment. In T. Kapus and Z. Brezočnik, editors,
COST 247 Int. Workshop on Applied Formal Methods in System Design,
pages 168–183, Maribor, Slovenia, 1996. University of Maribor.

[9] J. Tretmans. Test generation with inputs, outputs and repetitive quies-
cence. Software—Concepts and Tools, 17(3):103–120, 1996. Also: Techni-
cal Report No. 96-26, Centre for Telematics and Information Technology,
University of Twente, The Netherlands.

[10] T. Vassiliou-Gioles, I. Schieferdecker, M. Born, M. Winkler, and M. Li.
Configuration and execution support for distributed tests. In K. Tarnay
G. Csopaki, S. Dibuz, editor, 12th Int. Workshop on Testing of Commu-
nicating Systems, pages 61–76. Kluwer Academic Publishers, 1999.


