
Narrative Inspiration: Using Case Based Problem Solving to Support
Emergent Story Generation

Ivo Swartjes, Joost Vromen and Niels Bloom
Human Media Interaction

University of Twente
PO Box 217, 7500 AE Enschede, The Netherlands

{swartjes,vromen,bloom}@cs.utwente.nl

Abstract
We consider a system that can generate stories as a cre-
ative system. One approach to building such a system is
to simulate and narrate the behaviour of believable char-
acters in a virtual story world. A risk of this approach is
that no interesting story emerges. In order to make the
behaviour of the characters more interesting from a story
perspective, we propose a system that can use example
story pieces, written from a plot perspective by a human
author, to inspire decisions for characters in an emerging
story.

On a more philosophical note, we discuss the story
generation process in the light of a characterization of
creative systems and show that considering an automated
story generator as a creative system can help to reveal im-
plicit design choices.

Keywords: Story Generation, Computational Creativ-
ity, Case Based Reasoning, Fabula.

1 Introduction
The Virtual Storyteller is an experiment in the creation of
stories through simulation of a dramatic story world in-
habited by virtual characters (Theune et al., 2004). We
separate the content of a story from its presentation (e.g.,
in the form of natural language or animation). The focus
of this paper will be on the generation of story content,
meaning we focus on a way to generate an interesting se-
quence of events.

The characters in the Virtual Storyteller are modelled
to be believable, which means amongst other things that
they are pursuing their own goals, have an emotional
model and a simple form of personality1. Believable be-

1An extensive discussion of what it means for virtual charac-
ters to be believable can be found in (Loyall, 1997)

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2007 Goldsmiths, University of London

haviour does not necessarily lead to a coherent and inter-
esting plot, though. This was the big lesson learned from
one of the first systems to use character models to gener-
ate stories, namely TALE-SPIN (Meehan, 1981). TALE-
SPIN was able to tell simple Aesop-like stories about an-
imal characters that were trying to fulfil their basic needs.
The stories generated by TALE-SPIN were certainly be-
lievable but often uninteresting. There is no guarantee that
the coincidental interaction between the characters results
in a dramatically interesting and coherent whole. Subse-
quent approaches to story generation have therefore tried
to focus more on plot development. In these approaches,
the succession of a sequence of dramatic events is mod-
elled, and characters are placed in function of these events
(right...we need a robbery...which characters can we use
for that?) which in turn makes it quite difficult to have the
characters appear believable.

A contemporary example of character-driven narrative
is the FearNot! system, which simulates affectively driven
characters that exhibit and respond to bullying behaviour
(Aylett et al., 2005). The goal of the system is to educate
children – who play the role of invisible friend of the main
character that is being bullied – how to deal with such
behaviour. A typical plot-driven approach is the Fabulist
system (Riedl and Young, 2005), which is able to plan a
plot that fulfils certain dramatic goals, whilst trying to re-
late the plan steps to character intentions and personality.

We are investigating character-driven (emergent) story
generation as in the FearNot! project. The main difference
is that in the approach we pursue, characters have a dou-
ble role: they are believable inhabitants of a virtual story
world as well as improvisational actors that help to cre-
ate an entertaining experience. With the latter, we hope to
make up for the potential lack of story development when
using only believable characters. We also intend to use
a plot agent that influences the course of the story to in-
crease the chance of interesting plot developments.

In the course of an emergent narrative, there are many
decisions to make for both the character agents (in terms
of which goals to pursue, how to respond emotionally to
new information) and the plot agent (in terms of how to
affect the emerging story). Character agents are imple-
mented using an affective architecture with the aim of
making believable decisions. We hope to augment the de-
cision space with options that are also interesting from a
story development perspective. We want to allow human



authors to be able to write example story pieces and allow
a Case Based Reasoning (CBR) system to use these pieces
as example solutions that inspire some of these decisions.

After discussing some work related to the use of CBR
in story generation in section 2, we will describe a creative
problem solver based on CBR and explain how it can in-
spire decision making for the character and plot agents
in section 3. Sections 4 and 5 will provide a bit more
in-depth description of the proposed system in terms of
cases and creativity heuristics, respectively. The imple-
mentation of the creative problem solver is discussed in
section 6. Section 7 will position the design of a story gen-
erator within the context of the formal framework for cat-
egorizing creative systems proposed by Wiggins (2001).
We argue that such a positioning is useful to make more
informed choices in the design of creative story generation
systems.

2 CBR in the Context of Story Generation
Case Based Reasoning (CBR) is a reasoning process that
finds its origins in the psychological model of episodic
memory. In CBR, knowledge is captured in the form of
a set of cases that describe a specific problem, and a spe-
cific solution to that problem. To reason about solutions
for problem situations, the collection of cases is explored
in order to find similar situations. The solutions for those
similar problem situations can be adapted to form a solu-
tion to the problem that needs to be solved.

CBR has been applied in the context of storytelling or
storytelling-like systems with satisfying results (Mueller,
1987; Turner, 1994; Fairclough, 2004; Gervás et al.,
2004). With the exception of Mueller (1987), who uses
CBR in a system that generates daydreams, the use of
CBR in these systems has been inspired by or directly
based on the work of Vladimir Propp (Propp, 1968).
Propp analysed Russian folk tales, and discovered a big
structural similarity between them. He identified a set
of character roles (e.g., the hero, the villain) and a set of
character functions (e.g., departure, interdiction and mar-
riage). Each of the folk tales he investigated contains a
subset of the character functions, and always in a certain
order. This makes Propp’s analysis pleasant to formalize
and use in story generators, but its very order constraints
make it difficult to use in the emergent story generation
process we are exploring, where – theoretically – anything
can happen that does not conform with this order.

We therefore use CBR to generate high-level character
behaviour based on story-specific input rather than Prop-
pian plot variations. We want to provide a human author
with the possibility to write story content that has the flex-
ibility to be recombined and reformed to expand the space
of situations in which it can be used. Our problem solver,
discussed in section 3, has been influenced most strongly
by the MINSTREL system (Turner, 1994). Turner con-
siders creativity to be an extension of problem solving,
the result of cognitive processes that bring together pieces
of old knowledge in new ways. MINSTREL has demon-
strated the possibilities of case based problem solving to
model the creative process of generating simple stories in
the King Arthur domain. MINSTREL takes storytelling

goals as problems to solve, and retrieves cases that form
a solution to these problems. Usually, CBR retrieves so-
lutions by comparing the problem to solve with similar
problems in the case base. MINSTREL adds creativ-
ity to this problem solving by actively transforming the
problem descriptions into similar descriptions, and subse-
quently adapting the found cases to fit the original prob-
lem. MINSTREL uses a collection of Transform-Recall-
Adapt methods (TRAMs) for this process.

For example, if MINSTREL attempts to create a story
in which a knight commits suicide, a problem descrip-
tion could express the following problem: A knight does
something that results in the knight’s death. A TRAM
can transform this problem description into: A knight does
something that results in someone’s death. Based on this
problem description, the following case can be retrieved:

A knight fights a troll with his sword, killing the
troll and being injured in the process.

This retrieved case can then be adapted to form a so-
lution to the original problem description:

A knight fights and kills himself with his sword.

A combination of such problem solving steps, guided
by author-level goals and themes, leads to the structural
composition of simple stories.

MINSTREL was implemented using a custom frame-
based language called Rhapsody, implemented in Lisp.
Currently, attempts are being undertaken to re-implement
MINSTREL using the contemporary knowledge formal-
ism OWL-DL, a dialect of the well known ontology lan-
guage OWL resembling Description Logic (Peinado and
Gervás, 2006). Similarly, our problem solver uses knowl-
edge from a story world ontology specified in OWL-DL
for its transformations. The problem solving cycle has
big similarities to MINSTREL’s model of creativity but is
only loosely based on its specific details. As we will see
in section 3, we intend to use case based problem solving
for a different purpose than the structural composition of
a story from cases, as done in MINSTREL.

3 Using Case Based Problem Solving for
Character and Plot Decisions

Our problem solver uses CBR for two reasons. First, be-
cause the knowledge needed for a certain problem do-
main is covered by a set of example cases instead of an
extensive set of ‘first principles’2, CBR can decrease the
amount of knowledge needed and reduce or eliminate the
need to model the causal interactions of this knowledge in
the form of a reasoning system (Cunningham, 1998).

Second, we believe that cases form an intuitive way
for a human author to write story content. As we will
discuss in section 7, the designer of a story generator is
also responsible for the quality of its generated stories.
It therefore makes sense to make the input knowledge as

2In the case of our decision making, these are principles like
‘a person can fight a dragon when he is near one, has a weapon
and is not too afraid’ and ‘if you are hungry, and you know where
food is, then you should eat the food’.



accessible to authors as possible and we believe that using
examples (rather than worrying about the ‘first principles’
rules that underly them) satisfies that concern.

The cases in our problem solver therefore take on the
form of example pieces of story. We believe that such
example story pieces can form a good knowledge source
in the decision making of character agents in a storytelling
domain, most importantly because they describe character
behaviour in a narrative context, transcending individual
decision making. Take for example a case expressing the
following example story piece: Frustrated by her singing,
John insults his little sister, making her cry. Not only does
this case offer a character a believable coping behaviour
for being frustrated at one’s sister, it is also an interesting
decision because it affords an interesting story situation
(in this case, a decision that affects important other char-
acters). When the cases have been constructed to express
believable character behaviour as well as interesting nar-
rative situations, using these knowledge sources results in
behaviour that is in theory both believable and interesting.

The character agents of the Virtual Storyteller make
decisions based on appraisal and deliberation processes
(which goals to take on, which actions to pursue, how to
interpret perceptions and how to respond to them emo-
tionally). As an alternative to using these processes, such
decisions can be contracted out to the creative problem
solver by translating them into problem descriptions and
asking the problem solver to find solutions for them. We
aim for an integration of this decision making within the
processes that our character agents already run, similar to
the work of Moraes and Costa (2004) which shows how to
make such an integration of ‘improvised’ decision making
within a BDI architecture.

The cases can also be used by the plot agent to make
decisions about influencing the emerging story. Such de-
cisions involve introducing dramatic events, adding new
knowledge about the story world, or suggesting actions
and goals to the characters. Because the plot agent uses
much of the same episodic knowledge as the characters,
it can make reasonable assumptions about the character’s
reaction to these events. In-depth discussion of the inte-
gration of the decision making process with the Virtual
Storyteller architecture falls outside the scope of this pa-
per, which focuses rather on the decision making process
itself.

Figure 1 shows the decision making process we pro-
pose, including the CBR problem solving cycle we intend
to incorporate in the Virtual Storyteller. A user – be it one
of the character agents or the plot agent – needs to make
a decision which it translates into a problem for the cre-
ative problem solver. The problem solving cycle starts,
in which copies of the problem are transformed into sim-
ilar problems. This is a recursive process; transformed
problems can again be fed into the problem solving cycle.
Cases that match the transformed problem specification
are retrieved, and adapted so that they form a solution to
the original problem. This will be explained in more detail
in sections 4, 5 and 6.

The choice which of the creative solutions to use as
decisions for the users of the creative problem solver (i.e.,
the character and plot agents) should be informed by con-

Figure 1: The process of decision making using the cre-
ative problem solver

straints given by the users. Inherent to unconstrained cre-
ativity is that creativity errors can occur. A child having a
limited concept of objects and holes could have a creative
idea to fit a square peg through a round hole. The idea is
understandable, but reality proves that the solution does
not work. By constraining the valid solutions, we can de-
crease the number of creativity errors. These constraints
could be given by a domain-specific model of the ‘impos-
sibilities’ of the domain or by the state of the story world
at a particular moment in time. If a solution meets the con-
straints, it can be used as a decision. If not, the problem
can be clarified by extending it with extra information in
the form of new constraints. For instance, it could be that
a solution for the knight to use a sword to kill himself does
not work, because the story world contains no sword. The
problem description should at that point be clarified: ‘find
solutions that do not contain a sword’.

4 Knowledge Representation
A case in the context of our system expresses an example
story piece in a formalized language. As discussed before,
this piece should express both believable behaviour of the
character(s) partaking in it, and the narrative context of
the event sequence itself. We will first discuss a knowl-
edge representation used to express such story pieces, and
then give formal definitions of case and problem represen-
tations.

4.1 Fabula Representation

In the ability to interpret a sequence of events as a story,
causality between events plays a major role (Trabasso
and Nickels, 1992). Indeed, the story generation system
MAKEBELIEVE (Liu and Singh, 2002) is able to cre-
ate simple stories using only facts about causality between
situations as represented in a large common sense knowl-
edge base. From the viewpoint of narratology, a distinc-
tion is often made between the fabula of the story, a se-
ries of causally and chronologically related events that are
caused or experienced by characters in a story world, and
the sjuzet, a dramatic and subjectified abstraction of the
fabula.

The Virtual Storyteller produces fabula which is sub-
sequently fed to processes that select and narrate a sjuzet.



We capture the fabula of our simulated story world
in the form of a knowledge representation that is dis-
cussed in Swartjes and Theune (2006). This representa-
tion captures the temporal-causal course of events in the
story world. The representation is given by a quadruple
< E, T, C,D > where E is a set of fabula elements, T is
a set of temporal annotations to these fabula elements, C
is a set of causal relationships between fabula elements,
and D is a set of descriptive contexts that are linked to the
fabula elements and describe their contents. E is divided
into six categories: Event, Perception, Internal Element,
Goal, Action and Outcome. C is divided into four cate-
gories: physical causality, psychological causality, moti-
vation and enablement. Elements of D are subgraphs that
can contain fabula as well; this allows for embedded ex-
pressions like:

“The bank owner believes that it is the bank
robber’s goal to be rich, and that that goal
motivates an action for the robber to rob the
bank; this belief psychologically causes the
bank owner to be scared.”

The fabula representation is based on a cognitive
model for the comprehension of simple stories (Trabasso
and Nickels, 1992). This model describes the causal con-
nections that children ascribe to a series of events in a pic-
ture story in their attempt to understand the story that the
picture sequence conveys. The Virtual Storyteller gener-
ates similar causal connections; a fabula is the result of
logging the causality between dramatic events that hap-
pen in the story world, the resulting beliefs and emotions
of the character agents, their goals, attempts to reach these
goals in the form of planned actions, and the outcomes of
these goals once a goal is achieved or abandoned.

4.2 Problem and Case Representation

For a smooth integration of the problem solver with the
Virtual Storyteller, the fabula representation is used to ex-
press both the cases in the case base of the creative prob-
lem solver, and the problems that should be solved. The
problems can be constructed by the agents that use the
problem solver; the cases are in principle constructed by a
human author.

A problem P is a tuple < Pat, Con > where Pat
is the pattern space defining knowledge that must occur
in the solution, and Con defines the constraint space in
the form of a pattern that should not occur in the solution.
Both Pat and Con are expressed in terms of fabula but
may contain uninstantiated elements.

A case C, also expressed in terms of fabula, has the
following requirements:

• C demonstrates a narrative concept. A narrative con-
cept could for instance be ‘hiding from a threat’ or
‘flying over an area to search for something’. The
expression of a narrative concept is an implicit de-
scription of an example problem and a solution to it.
The problem is for instance the threat, and the solu-
tion is to hide. Of course, there can be many cases
demonstrating the same narrative concept.

• C is context complete with regard to its narrative con-
cept. Cunningham (1998) states that the case rep-
resentation must capture the predictive features of a
problem. Applied to storytelling problems, we define
a context complete case as a case that contains all the
elements that are necessary for the case to be viewed
as ‘believable’ by the author of the case, regarding
the narrative concept it is supposed to express, and
contains nothing more than that.

5 Creativity Heuristics
Unlike in standard CBR, MINSTREL uses creativity
heuristics that actively transform problems to find cases
instead of finding and adapting cases based on similarity
metrics. The reasons for this given by Turner are that truly
creative solutions are not found if the problem stays intact,
and that adaptation of retrieved cases to fit the problem
specification is very difficult. By using transformations
and a simpler retrieval mechanism, the adaptation of re-
trieved cases can be done by reverse application of the
transformations.

To guide the transformation of the problem space, we
use creativity heuristics similar to Turner’s TRAMs. The
heuristics are domain-specific and provide a way to trans-
form a problem P into a similar problem P ′. When P ′

enables the system to retrieve a case C, the used heuris-
tic defines a way to apply a reverse transformation to C
to create C ′ which forms a solution to P . When search-
ing for a solution, the creative problem solver can use any
applicable creativity heuristic to transform the problem.
Problems can undergo a series of these transformations in
succession, although too many transformations will make
the problem too dissimilar from the original problem and
cause found solutions to be unsuitable to solve the original
problem. Therefore, the number of successive transforma-
tions are limited.

Our creativity heuristics implement the following
steps:

Match determines if the heuristic is applicable to the cur-
rent problem;

Transform defines how the problem space is trans-
formed;

Retrieve finds the cases that match the transformed prob-
lem;

Adapt defines how a retrieved case is adapted to the orig-
inal problem by applying the transformation in re-
verse.

Turner (1994) has implemented and evaluated a num-
ber of creativity heuristics in MINSTREL. Most of them
can be divided into a number of functional categories: re-
laxation, generalization, substitution of a similar subpart
and planning knowledge. We will show how we have
adapted two of MINSTREL’s heuristics to the problem
solving domain of the Virtual Storyteller: Generalize Ac-
tor and Switch Intention. We will discuss these heuristics
below.



5.1 Generalize Actor

Some of MINSTREL’s most useful heuristics involve gen-
eralization: moving from a specific problem to a more
general problem. Elements that can be generalized in
our fabula representation are for instance objects in the
story world, character roles, actions and their actors, rep-
resented in terms of domain specific OWL ontologies.
Generalization heuristics assume that a problem definition
will remain valid when one such element is replaced by a
generalization of that element. An example is shown for
generalization of the actor of an action (generalizing other
elements proceeds in a similar fashion):

Match: The problem should contain at least one action
individual with an agens relation to an actor indi-
vidual. The agens property of an action refers to
the character performing the action.

Transform: Select one such actor individual at random,
and replace its type by a generalized type based on its
ontology hierarchy. Only generalize a type one step
up in the hierarchy.

Retrieve: For each of the cases in the case base, check
if part of the case description unifies with the pattern
space Pat of the transformed problem description,
and the case description does not contain knowledge
specified in the constraint space. Select the cases for
which this holds.

Adapt: Identify the actor individuals from the retrieved
case whose type matches the generalized type cre-
ated by the Transform step. Replace all such actor
individuals and their type with the actor individual
and type from the original problem.

Consider a fragment of a problem description express-
ing “A princess runs away from a dragon.” Examples of
actor and action generalizations of this fragment (general-
ized element in italics):

1. “A princess runs away from a monster,” leading to
the retrieval of cases about princesses running away
from orcs and trolls;

2. “A woman runs away from a dragon,” leading to the
retrieval of cases about queens, shepherdesses or lit-
tle girls running away from dragons.

3. “A princess moves away from a dragon,” leading to
the retrieval of cases about princesses walking, sail-
ing or swimming away from dragons;

5.2 Switch Intention

Switch Intention is an example of a heuristic that substi-
tutes a subpart of a problem for a subpart that is similar
in meaning. Switch Intention is based on the idea that if
something happens unintentionally, one can try to make
this happen intentionally. Actions can cause events that
the agent did not intend or expect, or failed to take into
account. Cases describing this can be transformed into
cases where these events are intended:

Match: The problem should contain at least one goal
- uninstantiated action - positive outcome combina-
tion. In other words, the problem is about “what ac-
tion brings the goal to a successful outcome?”

Transform: Using the goal found in the match step, find
an event that achieves that goal3. Construct a new
problem containing an uninstantiated action that un-
intentionally causes the found event. The new prob-
lem is about “what action can cause an (accidental)
event that brings the goal to a successful outcome?”

Retrieve: Similar to the Retrieve step of the Generalize
Actor heuristic.

Adapt: Replace the original uninstantiated action with
the action found in the retrieved case, and add the
fact that the original goal (from the match step) mo-
tivates this action.

This heuristic could be used in a context like the fol-
lowing. A little princess wants to go play outside but
needs to ask the king for permission. When she finds him,
he is sound asleep in his chair. What can the princess do to
wake up the king? The Switch Intention heuristic is based
on the premise that instead of executing an action to wake
up the king in some way, maybe she can cause an event
that wakes him up. If the case base contains a case where
a burglar wants to close the door and therefore slams it
shut, accidentally waking up the house owner, this case
can be transformed using the Switch Intention heuristic so
that the princess will slam the door shut in order to wake
up the king.

6 Implementation
A prototype implementation has been developed in Java.
The ontolologies of the fabula and the objects in the story
world are expressed in OWL-DL. At the moment, these
are simple ontologies that do not use the full extent of
OWL-DL’s expressive power. The fabula representation
used to describe the cases and problems are expressed as
named RDF graphs to express modality (Carroll et al.,
2005).

An RDF graph is a set of triples < S,P,O > express-
ing subject, predicate and object of a fact, respectively.
A named RDF graph is an RDF graph with an identifier
that can be referred to. Each triple that is part of a named
RDF graph can be described as a quadruple (called quad)
< G,S, P,O >, with G being the graph identifier. This
contextualizes statements and allows for expressing infor-
mation about triples by referring to their graph identifier.
So not only can we express that a certain goal to attain
some state motivates an action to walk somewhere:

(maingraph
goal.2 motivates action.9)

(maingraph
goal.2 rdf:type AttainGoal)

(maingraph
action.9 rdf:type Walk)

3This follows from the effects of the events if the events are
represented as planning operators.



...

but we can also express what the goal means (for instance,
the goal is that the princess has a friend):

(maingraph
goal.2 hasContents graph.5)

(graph.5
princess.1 hasFriend friend.5)

...

The prototype implementation is based on Jena4 and
uses a process of querying (using the SPARQL query lan-
guage5) and transformation (using low-level quad replace-
ment) of these sets of quads. The match step queries the
pattern space of the problem description, and one result of
this query is chosen at random. This result is a set of vari-
able bindings; the quads that were used to bind these vari-
ables are mapped to their transformed counterparts (e.g.,
by looking up the superclass of an individual’s type). The
mapping is remembered for the adaptation step. In this
step, the original quads are used to replace quads from the
retrieved case by quads with their original values filled in.

We have implemented the problem solving cycle us-
ing standard breadth-first search, assuming that solutions
that are not found with a limited number of successive
transformations, will be too far off to form a good solu-
tion to the problem being solved. Preliminary results in-
dicate that even with two generalization heuristics and a
limit on the number of transformations, the search space
quickly becomes quite big, due to the fact that there are
many ways in which one heuristic may match the prob-
lem description. Even a simple problem description may
contain quite a number of objects and actions that can be
generalized. For application in the Virtual Storyteller in
reasonable processing time, we might have to make con-
cessions in the number of calls to the creative problem
solver and the creative possibilities of it. Another option
to limit the processing time is to pre-process transforma-
tions of some expected problem descriptions offline.

7 Story Generators as Creative Systems
Wiggins (2001) discusses a formal framework to define
and categorize creative systems. Based on the work of
Boden (1990), Wiggins discerns the ingredients of an
exploratory creative system (i.e., a system that selects
and values partial or complete concepts that are found
by traversing a conceptual space) and considers transfor-
mational creativity (i.e., creativity that changes the rules
which define this conceptual space) as exploratory creativ-
ity at the meta-level. Placing systems that can automati-
cally generate stories within this framework explicates de-
sign choices that are sometimes made implicitly. In the
discussion of automated story generation as a creative pro-
cess, the following terms are relevant:

• C: the conceptual space, which in the case of a
story generator can be interpreted as the set of “well-
formed stories” for a given domain.

4http://jena.sourceforge.net
5See http://www.w3.org/TR/rdf-sparql-query/

• R: the constraints that define C, which can be inter-
preted as the rules that determine whether a potential
story is well-formed.

• T : the rules that specify how to traverse the concep-
tual space, which can be seen as the story generation
algorithm.

• E : the constraints that evaluate C, which can be seen
as the rules that determine the quality of the story.

Riedl and Young (2005) discuss story planning in the
context of exploratory creativity. They claim that the eval-
uation criteria E are not generally known or knowable in
the domain of storytelling. The rules that constitute E (i.e.,
define the quality of a story) seem indeed difficult to for-
malize. This is why a creative story generation system
must somehow be set up in such a way that it does not
rely on evaluation by E . The implication is that the sys-
tem must deliver good stories without having knowledge
about why they are good. The input of the system should
already be fertile with narrative potential and the devel-
oper of the system therefore also becomes, in a sense, re-
sponsible for the quality of the produced stories. Taking
this position emphasizes the role of authoring: an effective
story generation process should be transparent enough for
the developer to have an understanding of the relationship
between certain input and their effect on the generated sto-
ries.

However, what is possible to some extent is to deter-
mine R, i.e., the “well-formedness” of the generated sto-
ries. This at least allows a story generator to explore a
space of possible stories. Story generation systems often
use formalizations of R based on findings in narratology
(e.g., Propp) or story understanding (e.g., story grammars
as used by Lang (1999)) . The Fabulist system (Riedl and
Young, 2005) is based on two criteria: character believ-
ability and plot coherence. The first criterium (say, R1)
is formalized by requiring that every action in the story is
intended by a character; the second criterium (say, R2) is
formalized by requiring that every action has a direct or
indirect causal relation to the outcome of the story. Such
a formalized R = R1 ∪ R2 enables the traversal of the
conceptual space by means of a story planner T . The
fulfilment of R2 is a direct result of using a Partial Or-
der, Causal Link planner (POCL) which starts its plan-
ning process from the outcome of the story and plans its
way back satisfying causal requirements. Such a planner
would never incorporate plan steps that have no causal re-
lationship with the outcome.

Our approach to story generation can be viewed as a
process of exploratory creativity. We adopt criteria sim-
ilar to Riedl and Young (2005) for the well-formedness
of a story, and traverse the conceptual space by using au-
tonomous characters that are designed to meet R1, i.e., to
be believable. We hope to meet R2 by equating the out-
come of the story with the outcome of a particular impor-
tant goal of one of the characters. Our approach does not
ensure that R2 is met, since it is easy to imagine other
characters doing things that have no relevance whatso-
ever to the outcome of the chosen goal. But if a certain
story does not meet R2 (i.e., the story contains parts that
have no causal relation to the outcome), certainly we can



find a subset within the event sequence that does meet R2

(namely, only those parts that are causally related to the
outcome of a certain goal), as long as we make this causal-
ity explicit. For a more detailed explanation of these con-
siderations, see (Swartjes and Theune, 2006).

7.1 The Creative Problem Solver as Creative System

Our creative problem solver is a creative system in its own
right, performing a process of transformational creativity.
In this case, we have different interpretations of Wiggins’
terms:

• C: the conceptual space, being the set of solutions in
terms of narrative cases.

• R: the constraints that define which solutions are in
C, which can be interpreted as the problem descrip-
tion.

• T : the rules that specify how to traverse the concep-
tual space, which in this case is simply the retrieval
query.

• E : the constraints that evaluate C, which can be seen
as the rules that determine the quality of the found
solutions.

A problem description R defines what a concept case
c should look like (thus being a constraint on the concep-
tual space C). We then transform this problem description
into a different one R′ on the assumption that it is a simi-
lar problem description. Effectively we have transformed
the rule that determines what concept cases are in C. This
makes the process one of transformational creativity. And
this process of transformational creativity is indeed an ex-
ploratory creativity process at the meta-level if we con-
sider the problem space R to be the conceptual space of
this meta-creative system: we use creativity heuristics –
the rules of the transformational creativity – to explore the
set of possible rule sets. We enter difficult terrain here as
neither the rules that select appropriate problem descrip-
tions nor the evaluation criteria for these problem descrip-
tions being valued are easy to formalize. We make a (pos-
sibly invalid) assumption that if a problem description R
is appropriate, then the transformed problem description
R′ is also appropriate, by carefully defining the creativity
heuristics. This explicit design effort is in line with Wig-
gins’ view on transformational creativity, where the de-
signer needs to be aware of the rules being applied rather
than rely on serendipity (Wiggins, 2001).

8 Conclusion
The Virtual Storyteller generates stories based on two cri-
teria for their well-formedness: they must portray believ-
able character behaviour and contain coherent plots. Be-
lievable character behaviour is achieved by simulating a
story world in which autonomous character agents try to
achieve their goals and respond emotionally to their en-
vironment. A coherent plot is formed by a subset of the
fabula generated by the simulation that contains a coherent
causal chain (e.g., a chain of events that have contributed

to the outcome of an important goal of one of the charac-
ters).

We extend the design of the Virtual Storyteller with
a creative problem solver that allows for decision making
that falls outside the range of decisions that would have
been made using only autonomous character agents. The
problem solver uses example story pieces that can provide
solutions to decision problems that occur in the course of
the simulation.

Adding the creative problem solver to the Virtual Sto-
ryteller addresses two issues. First of all, a known risk
of using autonomous character behaviour to generate sto-
ries is that no interesting story emerges. We think that
example story pieces, written from a story perspective, al-
low for more interesting stories to happen, since they de-
fine character behaviour in a story context that transcends
the decision space of the characters’ individual behaviour.
Second, the designer of the story generation system is in a
sense responsible for the production of good stories, since
it is difficult to formalize rules that assess the quality of
a story. This stresses the importance of authoring: the
architectures and input knowledge of the story generator
should afford the designer-as-author to express his narra-
tive intent. We believe that example story pieces form an
intuitive way to write such input knowledge.

The creative problem solver performs a process of
transformational creativity to extend the range of use of
these story pieces, by transforming input problems into
problems that are similar in meaning, and adapting found
cases to provide a solution to the original problems. This
process is guided by explicitly defined creativity heuris-
tics. However, the use of such explicitly defined heuris-
tics does not guarantee finding correct solutions. For in-
stance, the assumption that limiting the number of trans-
formations keeps the solution applicable for the problem
at hand, might fail. If the concept of ‘dragon’ is gener-
alized to ‘organism’, the system might come up with a
creative solution where a knight eats a princess to satisfy
his hunger, because it uses a case where a dragon did the
same. Evaluating the solutions and tuning the ontologies,
heuristics and search control to decrease errors is therefore
important. We have designed and partially implemented
the problem solver; future work will involve further im-
plementation and evaluation of the problem solver in the
context of the Virtual Storyteller.

Acknowledgements
This work has been funded by the Strategic Research Ori-
entation NICE of CTIT, the Netherlands.

References
Aylett, R., Louchart, S., Dias, J., Paiva, A., and Vala, M.

(2005). FearNot! - an experiment in emergent narrative.
In Proceedings of the 5th International Workshop on
Intelligent Virtual Agents, pages 305–316.

Boden, M. (1990). The Creative Mind: Myths and Mech-
anisms. Abacus, London.

Carroll, J. J., Bizer, C., Hayes, P., and Stickler, P. (2005).
Named graphs. Journal of Web Semantics, 3(4).



Cunningham, P. (1998). CBR: strengths and weaknesses.
Technical report, University of Dublin, Computer Sci-
ence Department.

Fairclough, C.R. Cunningham, P. (2004). AI structuralist
storytelling in computer games. Technical report, Uni-
versity of Dublin, Computer Science Department.

Gervás, P., Dı́az-Agudo, B., Peinado, F., and Hervás,
R. (2004). Story plot generation based on CBR.
Knowledge-Based Systems, 18(4-5):235–242.

Lang, R. R. (1999). A declarative model for simple nar-
ratives. In Proceedings of the AAAI Fall Symposium on
Narrative Intelligence.

Liu, H. and Singh, P. (2002). MAKEBELIEVE: Using
commonsense knowledge to generate stories. In Pro-
ceedings of the Eighteenth National Conference on Ar-
tificial Intelligence (AAAI 2002).

Loyall, A. B. (1997). Believable Agents: Building Inter-
active Personalities. PhD thesis, Carnegie Mellon Uni-
versity, Pittsburgh, PA.

Meehan, J. (1981). TALE-SPIN. In Schank, R. and Ries-
beck, K., editors, Inside computer understanding - five
programs plus miniatures, pages 197–226. Lawrence
Erlbaum Associates.

Moraes, M. C. and Costa, A. C. d. R. (2004). Imp-BDI:
Improvisational BDI architecture. In Proceedings of
the workshop on Architectures and Methodologies for
Building Agent-Based Learning Environments.

Mueller, E. (1987). Daydreaming and computation: a
computer model of everyday creativity, learning, and
emotions in the human stream of thought. PhD thesis,
University of California.

Peinado, F. and Gervás, P. (2006). Minstrel reloaded:
from the magic of lisp to the formal semantics of OWL.
In Technologies for Interactive Digital Storytelling and
Entertainment (TIDSE).

Propp, V. (1968). Morphology of the folktale. University
of Texas Press.

Riedl, M. and Young, M. (2005). Story planning as ex-
ploratory creativity: Techniques for expanding the nar-
rative search space. In Proceedings of the 2005 IJCAI
Workshop on Computational Creativity.

Swartjes, I. and Theune, M. (2006). A Fabula Model
for Emergent Narrative. In Technologies for Interactive
Digital Storytelling and Entertainment (TIDSE).

Theune, M., Rensen, S., op den Akker, R., Heylen, D., and
Nijholt, A. (2004). Emotional characters for automatic
plot creation. In Technologies for Interactive Digital
Storytelling and Entertainment (TIDSE).

Trabasso, T. and Nickels, M. (1992). The development of
goal plans of action in the narration of a picture story.
Discourse Processes, 15:249–275.

Turner, S. R. (1994). The creative process: a computer
model of storytelling. Lawrence Erlbaum Associates,
Hillsdale, NJ.

Wiggins, G. A. (2001). Towards a more precise charac-
terisation of creativity in AI. In Weber, R. and von

Wangenheim, C. G., editors, Case-Based Reasoning:
Papers from the Workshop Programme at ICCBR’01,
pages 113–120, Washington, DC.


