
Defining and Prototyping a Life-cycle for
Dynamic Service Composition

Eduardo Silva, Jorge Martı́nez Ĺopez, Lúıs Ferreira Pires, Marten van Sinderen

Centre for Telematics and Information Technology
University of Twente, The Netherlands

P.O. Box 217, 7500 AE Enschede
{e.m.g.silva, j.martinezlopez, l.ferreirapires,

m.j.vansinderen}@cs.utwente.nl

Abstract. Since the Internet has become a commodity in both wired and wire-
less environments, new applications and paradigms have emerged to explore this
highly distributed and widespread system. One such paradigm is service-orientation,
which enables the provision of software functionality as services, allowingin
this way the construction of distributed systems with loosely coupled parts. The
Service-Oriented Architecture (SOA) provides a set of principles to create service-
oriented systems, by defining how services can be created, composed, published,
discovered and invoked. In accordance with these principles, in this paper we
address the challenge of performing dynamic service composition. Thecompo-
sition process and its associated tasks have to be precisely defined so thatthe
different problems of dynamic service composition can be identified andtackled.
To achieve this, this paper defines a life-cycle for dynamic service composition,
which defines the required phases and stakeholders. Furthermore, we present our
prototype in which the different phases of the dynamic service composition life-
cycle are being implemented. This prototype is being used to experiment with
and validate our initial ideas on dynamic service composition.

1 Introduction

During the last years we have observed an increased use of theInternet, on both wired
and wireless environments. Nowadays cellular phones are often sold with a data com-
munication contract, which allows phone users to access numerous applications. Re-
cent studies [1] show that in the upcoming years the continuously increasing use of
small portable communication devices, referred asInternet-centric pocketabledevices,
will overcome the use of laptops, especially for users with high mobility. This tendency
brings the Internetalwaysandeverywhere, triggering new opportunities and application
areas. As a consequence, many of the biggest software industry companies are invest-
ing in new developments in Internet-based application service provisioning.Software
as a Service (SaaS)[2] is a concrete example that is being adopted by some major
software companies. This Internet-based methodology for software delivery provides
the means to deliver services on-demand, as the user requires them, moving away from
some classical approaches to software distribution, such as license-based. These new
developments are based on the Service-Oriented Architecture (SOA) [3], which pro-
vides a set of principles to address the creation, share and use of services. A service is

realized by a given application, or system, and represents the external behaviour of the
application, or system. This is the basic definition of service, which is going to be used
throughout this paper.

With the emergence of Internet-based application servicesand open principles for
service creation and use, such as SOA, new opportunities andapproaches for service
creation are appearing. One of these approaches is service composition, which focus
on the creation of value-added services from existing services. Service composition
should in principle reduce the development time of new services, while promoting the
re-use of available application services. Furthermore, byusing service composition it
should be possible to create personalised services on-demand, based on specific user re-
quirements. The creation of service compositions on-demand based on particular user
requirements, context and preferences, characterizesdynamic service composition. Dy-
namic service composition will possibly support service developers at design-time, eas-
ing their task on service creation, and end-user, at runtime. Many people are working on
different aspects of service composition in general, and much effort is being spent on
some issues concerning dynamic service composition in particular. However, not much
effort is being spent on the precise definition of the dynamicservice composition life-
cycle. A more precise definition of the dynamic service composition life-cycle should
allow one to identify and reason about the concerns and requirements of this problem.
In this paper we focus on the definition of such a life-cycle, and identify the research
challenges that need to be addressed in each phase of this life-cycle. This paper also
presents the prototype we are building to support dynamic service composition, which
implements the life-cycle phases we have identified. This prototype should allow us to
identify new problems that need to be tackled in this area.

The paper is organized as follows: Section 2 motivates dynamic service composi-
tion by discussing a target application scenario; Section 3presents a service composi-
tion life-cycle, aiming at identifying and addressing the different phases of the dynamic
service composition process; Section 4 presents the prototype we are developing to im-
plement the phases of the dynamic service composition life-cycle; Section 5 discusses
some related work; and Section 6 presents our conclusions and topics for future work.

2 Motivation

Service composition is mainly motivated by the principles provided by the Service-
Oriented Architecture (SOA) [3]. The Organization for the Advancement of Structured
Information Standards (OASIS) defines SOA as [4]:

A paradigm for organizing and utilizing distributed capabilities that may be
under the control of different ownership domains. It provides uniform means
to offer, discover, interact with and use capabilities to produce desired effects
consistent with measurable preconditions and expectations.

According to the SOA principles, service developers can create new services, and make
them available to potential service users. To make a serviceavailable, a service descrip-
tion document has to be produced, which describes the service properties, operations

and how the service can be invoked. Fig. 1 shows the basic interactions in a service-
oriented architecture and the different parties involved in the architecture. SOA is not
an implementation technology, but rather a set of concepts that can be implemented
using different concrete technologies. Currently, the most popular technology to imple-
ment SOA is Web services [5, 6]. Many aspects of Web services have been standardized,
making this technology mature and highly accepted by the industry.

Service Registry

Service
Provider /Developer

Service
User

Service

Service
Descript ion

Service
Descript ion

Sx

Sx

Sx

i) publish service
descr ipt ioni i) request service

i i i) retr ieve service
descript ions

iv) invoke service

Sx

Fig. 1. Service-Oriented Architecture elements and interactions

SOA fosters the re-use of available services as components in service compositions.
Traditionally, service composition is performed during design-time, resulting in service
compositions that have to be used during runtime as they havebeen designed. How-
ever, new application scenarios have been identified that could benefit from dynamic
service composition. We define dynamic service compositionasthe process of creating
a service on demand (at design or at runtime) to match specificuser requirements and
preferences by composing existing services.

Amongst the scenarios in which dynamic service compositioncan be beneficially
applied ismobile computing, which is presented in [6]. This scenario involves two main
system parts, namely the user’s mobile device and the back-end application server. Ser-
vices in this scenario are calledField Web services. The user has afield mobile device,
which is used to input the user’s service request, store the user’s profile and service
preferences. The user’s mobile device is also used as asensorfor the user’s context.
Provided with such a field mobile device, the user can create aservice request and for-
ward this request to the back-end server system. The back-end server system performs

all the necessary operations to provide the user with a service that matches the require-
ments expressed in the service request. This architecture allows advanced functionality
and added-value services to be provided to the user on smallpocketable devices. An-
other potential benefit is the increase of the battery life-time of the mobile devices, since
some power-consuming processing is shifted to the back-endserver system. Saving bat-
tery life-time is a key issue in mobile computing nowadays.

3 Dynamic service composition life-cycle

The life-cycle of dynamic service composition defines the required phases and the
stakeholders that participate in the service composition process. Fig. 2 presents the
life-cycle for the dynamic service composition process considered in our work.

S e r v i c e c r e a t i o n

E n d - u s e r

S e r v i c e
d e v e l o p e r / p r o v i d e r

S e r v i c e r e g i s t r y

S e r v i c e r e q u e s t
S e r v i c e d i s c o v e r y
a n d c o m p o s i t i o n

S e r v i c e p u b l i c a t i o n

S e r v i c e c o m p o s i t i o n
s e l e c t i o n

S e r v i c e D e l i v e r y

S e r v i c e d e v e l o p e r

S e r v i c e D e p l o y m e n t

Fig. 2.Dynamic service composition life-cycle

We assume that three stakeholders participate in the life-cycle:Service developers, Ser-
vice providers, andEnd-users. The life-cycle depicted in Fig. 2 consists of two main
flows, namelycreation and publication of (atomic) services, to be performed by service
developers and service providers, and(dynamic) service composition, to be performed
by end-users on demand, at runtime, or by service developers, at design-time. Each one
of these flows is discussed below in terms of the phases and theissues to be solved in
each phase.

3.1 Services Creation and Publication

Although the service provider and the service developer aretwo different stakehold-
ers with well-defined roles, in this discussion we do not discern them. We assume that

the service provider/developeris usually a professional user or company, which fo-
cus on creating and providing services for a potential set ofusers.Application Service
Providers (ASPs)[7] are organizations that play the combined roles of these stakehold-
ers. A service provider/developer creates services, whichmay be built from scratch by
programming new applications and making them available as services. A service may
also be built by hand by re-using existing services in a composition, making the com-
position available as a service. The service creation phaseconsists on theconstruction
of the service functionality and the respective service description document.

The service description document is used in the service publication phase to pub-
lish the necessary information to allow potential service users to discover the service.
Furthermore, the service description document also has to contain all the required in-
formation to deal with the invocation of the service, such asthe address of the service
end-points and specific technical details (protocols, encoding, etc.). The service descrip-
tion document may also contain other non-functional information, such as quality-of-
service, Service Level Agreements (SLAs), and possibly contractual conditions to use
the service.

Service creation and publication are essential phases in the dynamic service com-
position life-cycle, since service composition can only take place if services that are
candidates to be used in compositions are available and can be discovered for usage.

3.2 Service Composition

We assume here that an end-user or a service developer wants anew service to satisfy
his specific needs. Fig. 2 shows an end-user, which usually has no technical skills on
service composition and wishes a new service atruntime, and a service developer, which
has technical skills on service composition, but wants to create a new service in a faster
and more automated way given some specific requirements, usually atdesign-time.

The first phase of this process is the specification of aservice request. The service
request should provide enough information on the user requirements and preferences for
the service. In the case of an end-user, additional context information can also be gath-
ered to further adapt the service creation to the concrete user situation. In this phase,
the end-user or the service developer interacts with the system that performs the dy-
namic service composition, but most of the other phases are expected to be performed
transparently for these stakeholders. This is because we assume that dynamic service
composition should be an automated process in which a service is created without re-
quiring the direct intervention of a human user, as opposed to the service creation phase
discussed in Section 3.1.

After the service request is defined, theservice discovery and compositionphase
starts. The different services that could be used in a composition are discovered accord-
ing to the composition algorithm. Service discovery is performed by invoking the inter-
face provided by the service registry, based on informationcontained in the published
service description documents. The service discovery phase depends on the publica-
tion phase discussed in Section 3.1. This implies that the information published in the
publication phase should be compatible with the information required in the discovery
and composition phase, which can be achieved by complying toopen standards even if
different organizations implement their own publication and discovery mechanisms. In

the service discovery and composition phase, an algorithm is often performed that takes
the user service request to build candidate compositions ofthe services that have been
discovered previously or whenever the algorithm needs them.

As a result of the discovery and composition phase, several compositions may be
generated that match the service request, which means that the generated services may
have to be selected. This happens in theservice composition selectionphase. In the
case of an end-user, a single service (composition) should be returned, which implies
that this phase is performed by the system that supports the composition process. This is
because we have assumed that an end-user does not have the technical skills necessary
to select the most appropriate composition. However, the end-user may be asked to indi-
cate which properties should have the highest priority in the selection of a composition
(e.g., the aggregate cost of using the services in the composition, or the performance of
the composition in terms of response delay). In any case, this phase should be as trans-
parent as possible for the end-user, i.e., the resulting composition should be selected
only based on the service request and the user’s preferencesand context. In the case of
a service developer, a list of services that match the service request may be returned.
Mechanisms to rank the generated service compositions may be used to facilitate the
selection of the composition that is finally used.

Service deliveryis the phase that follows service composition selection, and it is
concerned with the activities that are necessary to allow the end-user to use the ser-
vice composition. This phase is necessary because the resulting composition may still
be represented in some (formal) technology-independent notation, while an executable
representation is necessary to deploy and execute the composition as a concrete ser-
vice. In the case of a service developer, a service composition description may also be
required to allow the composition to be published as a new service, so these issues are
also relevant to this phase.

Service deploymentis a phase that applies only to the end-user case. The end-user
expects a running service, so the selected composition has to be deployed to allow its
instantiation and invocation by the end-user.

At the end of the life-cycle some actions may still occur, depending on the stake-
holder. In the case of an end-user, the service composition is invoked to deliver the
service requested by the end-user. In the case of a service developer, the list of services
is returned so that the most suitable composition the developer needs can be selected.
The service developer may possibly adapt the composition further, to include some
additional functionality. Fig. 2 shows an additional phasefor the case of service devel-
opers, in which the service developer publishes the composed service so that it can be
used later by end-users or other developers.

4 Prototype for dynamic composition of services

This section discusses the prototype we are building to implement the different phases
of the dynamic service composition life-cycle. We are mainly aiming at developing a
modular, scalable and extensible architecture, to addresseach of the life-cycle phases,
but also at supporting different concrete technologies, such as, for example, different
service description languages.

In our prototype we are currently using Spatel [8], which is alanguage developed
in the European project IST SPICE [9] in which this work is embedded. Spatel sup-
ports service description, creation, composition and execution. It also supports seman-
tic description of services, through references to ontologies. Ontologies are formal rep-
resentations of conceptualizations, and are necessary in our approach to automate the
different tasks of the service composition life-cycle, providing the abstraction and trans-
parency needed in the dynamic service composition process.

Fig. 3 shows our initial prototype for dynamic service composition by indicating
how each phase of our proposed life-cycle for dynamic service composition is mapped
onto the components of the prototype.

Service creat ion

End-user

Service
deve loper /prov ider

Service registry

Serv ice request Service discovery

Service publ icat ion

Graph-based
 service composit ion

Sevice composit ion
select ion

Service developer

Domain Ontologies

Imp: XML + Java

Imp: jUDDI

Imp: OWL

Imp: SPATEL-tools Imp: Java + jUDDI API

Imp: Java + jUDDI API

CLM Construction
Imp: Java + FACT++

Service composit ion

Imp: JavaImp: JavaImp: Java + SPATEL + EMF

Service del ivery

Serv ice deployment

Fig. 3.Prototype for dynamic service composition

4.1 Service creation

The service creation process makes use of the Spatel tools, which offer a graphical inter-
face to define the interface of services and the service end-points. This component also
allows one to semantically annotate service operations with inputs, outputs, precondi-
tionsandeffects, to define theservice goal, which reflects the purpose of a service, and
to definenon-functional propertiesof a service, such as, for example, cost and response
time. All these annotations refer to concepts formally defined in ontologies, which in
our case have been produced in the scope of the SPICE project.

Other languages than Spatel may be used in the service creation phase as long as
these languages support semantic annotations.

4.2 Service publication

The component responsible for service publication analyses the service description doc-
ument, extracting the necessary information to publish theservice in the service reg-
istry. The operation of extracting the information from a service description document
depends on the used description language, which means that different interpreters have
to be available to parse the supported description languages. Since we use Spatel for
service description, in order to parse a Spatel service description document we generate
a Java API from the Spatel Ecore model with the Eclipse Modeling Framework (EMF).
This allows us to extract the semantically annotated properties from the Spatel service
description document, namely Inputs, Outputs, Preconditions, Effects, Goals and Non-
functional properties. These semantically annotated properties are always considered
for semantic service description in our prototype, so independently of the description
language a service is always published in the service registry in this same way.

The extracted information is organized and published in an UDDI-based registry.
We use jUDDI [10] as service registry, which is a Java-based implementation of the
Universal Description, Discovery, and Integration (UDDI)specification [11] for Web
Services. Our purpose is to make use of the jUDDI API for publication and discov-
ery of services, creating the necessary UDDI models to storethe semantic annotations
mentioned above.

4.3 Service request

The service request component allows the specification of a service request, using a set
of semantic annotations that describe the properties of thedesired service. The prop-
erties considered are the same as those used for service publication: Inputs, Outputs,
Preconditions, Effects, Goals, and Non-functional properties. All these annotations re-
fer to ontologies that are valid in the application domain being considered, in our case
telecom services. This process is implemented using a simple interface that allows the
construction of a (XML-based) service request document with the following structure:

<ServiceRequest>
<Inputs>..</Inputs>
<Outputs>..</Outputs>
<Preconditions>..</Preconditions>
<Effects>..<Effects/>
<Goals>..</Goals>
<Non-functional>..</Non-functional>
<Ontologies>..</Ontologies>

</ServiceRequest>

4.4 Service discovery

In our approach the component responsible for service discovery is goal-based. The
list of candidate services for the service composition is established before the actual
composition is performed. The service request is analysed,and the goal annotations are
extracted. Given these annotations, the service registry is queried through the jUDDI
API Inquiry function for services with goals that are semantically related to the goal of
the service request. This is possible because both the services and the service request

are described using the same properties, and ontologies. When the service registry is
queried, not only semantically exact matches are retrieved, but other partial semantic
matches are also possible, such asPlugin, SubsumeandIntersection[12].

4.5 Service composition

Once the list of services with matching service goals is discovered, they are first anal-
ysed and organized in a formalism calledCausal Link Matrix (CLM)[12], and after that
they are composed using a graph-based algorithm [13].

CLM allows one to model all possible semantic connections, or causal links, be-
tween the discovered services. We use CLM+, which is an extension of CLM, in order
to capture the services’ non-functional properties as well. Non-functional properties are
used later in the composition, and in the selection phase.

To construct the CLM+ matrix we use FACT++ [14], which is a reasoner for De-
scription Logics (DL). This reasoner is used to infer DL relations such as Consistency
and Subsumption. Based on these relations the CLM+ matrix can be constructed, and
once the CLM+ matrix is available the actual service composition processtakes place.
In our prototype, the service composition process is implemented in Java, using a graph-
based composition algorithm. The algorithm dynamics consists of finding a combina-
tion of services, previously organized in the CLM+ matrix, which makes it possible to
match the service request. The process starts by analysing the CLM+ matrix for ser-
vices that provide the requested outputs. Once this is done,the algorithm proceeds with
a backwards composition strategy, resolving the inputs of the services of the graph.
The composition process consists of a matching the inputs ofthe services in the graph
with the outputs of services from the CLM+ matrix. If multiple services match a given
service input, an alternative composition graph is created, representing an alternative
service composition. During each step in the algorithm, theaggregated non-functional
properties in the composition graph are checked, to verify whether they match the re-
quested non-functional properties. If a composition graphdoes not match the requested
non-functional properties, it is not further considered and is discarded from the set of
valid service compositions. The algorithm finishes (i.e., the composition is complete)
when all requested inputs and goals are resolved.

4.6 Service composition selection

In the service composition process, several alternative service compositions that match
the service request may be generated. This is possible sincealternative services can pro-
vide the same (or similar) functionality. It is therefore necessary to rank the generated
composition graphs according to some criteria. The rankingof the generated compo-
sition graphs can be made based on the graphs’ aggregated non-functional properties
(e.g., total cost), and the semantic connections of the services in the composition graph.
For the end-user case the best service composition is selected, and for the service de-
veloper case all generated service compositions are storedin the ranked order.

4.7 Service delivery

In our case, the service delivery phase consists of translating the service composition
from our graph formalism to Spatel. We do this by using the EMFand the Spatel Ecore
models. We have not yet addressed this issue in detail, but the objective is to create a
Spatel description of the generated composition service, so that the service developer
can further adapt it to his needs, and the end-user can invokeand execute the composi-
tion.

The service deployment phase will be considered in our future work.

5 Related work

Service composition has received a lot of attention from industrial players and academia.
Different aspects of service composition are being addressed, including the (partial)
automation of service composition methodologies. However, the integration of the dif-
ferent parts of the life-cycle for dynamic service composition has not been addressed
that often. This is in our opinion a very important step to create and evaluate suitable
solutions to the dynamic service composition.

In [15] the problem of interleaving web service discovery and composition is ad-
dressed, by considering only simple workflows where web services have one input and
one output parameter. In this case the web service composition plan is restricted to a
sequence of limited web services corresponding to a linear workflow of web services.
In our framework we propose a formalism to support the composition of services with
multiple inputs and outputs, and also address the other phases of the life-cycle of the
service composition process.

In [16] an algorithm for automatic composition of services is presented. The service
composition is considered as a directed graph, where nodes are linked by the seman-
tic matching compatibility (Exact, Subsume, PlugIn, Disjoint) between input and
output parameters. Based on this graph, the shortest sequence of web services from
the initial requirements to the goal can be determined. Thisapproach computes the
best composition according to the semantic similarity of output and input parameters
of web services, but it does not consider any non-functionalproperties of the service
composition. We consider this to be a very pertinent point totake into account, since
the selection of the most suitable service compositions is often based on such properties
(for example, costs and security).

In [17] a semi-automatic composition process is proposed toperform the compo-
sition of web services. This approach supports the system user in the selection of web
services during each step in the composition process, and tocreate flow specifications to
link them. The discovery process consists of finding matching services, which consist of
web services that provide outputs that can be fed as input to the services of the service
composition. After selecting all the services, the system generates a composite process
[18]. The composition is executed by calling each service separately, and passing the
results between services according to the flow specifications. This process allows more
control over the composition process, which is sometimes desirable for service devel-
opers. However, since the composition process is semi-automatic, end-users without

technical knowledge probably cannot make use of this approach. Our framework deals
with the composition process in a more abstract and automatic way, which allows its
usage by both service developers and end-users.

6 Conclusions and future work

In this paper we motivate the dynamic composition of services, focusing on how to
address all the necessary phases of the dynamic service composition life-cycle. We
propose a life-cycle following the SOA principles, furtherextended with the neces-
sary phases to perform dynamic and automatic composition ofservices. The life-cycle
focuses on creating new services (i.e., service compositions) based on a service user
service request. The discovery, composition and selectionphases are transparent to the
end-user or service developer.

Based on the proposed life-cycle we are developing a prototype implementation.
The prototype is based on the use of ontologies to allow the automation of the ser-
vice discovery, matchmaking and composition processes. Wepropose a goal-based
discovery and graph-based composition algorithm, using non-functional properties for
service composition optimization and ranking of the generated service compositions.
The whole process of publication/discovery and composition is language-independent,
meaning that different description languages, supportingsemantic annotations, can be
published. The generated service compositions can also be delivered in different execu-
tion languages.

The ideas and the prototype presented in this paper are stillunder development,
and several issues still need to be addressed. Apart from supporting service developers,
at design-time, we also intend to support end-users, providing runtime composition
of services. To achieve this we have to provide an even more abstract way to describe
service requests. The support of end-users also requires the deployment of the generated
service compositions. At the moment, the service discoveryprocess is completely done
before the service composition process, and is goal-based.This approach has benefits,
but also drawbacks. For example, during composition time itmay turn out that the
previously discovered services cannot be combined to form amatching composition.
In this case, on-demand service discovery during composition time is necessary. The
proposed prototype is being finalized and further evaluations will be performed. We
are currently setting up a demo scenario to evaluate the performance of the proposed
prototype.

Acknowledgments. This work is supported by the European IST SPICE project (IST-
027617) and the Dutch Freeband A-MUSE project (BSIK 03025).

References

1. Gartner: Gartner highlights key predictions for it organisations and users in 2008 and beyond.
http://gartner.com/it/page.jsp?id=593207 (January 2008)

2. O’Reilly, T.: The open source paradigm shift. In: Perspectives onFree and Open Source
Software, The MIT Press (July 2005) 461 – 481

3. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall
(2005)

4. MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., Metz,R.: Reference model for
service oriented architecture 1.0. Technical report, OASIS (October2006)

5. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web services: concepts, architectures and
applications. Springer-Verlag (2004)

6. Papazoglou, M.P.: Web Services: Principles and Technology. Prentice Hall (2007)
7. Tao, L.: Shifting paradigms with the application service provider model.Computer34(10)

(2001) 32 – 39
8. Almeida, J.P., Baravaglio, A., Belaunde, M., Falcarin, P., Kovacs, E.: Service creation in

the SPICE service platform. In: Wireless World Research Forum meetingon ”Serving and
Managing users in a heterogeneous environment”. (November 2006)

9. Cordier, C., Carrez, F., van Kranenburg, H., Licciardi, C., van der Meer, J., Spedalieri, A.,
Rouzic, J.P.L.: Addressing the challenges of beyond 3G service delivery: the SPICE plat-
form. In: 6th International Workshop on Applications and Services in Wireless Networks.
(2006)

10. Apache: Apache juddi. http://ws.apache.org/juddi/
11. Clement, L., von Riegen, A.H., Rogers, T.: Universal description discovery and integration

(uddi) version 3.0. http://uddi.org/pubs/uddiv3.htm (October 2004)
12. Lécúe, F., Ĺeger, A.: A formal model for semantic web service composition. In: ISWC 2006.

LNCS, vol. 4273 (2006) 385–398
13. Lécúe, F., da Silva, E.M.G., Ferreira Pires, L.: A framework for dynamic web services com-

position. In: 2nd ECOWS Workshop on Emerging Web Services Technology (WEWST07),
Halle, Germany, Germany, CEUR Workshop Proceedings (November2007)

14. Tsarkov, D., Horrocks, I.: Fact++. http://owl.man.ac.uk/factplusplus/
15. Lassila, O., Dixit, S.: Interleaving discovery and composition for simple workfows. In: First

International Semantic Web Services Symposium. (2004)
16. Zhang, R., Arpinar, I.B., Aleman-Meza, B.: Automatic composition of semantic web ser-

vices. In: 1st International Conference on Web Services. (2003) 38–41
17. Sirin, E., Hendler, J.A., Parsia, B.: Semi-automatic composition ofweb services using se-

mantic descriptions. In: 1st Workshop on Web Services: Modeling, Architecture and Infras-
tructure. (2003) 17–24

18. Burstein, M.H., Hobbs, J.R., Lassila, O., Martin, D.L., McDermott, D.V., McIlraith, S.A.,
Narayanan, S., Paolucci, M., Payne, T.R., Sycara, K.P.: Daml-s: Web service description for
the semantic web. In: International Semantic Web Conference. (2002)348–363

