
Faster SPDL Model Checking Through

Property-Driven State Space Generation

Matthias Kuntz, Boudewijn R. Haverkort

University of Twente,
Faculty for Electrical Engineering, Mathematics and Computer Science

Abstract. In this paper we describe how both, memory and time re-
quirements for stochastic model checking of SPDL (stochastic propo-
sitional dynamic logic) formulae can significantly be reduced. SPDL is
the stochastic extension of the multi-modal program logic PDL. SPDL
provides means to specify path-based properties with or without timing
restrictions. Paths can be characterised by so-called programs, essentially
regular expressions, where the executability can be made dependent on
the validity of test formulae. For model-checking SPDL path formulae
it is necessary to build a product transition system (PTS) between the
system model and the program automaton belonging to the path formula
that is to be verified. In many cases, this PTS can be drastically reduced
during the model checking procedure, as the program restricts the num-
ber of potentially satisfying paths. Therefore, we propose an approach
that directly generates the reduced PTS from a given SPA specification
and an SPDL path formula. The feasibility of this approach is shown
through a selection of case studies, which show enormous state space
reductions, at no increase in generation time.

1 Introduction

It is extremely important to develop techniques that allow the construction and
analysis of distributed computer and communication systems. These systems
must work correctly and meet high performance and dependability requirements.
Using stochastic model checking it is possible to perform a combined analysis
of both qualitative (correctness) and quantitative (performance and dependabil-
ity) aspects of a system model. Models that incorporate both qualitative and
quantitative aspects of system behaviour can be modelled by various high-level
formalisms, such as stochastic process algebras [12, 11], stochastic Petri nets [1],
stochastic activity networks [17] (SANs), etc.

In order to do model checking of stochastic systems, over the last years a
number of stochastic extensions of the logic CTL [8] have been devised. The most
notable extension is the logic CSL [4] (continuous stochastic logic). More recently,
in [14, 3], action-based extensions of CSL were introduced. These logics allow for
the specification of desired system behaviour by means of action sequences. This
makes them very well suited for modelling formalisms in which the actual system
behaviour is specified as a sequence of actions or transitions, as is the case for
SPAs, SPNs and SANs.

The applicability of stochastic model checking is limited by the complexity,
i.e., the size of system models that are to be verified. At the heart of stochastic
model checking lies the solution process of huge sparse sets of linear (differential)
equations. This limits the size of systems that are practically analysable to some
108 states.

To overcome these limitations we can think of several approaches. One stan-
dard approach is the use of some notion of Markovian bisimulation. This ap-
proach has the following drawbacks. Computing the bisimulation quotient of a
system is computationally expensive, and before reduction takes place the entire
system has to be generated. Furthermore, depending on the system, the reduc-
tion in size may not be very large, and finally, due to reasons that are related
to numerical analysis, the verification of the reduced system may be slower than
that of the original system (cf. [13]).

We propose a different approach, which reduces the system size in many cases
already during the state space generation, by exploiting the SPDL path formula
that is to be verified.

Related Work For stochastic model checking we are not aware of any approach
that generates the state space in a way which depends on the formula that is to
be verified. For CSL model checking, in [4] an approach is described that makes
states absorbing that do not functionally satisfy a given until-formula, but this
state space reduction is performed only after the state space was generated. Fol-
lowing this proposal, in [14] model checking algorithms for SPDL path formulae
were implemented. For CSL model checking this was done in [13]. For CTL
model checking in [2] an approach is reported, where for interacting finite state
machines equivalence relations are computed, depending on the CTL formula
that is to be verified.

The paper is further organised as follows. In Section 2 we briefly introduce
the syntax and semantics of SPDL; we will explain in an informal style the
traditional approach to the model checking of SPDL path formulae. In Sec-
tion 3 we then describe the stochastic process algebra YAMPA, on which our
property-driven state space generation approach relies. Section 4 is devoted to a
denotational, symbolic property-driven semantics of YAMPA. In Section 5 we
will show the feasibility of our approach via some experimental results. Finally,
Section 6 concludes the paper with a short summary and some pointers to future
work.

2 SPDL - Syntax, Semantics and Model Checking

The logic SPDL is the stochastic extension of the logic PDL [9], a multi-modal
program logic. PDL enriches the standard modal operator ⋄ (“possibly”) with so-
called programs, which are essentially regular expressions and tests (cf. Def. 1).
In PDL, the formula < ρ > Φ means, that it is possible to execute program
ρ and end in a state that satisfies Φ. SPDL adds the following extensions to
PDL: The operator < ρ > is replaced by the time-bounded path operator [ρ]I , a
probability operator P⊲⊳p to reason about the transient system behaviour, and a
steady state operator S⊲⊳p to reason about system behaviour, once stationarity

has been reached. In what follows, we discuss the syntax, semantics, and a model
checking procedure for SPDL.

2.1 Syntax of SPDL

Definition 1 (Syntax of SPDL). Let p be a probability value in [0, 1], q ∈ AP

an atomic proposition, where AP is the set of atomic propositions, and

⊲⊳∈ {≤, <,≥, >} a comparison operator. The state formulae Φ of SPDL are

defined as:

Φ := q
∣
∣Φ ∨ Φ

∣
∣¬Φ

∣
∣P⊲⊳p(φ)

∣
∣S⊲⊳p(Φ)

∣
∣(Φ)

Path formulae are defined as:

φ := Φ[ρ]IΦ,

where I is the closed interval [t, t′], Φ is assumed not to possess sub-formulae con-

taining the steady state operator S⊲⊳p.
1 Programs ρ are described by the grammar

given in Def. 2.

Definition 2 (Programs). Let Act be a set of actions, which are also called

atomic programs, and TEST be a set of SPDL state formulae, again not con-

taining the steady state operator S⊲⊳p. A program ρ is defined by the following

grammar:

ρ := ǫ
∣
∣Φ?; a

∣
∣ρ; ρ

∣
∣ρ ∪ ρ

∣
∣ρ∗

∣
∣Φ?; ρ

∣
∣(ρ)

where ǫ 6∈ Act is the empty program, a ∈ Act and Φ ∈ TEST.

Sequence (;), choice (∪), and Kleene-star (∗) have their usual meaning as known
from the theory of regular expressions. The operator Φ? is the so-called test
operator. Informally speaking, it tests whether Φ holds in the current state of the
model. If this is the case, then execute program ρ, otherwise ρ is not executable.
Following language theory, we can derive words from a program ρ (here also
called program instances) according to the rules of regular expressions. The set
of all these program instances is called a language.

Example 1. Throughout this paper, we use the example of a fault-tolerant packet
collector, which has the following repeating behaviour. Arrivals can either be
error-free (upper transition arr, rate λ) or erroneous (lower transition error,
rate µ). If a data packet contains an error, this error can be correctable (co) non-
correctable (nco). In case of a correctable error, the error is corrected (transition
co) and more data packets can be received. If the error is non-correctable, the
data packet has to be retransmitted (transition rt). In Fig. 1, the SLTS M
for the packet collector is shown, where we assume that the number n of data
packets that are to be processed is equal to four. The system has the following
state labels:
1 Mixing formulae that express transient behaviour (P⊲⊳p) with formulae expressing

steady state behaviour (S⊲⊳p) is considered less meaningful.

s1 s2 s3 s4 s5

s6 s7 s8 s9

s10 s11 s12 s13

arr, λ arr, λarr, λarr, λ

error, µerror, µerror, µerror, µ

corr, γcorr, γcorr, γ corr, γ

rt, κ rt, κ rt, κ rt, κ

prc, ω

ncorr, δncorr, δncorr, δ ncorr, δ

Fig. 1. Fault tolerant packet collector for n = 4 packets

L(s5) = {full}, L(s6) = ... = L(s9) = {error},
L(s10) = = L(s13) = {waitrt}, L(s14) = ... = L(s17) = {waitcor}

The set of actions is given as follows:

Act := {arr, error, rt, corr, ncorr, prc}

Using SPDL, we can easily express the following properties:

– Φ1 := P⊲⊳p((¬full)[arr∗][0,t](full)): Is the probability to receive N data packets
without error within t time units greater or less than p?

– Φ2 := P⊲⊳p(¬full[arr; TEST1?; error; rt; arr∗ ∪ arr∗][0,t]full): Is the proba-
bility to receive N data packets without error or with at most one non-
correctable error within t time units greater or less than p, given that this
non-correctable error appears in the first data packet? The test formula
TEST1 defines those states, in which it holds that 1 packet has arrived.

– Φ3 := P⊲⊳p(true[arr∗; TEST2?; arr; corr][0,t]full): Is the probability that the
buffer is full after at most t time units and that the Nth packet contains a
correctable error, given that all preceeding packets were error free, within
the probability bounds given by ⊲⊳ p? The test formula TEST2 describes
those states, in which it holds that N − 1 packets have arrived.

2.2 Semantics of SPDL

We will now show, both the model over which SPDL formulae are interpreted
and the semantics of SPDL formulae.2

The semantic model of SPDL is a so-called stochastic labelled transition
system, defined as follows.

Definition 3 (Stochastic labelled transition system (SLTS)). An SLTS

M is a six-tuple (s, S, Act, L, R, AP), where

2 The stochastic process algebra from Sections 3 and 4 and SPDL share the same
semantic model.

– s is the unique initial state,
– S is a finite set of states,
– Act is a finite set of action names,
– L is the state labelling function: S → 2AP ,
– R is the state transition relation : R ⊆ S × (Act × IR>0) × S,
– AP is the set of atomic propositions.

Definition 4 (Semantics of SPDL).

– The semantics of propositional logic formulae ¬Φ and Φ ∨ Ψ is defined the

usual way.
– S⊲⊳p(Φ) asserts that the steady state probability of the Φ-states, i.e., the prob-

ability to reside in a Φ-state once the system has reached stationarity satisfies

the probability bounds as given by ⊲⊳ p.
– P⊲⊳p(φ) asserts that the probability measure of all paths that satisfy φ lies

within the bounds as imposed by ⊲⊳ p.
– Φ[ρ]IΨ asserts that a path that satisfies this formula reaches a Ψ -state within

at least t time units, but after at most t′ time units. All preceeding states must

satisfy Φ. Alternatively, a Φ ∧ Ψ -state can be reached before the passage of t

time units, but not left before at least t time units have passed. Additionally,

the action sequence on the path to the Ψ -state must correspond to the action

sequence of a word from the language induced by program ρ. All test formulae

that are part of ρ must be satisfied by corresponding states of the path.

2.3 Model Checking SPDL

The overall model checking algorithm of SPDL is similar to that of CTL, in the
sense that it starts with the verification of atomic properties and then proceeds
with the checking of ever more complex sub-formulae until the overall formula
has been checked.

Model Checking SPDL

– Propositional formulae ¬Φ and Φ ∨ Ψ are checked as in the CTL case.
– Steady state formulae S⊲⊳p(Φ) can be checked as for CSL [4].
– Model checking formulae with a leading P⊲⊳p operator is more involved. We

assume, we want to check whether in an SLTS M a state s satisfies P⊲⊳p(φ),
with φ = Φ[ρ]IΨ . The basic idea is to reduce the model checking problem
of SPDL to one of CSL, which consists of deciding whether a continuous
time Markov chain (CTMC) M× (to be constructed) and a state s× in M×

satisfies the CSL formula P⊲⊳p(F
Isucc). A path satisfies FIsucc, if within time

interval I a state is reached that satisfies the atomic property succ. To reach
this goal, we proceed as follows:
1. From the program ρ we derive a deterministic program automaton Aρ,

which is a variant of deterministic finite automata.3

3 For the derivation of Aρ from program ρ we refer to [14] for a thorough discussion
of this issue. As such this issue does not play a crucial role in understanding this
paper.

2. Using the given SLTS M and the program automaton Aρ we build a
product Markov chain. M×. The state space of M× is the product of
M and Aρ, i.e., its states are of the form (si, zi), where si is a state of
M and zi a state of Aρ. Additionally, M× possesses one new, absorbing
state: the state FAIL.
In M× a transition (si, zi)

λ
−→ (sj , zj) is kept, where λ is the rate of the

transition from si to sj , iff the following two constraints are satisfied:
• (si, zi) must satisfy Φ, this is the case iff si satisfies Φ.
• Both si and zi must be capable to perform the same action, and if

the current action is associated with a test, then si must also satisfy
this test.

If one of these two constraints is violated, we have to introduce a tran-

sition (si, zi)
λ
−→ FAIL and delete transition (si, zi)

λ
−→ (sj , zj).

3. Finally, to compute the probability measure of the paths that satisfy φ we
proceed as follows. All states (sj , zj) of M× for which sj is a Ψ -state and
zj is an accepting state of Aρ are replaced by the newly introduced ab-
sorbing success state SUCC, labelled with the special, newly introduced
atomic state formula succ, thereby redirecting all incoming transitions
from the old states to the new SUCC state.

4. At this point, it is possible to check, whether P⊲⊳p(Φ[ρ][t,t
′]Ψ) is function-

ally satisfiable: If in M× a path to a succ state exists, then P⊲⊳p(Φ[ρ][t,t
′]Ψ)

can be satisfied at least on the functional level.
5. On M× (which was transformed as described in step 3) we can com-

pute the probability measure of all paths satisfying the CSL formula
P⊲⊳p(F

[t,t′]succ), which is equal to the probability measure of the paths

satisfying the original formula P⊲⊳p(Φ[ρ][t,t
′]Ψ) in the original model M.

3 Stochastic Process Algebras

In the past 15 years, a number of stochastic process algebras have been devised,
such as PEPA [12] and TIPP [11]. Here, we use the stochastic process algebra
YAMPA (yet another Markovian process algebra), that is used in the tool
CASPA [16], which we use for our empirical studies. Instead of giving a formal
account of YAMPA, we will introduce its most important operators by means
of a small example.

Example 2. In fig. 2 we list the YAMPA specification of the fault tolerant
packet collector of example 1. In line (1) we can specify the maximum number
of packets that must arrive, before processing starts. We see in this specification
some “syntactic sugar” that eases the concise specification of complex systems,
e.g., guarded choice in line (3). In lines (2) and (3) we find that process Arr is
parameterised with parameter i, that can take the maximum value max. This
parameter records the number of packets that arrived. In line (2) we see that
Arr is initialised with i = 0, i.e., zero packets arrived in the beginning.

The overall system consists of the processes Arr and Errorhandler that
are composed in parallel and that have to synchronise over the actions error,

(1) int max = 15000;

(2) System := Arr(0)|[error, corr,ncorr]| Errorhandler
(3) Arr(i [max]) := [i=0] -> (arr, lambda);Arr(i+1) +
(4) (error, mu);((corr, 1);Arr(i+1) + (ncorr,1);(rt,kappa);Arr(0))

(5) [i<max, i > 0] -> (arr, lambda);Arr(i+1) + (error, mu);((corr, 1);Arr(i+1) +
(6) (ncorr,1);(rt,kappa);Arr(i-1))

(7) [i=max] -> (prc, omega);Arr(0)
(8) Errorhandler := (error, 1);((corr, gamma);Errorhandler + (ncorr, delta);Errorhandler)

Fig. 2. Example YAMPA specification

corr, ncorr, i.e., these actions must be performed by both processes at the
same time. For all other actions, the processes can evolve independently. (arr,
lambda);Arr(i+1) (line (3)) is an example of prefix: After an exponentially
distributed delay time, which is governed by rate lambda, action arr can be
taken. In line (4) we find an example of choice: This process can either be-
have as (arr, lambda);Arr(i+1) or (error, mu);((corr, 1);Arr(i+1) +

(ncorr,1);(rt,kappa);Arr(0)). In line (3) to (7) we see examples of guarded
choice: Depending on the actual value of i different branches of the specification
in lines (3) to (7) can be taken. In line (3), this branch of the specification can
only be taken, if the value of parameter i is equal to zero. Process Arr(i [max])

possesses cyclic (recursive) behaviour, as, after arr it can again behave as Arr.

4 A Property-Driven Symbolic Semantics for YAMPA

In this section we introduce the new property-driven semantics for YAMPA. In
Sec. 4.1 we will give the general idea of this semantics. Sec. 4.2 introduces multi-
terminal binary decision diagrams (MTBDDs) as data structure to represent
SLTSs. In Sec. 4.3 the semantics rules is introduced by means of a small example,
and in Sec 4.4 their formal definition is given.

4.1 General Idea

In Section 2.3 we have presented a straight-forward model checking procedure
for SPDL path formulae. The size of the product CTMC, before it is reduced is
the product of the sizes of the original model M and the program automaton Aρ.
During the model checking procedure, many states are merged into the states
FAIL resp. SUCC. This means, we needlessly generate a state space that is
much larger than actually required, which is both a waste of memory space and
time.

To overcome this weakness in the usual model checking procedure we propose
an approach that generates only those states that are actually needed to verify
the property at hand. In order to reach this goal, we introduce a property-
driven semantics for the stochastic process algebra YAMPA, that uses the path
formula that is to be verified to direct the state space generation process. This
new semantics cuts off state space generation as soon as it becomes clear a path

is either not satisfying, i.e., it leads to a FAIL state, or satisfying, i.e., leads to
a SUCC state. This significantly reduces the number of states and transitions
that are generated.

We will use the symbolic semantics of [15] as a basis for our new SPA se-
mantics. Like in [15], the property-driven semantics maps the SPA specification
directly to the MTBDD representation of its underlying SLTS. The semantics
proceeds in a compositional manner, according to the syntactic structure of the
process term at hand. Additionally to [15], the new semantics takes, as already
said, during generation of the SLTS the SPDL property that is to be verified
into account. We chose MTBDDs as data structures for the SLTS representation
as it was shown convincingly [18] that MTBDDs allow a compact representation
of even huge state spaces.

4.2 Multi-Terminal Binary Decision Diagrams Encode SLTSs

MTBDDs [10] are an extension of BDDs [6] for the graph-based representation
of pseudo-Boolean functions, i.e., functions of type IBn 7→ IR. Informally spoken,
MTBDDs are collapsed binary decision trees, i.e., each non-terminal nodes has
exactly two outgoing edges.

They are collapsed in the sense that structural properties of the binary trees
are used to reduce the size of the graph.

MTBDDs are very well suited for the representation of the semantic model
of SPAs. We will demonstrate that by means of a small example.

Example 3. Consider Fig. 1 from Example 1. To represent this SLTS as an
MTBDD we have to find ways to represent its “ingredients” in an appropri-
ate way. That means we have to find representations for: the actions, the states,
and the transition relation. All these can be encoded binarily resp. by means of
pseudo-Boolean functions:

– Actions: The system has six actions: arr, error, corr, ncorr, rt, and prc, there-
fore, we need three variables a1, a2, a3 to encode them:

EncAct(arr) = ¬a3 ∧ ¬a2 ∧ ¬a1 = 000,

EncAct(error) = 001 EncAct(corr) = 010 EncAct(ncorr) = 011

EncAct(rt) = 100 EncAct(prc) = 101

– States: The system has 13 states, i.e., we need 4 Boolean variables z1 to z4

to encode them:

Encs(s1) = ¬z4 ∧ ¬z3 ∧ ¬z2 ∧ ¬z1 = 0000,

Encs(s1) = 0001 · · · Encs(s13) = 1011

– Transition relation: A single transition s
a,λ
−−→ s′ can be encoded as pseudo-

Boolean function: TR(s, a, λ, s′). TR(s, a, λ, s′) is the conjunction of the bi-
nary variables that encode the source state s, target state s′ and action a.

For source and target states we need two disjoint sets of Boolean variables,
respectively denoted zi and ti. The pseudo-Boolean function obtained so, has
as function value rate λ. Transition relation R is than the disjunction over
all possible TR(s, a, λ, s′). For example TR(s1, arr, λ, s2) can be encoded as
follows:

TR(s1, arr, λ, s2) =

¬z4 ∧ ¬z3 ∧ ¬z2 ∧ ¬z1
︸ ︷︷ ︸

s1

∧¬a3 ∧ ¬a2 ∧ ¬a1
︸ ︷︷ ︸

arr

∧¬t4 ∧ ¬t3 ∧ ¬t2 ∧ t1
︸ ︷︷ ︸

s2

In terms of MTBDDs, the variables that encode states and actions are the
non-terminal nodes and the transition rates are the values of the leaf nodes.
In Fig. 3 we show the MTBDD representation of two transitions of the SLTS:

s1
arr,λ
−−−→ s2 and s1

error,µ
−−−−−→ s6. Note, that we put the action variables on top

of the MTBDD, as this yields smaller MTBDDs.4

0

z4 z3 z2 z1 t4 t3 t2 t1a3 a2 a1

λ

µ

Fig. 3. MTBDD encoding transitions TR(s1, arr, λ, s2) and TR(s1, error, µ, s6)

4.3 Property-Driven Symbolic Semantics - Introduction and
Example

Here, we present the general idea behind our semantics and introduce in greater
detail the semantic rules for the operators of YAMPA. Due to limited space we
will not give the formal description of semantic rules for all operators. Generally,
we want to encode the transitions of a given process algebraic description P

by an MTBDD. The symbolic representation [[P]] is built from P ’s parse tree
and the transition relation of the deterministic program automaton Aρ that is
attached to the path formula we want to verify. The parse tree is traversed in a
depth-first manner, thereby constructing [[P]] inductively from smaller portions
of the overall specification. Finally, we obtain the MTBDD representation of P ’s
transitional behaviour, taking the restrictions imposed by the path formula at
hand into account.

Definition 5. The symbolic representation [[P]] of a process algebra term P con-

sists of the following parts:

– The MTBDD B(P), encoding the transition relation,

– a list of encodings of process variables X, that appear in P , denoted EncS(X),
– the encoding of the initial state of P , denoted EncS(sDS

P),

4 In practice further optimisations are possible, but not important here.

– the transition relation δAρ
for Aρ,

– the current state of Aρ.

Before we list the formal rules for the property-driven semantics, we will give
another example.

Example 4. We want to generate the SLTS for the specification from Example 2,
with max = 2. and SPDL formula Φ1 := P⊲⊳p((¬full)[arr∗][0,t](full)) from Exam-
ple 1. We assume, that the actions and their encodings are globally known, i.e.,
we know the number of Boolean variables required for their encoding, which
is three (like in Example 3). As we derive the MTBDD representation of the
SLTS directly from the given specification we do not know in advance the size
of the state space and therefore the number of Boolean variables to encode the
states and the transition relation. Therefore, we take in the beginning as small a
number as possible, and extend the number of variables, if required. The initial
state of the specification Arr(0)|[error, corr,ncorr]| Errorhandler can be
encoded by one Boolean variable EncS(s1) = ¬z1 = 0. Given Φ1, we check if
¬full is satisfied, which is the case, then we check whether a transition labelled
with arr is possible, which is the case, i.e., we add EncS(s2) = z1 = 1. As for
s2 the condition full is not satisfied, s2 6= SUCC. The MTBDD encodes at this
point the transition relation R consisting of TR(s0, arr, λ, s1). In s1 a second
transition, labelled by error is possible, we see from Φ1 that err does not belong
to the actions that yield a satisfying path, i.e., we have to introduce a transition
to the failure state FAIL, which has no encoding up to now. To do so, we have
to extend the number of Boolean variables that encode states, i.e., the states s1

and s2 are re-encoded:

EncS(s1) = ¬z2 ∧ z1 = 00 EncS(s2) = ¬z2 ∧ z1 = 01

EncS(FAIL) = z2 ∧ ¬z1 = 10

Now, we can introduce a new transition encoding: TR(s1, error, µ, FAIL). The
overall transition relation R is now the disjunction of TR(s0, arr, λ, s1) and
TR(s1, error, µ, FAIL)

The state s2 corresponds to Arr(1)|[error, corr,ncorr]| Errorhandler,
i.e., ¬full is satisfied, and again arr and error transitions are possible, due to the
restrictions imposed by the path formula, error leads to the FAIL state, i.e., we
introduce a new transition: TR(s2, error, µ, FAIL). For arr we add a new tran-
sition from s2 to s3, as s3 satisfies full, s3 = SUCC, and TR(s2, arr, λ, SUCC),
where EncS(s3) = 11. In Fig. 4 we find the MTBDD encoding the transition
relation of this SLTS.

4.4 Property-Driven Symbolic Semantics - Formal Definition

Process Variables A process variable X specifies a reference state within a
surrounding recX operator. Therefore, process variables are encoded in a similar
fashion as states. Within each sequential component5 process variables having

5 A sequential component is a process term which does not include the parallel com-
position operator.

0

t1t2z1z2a3 a2 a1

λ

µ

Fig. 4. MTBDD representation of the fault-tolerant packet collector’s SLTS for max =
2 and Φ1

(1) if not first appearance of X within present seq. component then

(2) skip /* do nothing */
(3) if no free encodings available then /* need to extend the set of possible encodings */
(4) Extend the number of Boolean variables
(5) Extend all existing encodings
(6) B(X) := 0 /*In case of stop: B(stop) := ...

Fig. 5. Algorithm for process variable X and stop

the same name get the same encoding. Upon first appearance of a process vari-
able X , the MTBDD associated with X is the 0-MTBDD (cf. Fig. 5). The stop

process is a special case of a process variable (a process constant).

Prefix P := (a, λ); Q For a given formula Ψ := P⊲⊳p(Φ1[ρ]IΦ2), we want to
generate the symbolic representation of P , [[P]]. To construct B(P) we have to
distinguish the following cases:

1. If the current state sDS
P satisfies Φ1 and in Aρ’s current state z an a-labelled

transition to a state z′ is possible, sDS
P satisfies the test formula Ξ, possibly

attached to Aρ’s a-transition, then, we can introduce a transition from sDS
P

to the encoding of Q’s initial state.
2. If, additionally to case 1, the target state of Aρ is an accepting state and

sDS
Q satisfies Φ2, then a transition from the encoding of sDS

P to the encoding

of state SUCC6 is introduced.
3. If the state sDS

P satisfies Φ1, but no transition labelling in Aρ’s current state
matches a, then we have to introduce a transition from the encoding of P

to the encoding of the error state FAIL.
4. If state sDS

P does not satisfy Φ1, then we have to introduce a transition from
the encoding of P to the encoding of the error state FAIL.

5. If state sDS
P does not satisfy the test formula, attached to Aρ’s a transition,

then we have to introduce a transition from the encoding of P to the encoding
of the error state FAIL.

In Fig. 6 we give the formal description of the prefix algorithm.7 We only give
the first, second, and third case from above, the remaining cases can be treated
similarly.

6 SUCC can be handled like stop.
7 In this and the following algorithm we omit details on choosing fresh Boolean vari-

ables and possibly extending encodings.

Case 1:

(1) if ((sDS
P |= Φ1) ∧ (z

a
−→Aρ

z′ ∧ sDS
P |= Ξ))

(2) B(P) := TR(sDS
P , a, λ, sDS

Q)
Case 2:

(3) if ((sDS
P |= Φ1) ∧ (sDS

Q |= Φ2) ∧ (z
a
−→Aρ

z′ ∧ sDS
P |= Ξ))

(4) B(P) := TR(sDS
P , a, λ, SUCC)

Case 3:

(5) if ((sDS
P |= Φ1) ∧ (z 6

a
−→Aρ

z′ ∧ sDS
P |= Ξ))

(6) B(P) := TR(sDS
P , a, λ, FAIL)

Fig. 6. Algorithm for prefix P := (a, λ);Q

Choice P := Q + R Here, we can assume that [[Q]] and [[R]] are already
available. To derive [[P]] from [[Q]] and [[R]] we have to proceed as follows: A new
initial state is introduced for Q + R. All transitions emanating from the initial
states of the subprocesses Q and R have to be copied, as they may also take
place in the initial state of the overall process.

Recursion P = recX : Q When constructing [[P]] = [[recX : Q]] from [[Q]] we
can distinguish the following cases:

1. X does not appear (unbound) in Q: In this case we simply identify the
symbolic representation of recX : Q with that of Q.

2. X appears in Q and sDS
Q satisfies Φ2 and the current state in Aρ is an

accepting state, then the process variable X is identified/replaced by the
process constant SUCC.

3. X appears in Q and either sDS
Q does not satisfy Φ2 or the current state in

Aρ is not an accepting state: In this case the process variable X is identified
with the encoding of the initial state of Q.

Parallel Composition P := Q|[L]|R To derive [[P]] from P and Φ =
P⊲⊳p(Φ1[ρ]IΦ2), we must not assume that [[Q]] resp. [[R]] are already available.
Instead, we have to derive [[P]] from Q and R step by step, by respecting the
same conditions as for the prefix operator, i.e., depending on the current state
of sDS

P of P , and z of Aρ, we add transitions either to a “regular” successor of
sDS

P or to FAIL, resp. SUCC.
In Fig. 7 the algorithm for the derivation of [[P]] from Q and R for a single

transition is given. We list only a few of the possible cases. This procedure has to
be repeated, until all potential transitions that are possible are generated. This
can be done using standard depth- or breadth-first search applied to P ’s parse
tree.

5 Empirical Results

For our case studies we have employed the symbolic stochastic model checker
CASPA. All results have been computed on a standard PC with Pentium IV 3.2
GHz processor, 1 GB RAM, running the operating system SuSe Linux 10.0.

Case 1:

(1) if (a 6∈ L ∧ (sDS
Q |= Φ1) ∧ (z

a
−→Aρ

z′ ∧ sDS
Q |= Ξ))

/*with Ξ being a test formula attached to the current transition of Aρ. */
(2) B(Q′) := TR(EncS(Q) ◦ EncS(R), a, λ, EncS(Q′) ◦ EncS(R))
(3) B(P) := B(P) + B(Q′)
Case 2:

(4) if (a 6∈ L ∧ (sDS
Q |= Φ1) ∧ (z 6

a
−→Aρ

z′ ∧ sDS
Q |= Ξ))

(5) B(Q′) := TR(EncS(Q) ◦ EncS(R), a, λ, FAIL)
(6) B(P) := B(P) + B(Q′)
Case 3:

(7) if (a ∈ L ∧ (sDS
Q |= Φ1) ∧ (z

a
−→Aρ

z′ ∧ sDS
Q |= Ξ) ∧ (sDS

R |= Φ1) ∧ (sDS
R |= Ξ))

(8) B(Q′) := TR(EncS(Q) ◦ EncS(R), a, λ, EncS(Q′) ◦ EncS(R′))
(9) B(P) := B(P) + B(Q′)
Case 4:

(10) if (a ∈ L ∧ (sDS
Q |= Φ1) ∧ (sDS

Q′ |= Φ2) ∧ (z
a
−→Aρ

z′ ∧ sDS
Q |= Ξ) ∧ (sDS

R |= Φ1) ∧ (sDS
R′ |= Φ2) ∧ (sDS

R |= Ξ))
(11) B(Q′) := TR(EncS(Q) ◦ EncS(R), a, λ, SUCC)
(12) B(P) := B(P) + B(Q′)

Fig. 7. Algorithm for parallel composition P := Q|[L]|R

5.1 Fault-Tolerant Packet Collector

Let us consider the system from Example 1. We will check the SPDL path for-
mulae presented there. In Table 1 we find the model sizes for these formulae. In
columns three to five, we list the maximum size of the product CTMC that is
generated for model checking SPDL without property-driven state space gener-
ation, which is the product of the size of the automaton and the system model.
In columns six to eight we list the state space sizes as they are generated when
using the property-driven approach proposed in this paper, and on which model
checking is actually carried out. We see, that we can avoid the generation of
many states, thereby reducing the memory requirements for SPDL model check-
ing. We see in Table 2 that for both formulae the property-driven state space
generation also requires less time than the traditional approach.

max State space size Not Property-driven Property-driven

Φ1 Φ2 Φ3 Φ1 Φ2 Φ3

5,000 15,001 15,001 60,004 45,003 5,002 20,003 10,003

15,000 45,001 45,001 180,004 135,003 15,002 60,003 30,003

30,000 90,001 90,001 360,004 270,003 30,002 120,003 60,003

50,000 150,001 150,001 600,004 450,003 50,002 200,003 100,003

Table 1. State space sizes for Φ1 to Φ3 (Packet collector)

5.2 Kanban System

The Kanban manufacturing system was first described as a stochastic Petri net
in [7]. We consider a Kanban system with four cells, a single type of Kanban
cards and the possibility that some workpieces may need to be reworked. We
will check the following properties:

max Not Property-driven Property-driven

Φ1 Φ2 Φ3 Φ1 Φ2 Φ3

5,000 2.9 sec. 3.3 sec. 3.1 sec. 2.0 sec. 2.8 sec. 2.9 sec.

15,000 10.00 sec. 10.8 sec. 11.2 sec. 6.9 sec. 9.0 sec. 9.0 sec.

30,000 21.4 sec. 22.7 sec. 22.5 sec. 17.8 sec. 18.9 sec. 19.6 sec.

50,000 37.9 sec. 45.3 sec. 44.4 sec. 33.6 sec. 40.4 sec. 32.8 sec.

Table 2. State space generation times for Φ1 to Φ3 (Packet collector)

n State space size Not Property-driven Property-driven

Φ1 Φ2 Φ3 Φ1 Φ2 Φ3

5 2,546,432 22,917,888 33,103,616 43,289,344 83 13 159

8 133,865,325 1,204,787,925 1,740,249,225 2275710525 189 13 240

10 1,005,927,208 9,053,344,872 13,077,053,704 17,100,762,536 276 13 294

12 5,519,907,575 49,679,168,175 71,758,798,475 93,838,428,775 364 13 348

15 46,998,779,904 - - - 496 13 411

Table 3. State space sizes for Φ1 and Φ2 (Kanban)

n Not Property-driven Property-driven

Φ1 Φ2 Φ3 Φ1 Φ2 Φ3

5 0.8 sec. 0.7 sec. 0.7 sec. 0.1 sec. 0.1 sec. 0.1 sec.

8 4.7 sec. 4.2 sec. 4.5 sec. 0.2 sec. 0.2 sec. 0.2 sec.

10 11.4 sec. 10.8 sec. 11.0 sec. 0.5 sec. 0.5 sec. 0.5 sec.

12 21.7 sec. 21.5 sec. 22.1 sec. 0.8 sec. 0.7 sec. 0.7 sec.

15 - - - 1.6 sec. 1.5 sec. 1.5 sec.

Table 4. State space generation times for Φ1 and Φ2 (Kanban)

– Φ1: Is the requirement, that within t time units exactly three reworks are
required in station 1 satisfied with a probability that is at most p?

– Φ2 :: Is the probability that a single job needs at most t time units to go
through all 4 stations greater than p percent?

– Φ3: Is the probability to reach station 4, within t time units, given in station
1 are no reworks required and in stations 2 and 3 in total exactly 2 reworks
are necessary within ⊲⊳ p?

From Table 3 we observe that for the formulae Φ1 to Φ3 the state space of the
product CTMC is dramatically smaller than that of the original system, which
stems from the fact that for all three formulae only very specific paths in the
system are of interest. We can observe that for Φ2 the size of the product CTMC
is independent of the number of Kanban cards, which is not surprising, as we
consider a specific card that goes through the system. In the second column we
find the size of the original state space, in columns three to five we show the
maximum size of the state space for the traditional approach, and in columns
six through eight we list the final state space on which model checking actual is
performed. We see in Table 4 for all three formulae that property-driven state
space generation requires less time than the traditional approach. This is not
surprising, as billions of states and even more important, billions of transitions
of the original model do not to be explored in the property-driven approach.

Conf State space size Not Property-driven Property-driven

Φ1 Φ1

C1 753,664 2,260,992 53,306

C2 123,760 371,280 1,475

C3 381,681,664 1,145,044,992 6,554,329

Table 5. State space generation times for Φ1 (fault-tolerant multi-processor)

5.3 Fault-Tolerant Multiprocessor System

This example is based on [17]. The original model consists of N computers each
of which has the following components: Memory modules, CPUs, I/O ports, and
error handlers. Each of these computer components consists of several subcom-
ponents, that can fail, leading to the failure of one computer. The overall system
is operational if at least one computer is operational.

We have generated the CTMC for three different configurations: C1 is the
configuration consisting of two computers with three memory modules each; C1
has about 750,000 reachable states. C2 consists of 3 computers, with one memory
module each. C3 comprises 3 computers and 3 memory modules each.

We will check the following formula Φ1: Does the probability that computer
failures and subsequently a system failure is only due to memory failures lie
within the bounds as given by ⊲⊳ p, given that the maximum time to reach a
system failure state is at most t?

In Table 5 we show the model sizes for the above formulae. In column three,
we list the maximum size of the product CTMC that is generated for model
checking SPDL without property-driven state space generation, which is the
product of the size of the automaton and the system model. In column 4 we
give the model size, when applying the property-driven state space generator.
We do not list the model generation times here, which are below 0.1 sec. for all
configurations, in both the property-driven and the non-property-driven case.

6 Conclusions

In this paper we have introduced a property-driven symbolic semantics for the
stochastic process algebra YAMPA. We have shown its usage of a property-
driven semantics for model checking probabilistic SPDL path formulae reduces
both time and memory requirements. These savings can be considerable, as
shown for the Kanban system, where an overhead of several billion states could
be avoided. The numerical algorithms for stochastic model checking have a time
complexity at least linear in state space size, so that an enormous overall time
gain can be expected.

Generally, when doing numerical analysis of CTMCs with a huge state space
some caution is required. As reported in [5], the accuracy of the numerical anal-
ysis depends on many factors, e.g. state space ordering, the actual iterative
solution method, etc. But it must be stressed, that this is a problem that applies
to all approaches that rely on numerical analysis. In fact, the probability masses

on both the model, generated using property-driven state space generation, and
the model using the “traditional” approach are identical. The experiments we
conducted, on both the reduced and non-reduced model did not yield any dif-
ferences.

In the future we plan to combine this property-driven semantics with some
notion of bisimulation reduction in order to obtain further state-space reductions
and to investigate the possibilities to transfer the results from [2] to the stochastic
case.

References

1. M. Ajmone Marsan, G. Balbo, and G. Conte. A Class of Generalized Stochas-
tic Petri Nets for the Performance Evaluation of Multiprocessor Systems. ACM
Transactions on Computer Systems, 2(2):93–122, May 1984.

2. A. Aziz, T. Shiple, V. Singhal, R. Brayton, and A. Sangiovanni-Vincentelli.
Formula-dependent equivalence for compositional CTL model checking. Form.
Methods Syst. Des., 21(2):193–224, 2002.

3. Ch. Baier, L. Cloth, B. R. Haverkort, M. Kuntz, and M. Siegle. Model check-
ing markov chains with actions and state labels. IEEE Transactions on Software
Engineering, 33(4):209–224, 2007.

4. Ch. Baier, B. Haverkort, H. Hermanns, and J.P. Katoen. Model-Checking Algo-
rithms for Continuous-Time Markov Chains. IEEE Trans. Software Eng., 29(7):1–
18, July 2003.

5. A. Bell. Distributed Evaluation of Stochastic Petri Nets. PhD thesis, RWTH
Aachen, Fakultät für Mathematik, Informatik und Naturwissenschaften, 2003.

6. R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C-35(8):677–691, August 1986.

7. G. Ciardo and M. Tilgner. On the use of Kronecker operators for the solution of
generalized stochastic Petri nets. Technical Report 96-35, ICASE, 1996.

8. E.M. Clarke, E.A. Emerson, and A. Sistla. Automatic verification of finite state
concurrent systems using temporal logic specifications: A practical approach. In
10th ACM Annual Symp. on Principles of Programming Languages, pages 117–126,
1983.

9. M. Fischer and R. Ladner. Propositional dynamic logic of regular programs. J.
Comput. System Sci., 18:194–211, 1979.

10. M. Fujita, P. McGeer, and J.C.-Y. Yang. Multi-terminal Binary Decision Diagrams:
An efficient data structure for matrix representation. Formal Methods in System
Design, 10(2/3):149–169, April/May 1997.

11. H. Hermanns, U. Herzog, and J.-P. Katoen. Process algebra for performance eval-
uation. Theoretical Computer Science, 274(1-2):43–87, 2002.

12. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

13. J.-P. Katoen, T. Kemna, I. Zapreev, and D. Jansen. Bisimulation minimisation
mostly speeds up probabilistic model checking. In Proc. 13th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’07), LNCS 4424, pages 76–92. Springer, 2007.

14. M. Kuntz. Symbolic Semantics and Verification of Stochastic Process Algebras.
PhD thesis, Universität Erlangen-Nürnberg, Institut für Informatik 7, 2006.

15. M. Kuntz and M. Siegle. Deriving symbolic representations from stochastic
process algebras. In Process Algebra and Probabilistic Methods, Proc. PAPM-
PROBMIV’02, pages 188–206. Springer, LNCS 2399, 2002.

16. M. Kuntz, M. Siegle, and E. Werner. CASPA - A Tool for Symbolic Performance
and Dependability Evaluation. In Proceedings of EPEW’04 (FORTE co-located
workshop, pages 293 – 307. Springer, LNCS 3236, 2004.

17. W. H. Sanders and L. M. Malhis. Dependability evaluation using composed SAN-
based reward models. Journal of Parallel and Distributed Computing, 15(3):238–
254, 1992.

18. M. Siegle. Advances in model representation. In L. de Alfaro and S. Gilmore,
editors, Process Algebra and Probabilistic Methods, Joint Int. Workshop PAPM-
PROBMIV 2001, pages 1–22. Springer, LNCS 2165, September 2001.

