
A Combined Approach for Component-Based Software Design

C. R. Guareis de Farias, M. van Sinderen, L. Ferreira Pires, D. Quartel

Telematics Systems and Services, University of Twente
P.O. Box 217, 7500 AE, Enschede, The Netherlands

{farias, sinderen, pires, quartel}@cs.utwente.nl

ABSTRACT. Component-based software development
enables the construction of software artefacts by assem-
bling binary units of production, distribution and deploy-
ment, the so-called software components. Several ap-
proaches addressing component-based development have
been proposed recently. Most of these approaches are
based on the Unified Modeling Language (UML). UML
has been increasingly used in component-based develop-
ment, despite some shortcomings associated with this lan-
guage. This paper presents a methodology for the design
of component-based applications that combines a model-
based approach with a UML-based approach. This com-
bined approach tackles some of the limitations associated
with UML, allowing a better control of the design process.
Our combined approach is illustrated using some excerpts
from a case study carried out on a chat application.

Keywords. Software components, Component-based de-
sign, UML, AMBER.

1 INTRODUCTION

Component-based software development has emerged to
increase the reusability and portability of pieces of soft-
ware. Component-based development aims at constructing
software artefacts by assembling (software) components.
We define a component as a binary piece of software,
self-contained, customisable and composable, with well-
defined interfaces and dependencies.

Traditional object-oriented software development aims at
enabling the reuse of object type definitions (object
classes) at design and implementation levels. In contrast,
component-based development aims at enabling the reuse
of components at deployment level. Components represent
complete pieces of functionality that are ready to be in-
stalled and executed in multiple environments, provided
that a middleware platform that supports the execution of
the components is available.

Some design methodologies addressing component-based
development have been proposed recently. Most of them
are based on the Unified Modelling Language (UML), c.f.
[1, 5, 6, 7, 8]. UML [10] is a process-independent model-

ling language widely accepted in both academic and in-
dustrial settings. UML basically consists of a collection of
diagrams used to model a system under different and often
complementary perspectives.

Although UML has been increasingly used as the basis for
such approaches, it still has some drawbacks that hinder
its usage and effectiveness. So far, the support provided
by UML for component-based development is limited.
Both the UML component semantics and notation should
be improved [9, 11]. A major change in UML with this
respect is expected to occur with the release of the UML
2.0 specification, which is expected by the end of 2001.

The specification of complex behaviours using UML be-
haviour diagrams can be cumbersome [4]. These types of
diagram provide roughly three general kinds of constructs
to describe the relationship between states or activities:
enabling, interleaving (parallelism) and synchronisation.
Other types of relationship that would improve the model-
ling capabilities of UML, such as non-deterministic choice
and disabling, are not supported. Further, the specification
of complex interaction patterns using sequence diagrams
often leads to diagrams of poor legibility.

Finally, the use of UML to model the service provided by
an application and to decompose this service into a set of
components is usually informal and intuitive. Therefore, it
is difficult to formally assess whether that the achieved
decomposition in terms of components complies with the
required service.

This paper presents a methodology for the development of
component-based applications that combines a model-
based approach [13] with a UML-based approach [5, 6].
This combined approach aims at profiting from the advan-
tages of both approaches: the abstraction power and for-
mality associated with the use of an abstract architectural
modelling language, called AMBER, and the diversity of
concepts and public acceptance associated with UML. To
exemplify parts of our methodology we use some excerpts
from a case study on a simple chat application.

This paper is further structured as follows: section 2 intro-
duces AMBER; section 3 provides an overview of our

combined approach, while sections 4 to 6 detail it with the
help of a running example; section 7 discusses some re-
lated work; finally, section 8 presents some final remarks
and outlines some future work.

2 THE AMBER MODELLING LANGUAGE

This section introduces the formal modelling language
that forms the basis of our combined approach to compo-
nent design. This language is called Architectural Model-
ling Box for Enterprise Redesign (AMBER) [2, 12].

An AMBER model of a system consists of two separate
sub-models, viz., an entity model and a behaviour model.

Entity model

An entity model represents relevant system parts at a
given abstraction level and their interconnection. Two
concepts are used in an entity model, viz., entity and in-
teraction point.

An entity represents a system (part) that carries out some
function or behaviour. An entity may be decomposed into
smaller units, called sub-entities. An interaction point rep-
resents some mechanism, physical or logical, through
which an entity can interact with other entities or with its
environment. Consequently, an interaction point is shared
by two or more entities or by one or more entities and
their environment.

Figure 1 shows the graphical notation of the entity model
concepts. An entity is represented by a rectangle with cut-
off corners, while an interaction point is represented by an
ellipsis that overlaps with the entities that share the inter-
action point or by separated ellipses interconnected by a
line. Figure 1(a) depicts an entity E1 with a single interac-
tion point. Figure 1(b) depicts the decomposition of the
entity E1 into the sub-entities E2 and E3, all of them shar-
ing the same interaction point.

interaction point sub-entityentity

E1 E3E2

E1

(a) (b)

Figure 1. Entity model notation.

Behaviour model

A behaviour model represents the functionality or behav-
iour of each entity described in the corresponding entity
model. Three basic concepts are used in a behaviour
model, viz., action, interaction and causality relation.

An action represents an activity performed by a single
entity, while an interaction represents a common activity
performed by two or more entities. For simplicity reasons,

the term action is used to refer both to actions and to in-
teractions in the remaining of this section.

An action abstracts from how the result of the activity
being modelled is established. However, the result estab-
lished by an activity can be represented by attaching at-
tributes to the corresponding action. Attributes of informa-
tion, time and location represent values of information
established in the activity, the time moment at which the
activity is completed and the logical or physical location
where the activity takes place, respectively.

The occurrence of an action represents the successful
completion of an activity. In case an action occurs, the
same result is established and made available at the same
time moment and at the same location for all entities in-
volved in the activity, otherwise no result is established.

Figure 2 depicts our graphical notation of an action and an
interaction. An action (Figure 2a) is graphically repre-
sented as a circle (or ellipsis), while an interaction (Figure
2b) is graphically represented as a segmented circle (or
ellipsis), one segment for each interaction contribution.

(a) action

aaaa

(b) interaction

 ι : Nat | ι > 5
 τ : Time
 λ : IP

 ι : Nat | ι > 5
 τ : Time
 λ : IP

 ι : Nat | ι > 2
τ : Time
 λ : IP

a

Figure 2. Action and interaction.

The information (ι), time (τ) and location (λ) attributes are
represented within a textbox attached to the action. Con-
straints can be defined on the possible outcomes of the
values of ι , τ and λ (after the symbol ‘|’). In case of an in-
teraction, each involved entity can define its constraints,
such that the values of ι, τ and λ must satisfy all con-
straints, otherwise the interaction can not happen. In case
multiple values are possible for some attribute, a non-
deterministic choice between these values is assumed.

A causality relation is associated with each action, model-
ling the conditions for this action to happen in terms of the
occurrence or non-occurrence of other actions. An action
only occurs when its enabling condition is satisfied.

Two basic kinds of causality relation between two actions,
a and b, are the enabling relation, in which the occurrence
of a enables the occurrence of b, and the disabling rela-
tion, in which the occurrence of a disables the occurrence
of b, provided that b has not occurred yet. Furthermore, in
case of the absence of any causality relation between two
actions, these actions are independent (concurrent).

Basic causality relations can be composed using boolean-

like operators. They can also be supplied with additional
constraints, which further restrict the relation with condi-
tions on attribute values of preceding actions. A probabil-
ity attribute can also be added to each causality condition
to model the probability the action happens when the ena-
bling condition is satisfied.

Figure 3 shows some common action relations between
two or more actions. A trigger represents a special kind of
action which has its enabling condition is always satisfied.

a b

a b

concurrency
(independence)

a enables b

a disables b

a b

a or b enables c

a enables b or c

a and b enables c

a enables b and c

a

b

c

a

b

c

a

c

b

a

b

c

a

trigger

Figure 3. Common action relations.

AMBER provides a construct, called behaviour block,
which allows one to better structure behaviour. A behav-
iour block is graphically represented as a rectangle with
round corners. Similarly to entities, blocks can be decom-
posed into smaller units, called sub-blocks.

When actions connected through a causality relation are
placed in separate behaviour blocks, an exit and an entry
points are added at the block’s edge (depending on the
direction of the causality relation) to indicate that a condi-
tion in a behaviour block enables an action in the other
behaviour block.

Blocks can also be used to represent repeated and repli-
cated behaviours. A repeated behaviour indicates the oc-
currence of a similar behaviour over time, while a repli-
cated behaviour indicates that a number of similar behav-
iours are executed in parallel.

We exempt ourselves from discussing AMBER further in
this paper. Additional notational details to understand our
approach are provided throughout the paper as needed.

Tool support

AMBER is supported by an integrated toolkit called Test-
bed Studio [2]. The support provided by Testbed Studio
includes, a.o., support to visual representation of the mod-
els, analysis techniques (quantitative and functional), step-
by-step simulation of the models and documentation.

3 PROCESS OVERVIEW

Our approach identifies four abstraction levels for the
development of an application, viz., enterprise, system,
component and object.

The enterprise level aims at capturing the vocabulary and
other domain information of the system being developed.
This level provides the most abstract description of the
system being produced.

The system level delimits the system being developed
from its environment. The environment of a system con-
sists of any information system or human users that make
use of the services provided by the system itself as well as
other systems that provide some service used by the sys-
tem being developed.

The component level represents the system in terms of a
set of composed components. A component may be fur-
ther decomposed in sub-components. A composite com-
ponent is an aggregate of sub-components that, from an
external point of view, is similar to a single component. If
a composite component is part of the component composi-
tion, the design process of this component corresponds to
the design process of an isolated system, in which the
other components are part of the environment of this sys-
tem.

The object level defines the internal structure of (simple)
components. A component is structured using a set of re-
lated objects, which are implemented in a programming
language. The development process of a component at the
object level corresponds to traditional object-oriented
software development processes and therefore we refrain
from discussing it in detail in this paper.

Figure 4 depicts the layering structure of our approach.

The four abstraction levels are related to each other in
different ways. For example, the system level corresponds
to one possible mapping of the information captured at the
enterprise level. Different systems can be generated based
on the same information. The component level corre-
sponds to a refinement of the system level, in which the
system or a composite component is refined into a set of
components. The object level corresponds to a refinement
of the component level, in which each (simple) component
is refined into a set of objects.

We can also abstract from a set of objects to form a com-
ponent and abstract from a set of components to form the
system or a composite component. However, it is not al-
ways possible to abstract from the system to obtain the
complete description of the enterprise level because the
information present at the system level may correspond
only to a subset of the information at the enterprise level.

Domain Knowledge

Environment

System

Enterprise
Level

System
Level

Object Level

Component
Level

Mapping

Refinement Abstraction

Refinement Abstraction

Figure 4. Development using abstraction levels.

Besides structuring into abstraction levels, we also con-
sider different views at each one of these levels. Each
view offers a different perspective of the system being
developed. These perspectives are interrelated so that the
information contained in one view can partially overlap
the information contained in the others.

We identify three basic views, viz., structural, behavioural
and interactional. The structural view provides informa-
tion about the relations between concepts and/or the struc-
ture of entities and their interconnection. The behavioural
view provides information about the behaviour of each
entity in isolation, while the interactional view provides
information about the cooperative behaviour of the enti-
ties as they interact with each other. Both the behavioural
and the interactional views can be seen as dual views on
the same aspect, viz., behaviour.

4 ENTERPRISE LEVEL

The enterprise level captures the vocabulary and other
domain knowledge information related to the system be-
ing developed. The information is used both to communi-
cate with the future or intended users of the system and to
serve as the basis for delimiting the system with respect to
its environment.

Different sets of concepts may be captured at this level
according to the domain involved. For example, common
concepts usually captured at the enterprise level are ac-
tors, activities, goals, processes, information, support ser-
vices, etc. However, specific domains may require spe-

cific concepts, such as rules, policies and events.

The structural view at the enterprise level is captured us-
ing concept diagrams. A concept diagram consists of a
UML class diagram in which an object class represents a
concept and an association between classes represents a
relationship between these concepts. Often there is no
direct mapping between the identified concepts and their
possible implementations.

A glossary of terms is developed in parallel with the de-
velopment of the concept diagrams. The use of such a
glossary aims at creating and maintaining a standard
documentation of the concepts encountered in the domain
of the system. The glossary should be maintained and up-
dated as the development of the system continues.

While concept diagrams are useful to capture the struc-
tural relationship between concepts, these diagrams are
not so convenient to capture behaviour. Therefore, the
behavioural and structural views at the enterprise level are
captured using AMBER models.

AMBER can be used in two different ways: to capture
simple relationships between the identified activities and
to capture possible sequences of activities. The identified
activities are modelled as actions in AMBER, while any
piece of information used by an activity is modelled as the
information attribute of the corresponding actions.

Figure 5 depicts some AMBER models of the chat appli-
cation at the enterprise level. Figure 5a shows, on the left,
a model capturing the relationship between the actions
register and connect (choice, i.e., the execution of one
action disables the other and vice-versa). Figure 5a shows,
on the right, that a choice is made after the occurrence of
the action join among the actions send, receive, invite,
answ-inv and leave. Figure 5b shows two possible se-
quences of actions.

connect

register answ-inv

invite

receive

leave

send

join

connect join send leave disconnectinvite

register disconnectansw-invcreate

(a) relationships between activities

(b) sequences of activities

Figure 5. AMBER model of the enterprise level.

When expressing some possible sequences of actions in

AMBER, one should not be concerned with the amount of
sequences provided, but with the added value concerning
the understanding of the whole picture provided by each
new sequence.

5 SYSTEM LEVEL

At the system level we describe the service provided by
the application being developed. At this level we obtain a
clear definition of the boundary between the system and
its environment. External supporting services are identi-
fied at this level as well. These services are considered to
be part of the system environment.

The structural view at the system level is captured using
an AMBER entity model and a UML use case diagram.
An entity model is used to capture the static relationship
between the system and external supporting services,
while a use case diagram is used to organise the user func-
tional requirements.

To create an entity model at the system level, we map the
actors identified at the enterprise level onto entities. The
environment of the system being developed is mapped
onto entities as well. Interaction points are defined be-
tween the identified entities.

These entities are then mapped onto actors in a use case
diagram, while the activities identified at the enterprise
level are mapped onto use cases. Each activity can be
mapped to a separate use case or two or more related ac-
tivities can be combined in a same use case. Although the
description of a use case correspond to some behaviour, in
the structural level we are concerned with how these
pieces of behaviour relates to each other and with an asso-
ciated actor. Later, the behaviour described by each use
case forms the basis for capturing the behavioural and
interactional views.

Figure 6 shows the entity model of the chat application at
the system level. Two entities were identified: Chat Appli-
cation, representing the chat application itself, and Par-
ticipant, representing the environment of the chat applica-
tion. A single interaction point, ip1, between the two enti-
ties is defined.

Participant

ip1ip1

Chat Application

ip1ip1

Figure 6. Entity model of the system level.

Both the behavioural and the interactional views are ini-
tially captured using the behaviour model from AMBER.

The first step towards creating a behaviour model at the
system level is to represent the combined behaviour of the
identified entities as a whole. In this step we abstract from
the individual responsibilities of the entities while inter-
acting by only considering a set of integrated interactions
(modelled as actions) and the causality relations between
them. This combined behaviour offers the most abstract
representation of the service provided by the system and it
is called integrated perspective.

Figure 7 shows the integrated behaviour model of the chat
application at the system level. In this phase the actions
and causality relations identified at the enterprise level are
preserved and further combined.

create

answ-inv

joinjoin

disconnect

sendsend

inviteinvite

answ-invansw-inv

leaveleave

receivereceive

register

connect

entry
point

exit
point

repeated
behaviour

Figure 7. Integrated behaviour model at system level.

After describing the integrated perspective, we now con-
sider the individual responsibilities of each one of the
entities involved. At this point, we describe, for each en-
tity, its interaction contributions and the causality relations
between them. Such a description is called distributed
perspective.

Thus, at the distributed perspective each action present at
the integrated perspective is refined into an interaction
and each causality relation is distributed over the involved
entities. While describing the distributed perspective, we
refrain from capturing unnecessary details on how to use
the system or its internal structure. The internal behaviour
of entities representing the system environment is of no
further concern either.

The use of AMBER to model the behaviour of the appli-
cation being developed at the system level (integrated and
distributed perspectives) does not provide a clear separa-
tion between the behavioural and interactional views. In a
single diagram we capture the behaviour of each entity in
isolation plus the interactions between the entities. This
can pose an extra burden, especially when multiple enti-
ties are involved in relatively complex behaviours.

Therefore, we suggest the use of UML diagrams to com-
plement both the behavioural and interactional views. To

complement the behavioural view we suggest the use of
activity diagrams, while to complement the behavioural
view we suggest the use of (non-standard) package se-
quence or collaboration diagrams. Package sequence and
collaboration diagrams are not explicitly present in the
UML notation guide nor supported by most UML tools,
but they are allowed according to the UML metamodel
[7].

Activity diagrams can be used to represent how the inter-
actions relate to each other in the scope of an entity, while
a package sequence/collaboration diagram can be used to
represent the relationship between interactions in general.

To help capturing the interactional view we make use of
some user-supplied usage scenarios. Each scenario de-
scribes different situations in which the application is used
and usually involves the execution of several use cases.

6 COMPONENT LEVEL

The component level represents the system being devel-
oped in terms of a set of interconnected components. A
component provides access to its services via one or more
interfaces. These services usually can be customised by
setting up some properties of the component.

When building a cooperative system from components, we
do not need to know how these components are internally
represented as objects. Actually, a component does not
have to be necessarily implemented using an object-
oriented technology, although this technology is generally
recognised as the most convenient way to implement a
component.

Components can be off-the-shelf, adapted from similar
components or constructed from scratch. So far, most of
the effort spent on building component-based applications
concentrates on building new components. However, the
more mature and widespread this technology becomes the
more likely it is that this effort will move towards adapt-
ing similar components and reusing existing ones [3].

The structural view of an application at the component
level is captured using AMBER entity model. This entity
model corresponds to a refinement of the entity model
captured at the system level, in which entities are refined
into sub-entities, representing components, and interaction
points are added to connect these entities. The entity
model at this level is used to represent the static relation-
ship between the identified components themselves and
between the component and the application environment.

The UML use case diagram identified at the system level
may also be refined and split among the identified compo-
nents, such that these components correctly support the
use cases. However, there is no rule of thumb on how to
split and assign use cases to components. A good practice

is to keep similar functionality in a single component and
assign distinct functionality to separate components. Al-
though similarity and distinction are subjective terms,
sometimes it suffices to rely on the individual judgement
and experience of the application designer. In case a use
case is likely to be supported by two or more components,
it is possible that this use case is too complex and that it
should be refined in multiple simpler use cases.

The behaviour modelling (behavioural and interactional
views) of the application at the component level follows
an approach similar to the system level. Initially, both the
behavioural and the interactional views are captured using
AMBER behaviour model.

For each identified entity at the structural view, a behav-
iour is assigned. However, we are now interested in re-
vealing not only the external (observable) behaviour but
also the internal details of the system, i.e., how the
interactions between components are refined and how
actions are inserted to represent the activities performed
by the components that form the system.

Similarly to the system level, the use of AMBER to model
the behaviour of the application at the component level
does not provide a clear separation between the behav-
ioural and interactional views. Therefore we also use
UML diagrams to complement the information captured
by these views at the component level.

To complement the behavioural view we suggest the use
of activity diagrams to represent how the interactions and
actions of each component relate to each other in the
scope of an entity. To complement the behavioural view
we suggest the use of package sequence or collaboration
diagrams to represent the relationship of the interactions
between the identified components.

If composite components are involved, it may be neces-
sary to produce several refinements of the components,
each producing a detailed description of the components
involved and their relationship. For example, in the design
of the chat application at the component level we initially
identified two composite components, viz., a client com-
ponent and a server component.

Figure 8 shows parts of the behaviour model of the server
component. Two sub-behaviours are depicted: on the left
a sub-behaviour representing the connection management
of s participant and on the right a sub-behaviour represent-
ing the management of invitations. Figure 8 shows internal
details (activities modelled as actions in behaviour blocks)
and how the interactions are refined. While at the system
level the answer to an invitation is represented as a single
interaction, at the component level this interaction is split
in two separate interactions, one representing the notifica-
tion and another representing the answer itself.

check for invitation

Server

inv_respinv_notifinvite

add invitation

check for invitation remove invitation

connect register disconnect

remove participant

add participant

Figure 8. Server component behaviour model.

In the behaviour model of the client and server compo-
nents, the identified sub-behaviours supply some clues on
how the structure of the next component level can be de-
fined. Each sub-behaviour is assigned to a different com-
ponent (similar sub-behaviours may also be assigned to a
single component). At each refinement of the component
level the internal details are further revealed and the inter-
actions are further refined. A detailed account of behav-
iour refinement is presented in [12,13].

Component modelling

In order to model the behaviour of a component using
AMBER, including its interface, we need to establish
some conventions, which are not part of AMBER.

A component may have one or more interfaces through
which its services become available. However, each inter-
face should be contained in a separate behaviour block.
An interface contains operations. The execution of an op-
eration is modelled as interactions. We distinguish be-
tween two different types of operations, viz., an invoca-
tion, which returns a value to the invoking component,
and an announcement, which does not.

An invocation is modelled as a sequence of two interac-
tions, viz., an invocation request and an invocation return.
Optionally, you may have a third interaction representing
the occurrence of an exception during the invocation
process. An announcement is modelled as a single interac-
tion between two components. A second (optional) inter-
actional may represent the occurrence of an exception
during the announcement process. In both cases, the oc-
currence of an exception indicates that the operation could
not be completed successfully.

Figure 9 depicts the different types of operations between
components C1 and C2. Figure 9a represents an invoca-
tion operation, while Figure 9b represents an announce-
ment operation. The interaction modelling an exception in
Figure 9b, although enabled, may not actually happen.
This is represented by annotating the enabling relation
with a question mark.

The following convention is used to model an invocation
operation: the keywords invocation, return and exception
should be added to the name of the operation in the inter-

action identifiers. These keywords represent the invoca-
tion, return and exception interactions, respectively. To
model an announcement operation the keyword announce-

ment should be added to the name of the interaction.

C1

exceptionexceptioninvocationinvocation returnreturn

C2

invocationinvocation returnreturn exceptionexception

C1

exceptionexceptionannouncementannouncement

C2

announcementannouncement exceptionexception

(a) invocation (b) announcement

?

?

Figure 9. Interface operations.

Input parameters are modelled as structured information
attributes of the invocation interaction, while output pa-
rameters are modelled as structured information attributes
of the return interaction. To model the return value of the
operation itself, we attach the keyword returnvalue to an
attribute in the return interaction.

To model the occurrence and notification of events we
also have a special notation, which is similar to an an-
nouncement operation. The keywords event announcement
or event notification are added to indicate that the interac-
tion corresponds to an event. The keyword event an-

nouncement indicates that a component is producing an
event, while the keyword event notification indicates that a
component is consuming this event.

The subscription to an event by a consumer component
can be modelled as an invocation operation. This compo-
nent passes in the invocation interaction a reference to one
of its interfaces at which the occurrence of the event
should be notified. For simplification purposes, we ab-
stract from the subscription process and consider only the
announcement and notification of the event itself.

In Figure 9 we also abstract from the platform supporting
the communication between both components. ORB me-
diated communication modelling is discussed in [13].

7 RELATED WORK

The Unified Process [8] is a software development proc-
ess based on UML. However, the Unified Process is not
simple, on the contrary, it is very complicated. Actually,
the Unified process is not really a development process
but more like a process framework, since it describes best
practices in software development but still has to be spe-
cialised to be suitable for different projects. Therefore, it
lacks systemacticness and prescriptiveness. Nevertheless
the Unified Process is very flexible and scalable, having
being largely used in the software industry.

Another major problem faced by the Unified Process is its
limited view of components. The Unified Process is not
really a component-based software development process,
but rather the use of components in this methodology is an
afterthought, since it prescribes the development of a set
of objects followed by their grouping into components.

Catalysis [1] is another complex software development
process based on UML. Similarly to the Unified Process,
Catalysis is much like a process template, which can be
tailored according to the situation. Thus, Catalysis also
lacks prescriptiveness. Nevertheless, Catalysis is flexible
and scalable, being also very popular among software
developers.

A major benefit from Catalysis relies on its explicit use of
components. However, being a broad software develop-
ment process, Catalysis is not completely component-
oriented.

8 FINAL REMARKS

This paper presented a combined approach for the design
of component-based applications. According to this ap-
proach, the development of an application is organised
using four different abstraction levels. At each level, dif-
ferent views are used to capture structural, behavioural
and interactional aspects of the application under devel-
opment. These views seem to be the most relevant ones
for application design. Still, we can have other views if
necessary, such as test, functional or deployment views.

Our development process is not so generic and complete
as Unified Process and Catalysis, however, our methodol-
ogy is simpler. Further, our combined methodology does
not rely exclusively on UML and therefore is not sub-
jected to the shortcomings of this language if compared to
other methodologies.

The use of the formal language AMBER to complement
UML diagrams provides two major advantages. First, the
concepts present in AMBER are simple, intuitive and
close to the concerns of an application designer at the
early stages of the development process. AMBER offers a
high abstraction power and different constructs to repre-
sent behaviour. Second, the use of a formal modelling
language enables a number of extra design activities, such
as analysis, verification and simulation, to be carried out
in parallel with the design process itself. These activities
enhance the quality of the design and allow the detection
and solution of problems as early as possible.

References

1. D’Souza, D. F. and Wills, A. C.: Objects, Compo-

nents and Frameworks with UML: the Catalysis Ap-
proach. Addison Wesley, USA, 1999.

2. Eertink, H., Janssen, W., Oude Luttighuis, P., Teeuw,
W. and Vissers, C.A.: A Business Process Design
Language. In 1999 World Congress on Formal Meth-
ods (FM’99), Vol. I., Lecture notes in Computer Sci-
ence (1708), Springer, pp. 76-95, 1999.

3. Grasso, M.P.: Distributed component systems: the
next new computing model. Application Development
Trends, 6(11), pp. 43-52, 1999.

4. Guareis de Farias, C.R., Diakov, N. and Poortinga,
R.: Analysis of UML. Amidst technical report,
AMIDST/WP1/N006/V04, 1999.

5. Guareis de Farias, C. R., van Sinderen, M., and
Ferreira Pires, L.: A systematic approach for compo-
nent-based software development. In Proceedings of
the Seventh European Concurrent Engineering
Conference (ECEC 2000), pp. 127-131, 2000.

6. Guareis de Farias, C.R., Ferreira Pires, L. and van
Sinderen, M.: A component-based groupware devel-
opment methodology. In Proceeding of the 4th Inter-
national Enterprise Distributed Object Computing
Conference (EDOC 2000), pp. 204-213, 2000.

7. Hruby, P.: Structuring Design Deliverables with
UML. In Proceedings of UML'98 International
Workshop, pp. 251-260, 1998.

8. Jacobson, I., Booch, G. and Rumbaugh, J. The unified
software development process. Addison Wesley,
USA, 1999.

9. Kobryn, C.: UML 2001: a standardization odyssey.
Communications of the ACM, 42(10), 29-37, 1999.

10. Object Management Group: Unified Modeling Lan-
guage 1.3 specification, 1999.

11. Object Management Group UML Revision Task
Force: OMG UML v. 1.3: Revisions and Recommen-
dations, 1999. Available at http://www.omg.org.

12. Quartel, D.: Action relations: basic design concepts
for behaviour modelling and refinement. PhD thesis,
University of Twente, Enschede, Netherlands, 1998.

13. Quartel, D.A.C., van Sinderen, M.J., and Ferreira
Pires, L.: A model-based approach to service crea-
tion. In Proceedings of the 7th International Work-
shop of Future Trends in Distributed Computing
(FTDCS’99), pp. 102-110, 1999.

