
Towards Model Structuring Based
on Flow Diagram Decomposition

Arend Rensink
Department of Computer Science,

University of Twente
P.O. Box 217, 7500 AE, The Netherlands

a.rensink@utwente.nl

Maria Zimakova
Department of Computer Science,

University of Twente
P.O. Box 217, 7500 AE, The Netherlands

m.v.zimakova@utwente.nl

ABSTRACT
The key challenge of model transformations in model-driven
development is in transforming higher-level abstract models into
more concrete ones that can be used to generate implementation
level models, including executable business process
representations and program code. Many of the modelling
languages (like UML Activity Diagrams or BPMN) use
unstructured flow graphs to describe the operation sequence of a
business process. If a structured language is chosen as the
executable representation, it is difficult to compile the
unstructured flows into structured statements. Even if a target
language structure contains goto-like statements it is often simpler
and more efficient to deal with programs that have structured
control flow to make the executable representation more
understandable.

In this paper, we take a first step towards an implementation of
existing decomposition methods using graph transformations, and
we evaluate their effectiveness with a view to readability and
essential complexity measures.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
flow charts, state diagrams.

General Terms
Algorithms, Management, Measurement, Performance, Design,
Languages, Theory.

Keywords
Model transformations, graph transformations, model structuring,
flow diagram decomposition, data flow graph, complexity
measure.

1. INTRODUCTION
Over the last few years, a new option has evolved to define
solutions in software industry: Model-Driven Development
(MDD). The key challenge of model transformations in MDD is

in transforming higher-level abstract models into more concrete
ones that can be used to generate implementation level models,
including executable business process representations and
program code. With this trend, the decomposition of the models
into structured elements is of increasing importance.

In the large, a number of motivations can be given to justify
the implementation of this work:

 Imagine a dynamic behaviour of business process is
described as an unstructured flow graph (which can
represent, by-turn, a UML activity or BPMN diagrams). If
a structured language is chosen as the target executable
representation, it is difficult to transform the unstructured
flows into structured statements. This problem is analyzed,
for instance, in [6] and attempts to compile UMLA to
BPEL programs; the last issue is discussed, for instance, in
[16]. The main task of our graph transformations is to
translate the unstructured goto-like statements into well-
structured statements in the target language.

 The second very important reason for the presented work is
to improve software reliability and readability – making
programs less error prone and easier to understand.
Because understanding of behavior is an essential
prerequisite to effective program development and
modification, programmers are forced to devote substantial
time to this task [3].

There exists today a number of variants on the idea of well-
structured models. A lot of restructuring methods were done in
the context of flow diagram decomposition. It is commonly
agreed that a natural interpretation of flow diagrams is in terms of
graphs – essentially, just nodes with connecting edges.
Consequently, a most natural implementation of flow diagram
decomposition methods is by graph transformations.

The aim of this work is to bridge the gap between formalism of
the existing flow diagram decomposition methods and practical
implementation in terms of graph transformations to use it for
modern programming environments including executable business
process languages.

The remainder of this paper is structured as follows: after
providing the basic definitions to set the stage in Section 2, we
discuss the flow graph decompositions and complexity measure
problem in Section 3. We consider these to be the heart of our
contribution. In Section 4 we implement those methods with
graph transformations, employing the graph-transformation tool
Groove [14] for rule execution. Finally, in the conclusion (Section
5) we come back to the above considerations, evaluate our results
and discuss plans for future work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
BM-MDA’09, June 23, 2009, Enschede, the Netherlands
Copyright © 2009 ACM ISBN 978-1-60558-503-1/ 09/06... $10.00

2. BASIC NOTIONS

Graphs and flow graphs. One of the core concepts of this paper
is that of graphs. We start by repeating the usual definition of a
graph.

Definition 1. A labeled directed graph is a tuple G = (N, E, λ)
where

 N is a finite nonempty set called a set of nodes;
 E ⊆ N × Λ × N is a set of edges where Λ is a finite set of

node and edge labels;
 λ is a labeling function λ: N ∪ E → Λ.

Given e = (v, a, w) ∈ E, we denote src(e) = v, tgt(e) = w and a =
λ(e) for its source, target and label, respectively. A path in a
graph G is an alternating sequence of nodes and edges beginning
and ending with nodes such that for each i ≥ 1 we have vi ∈ N, ei
∈ E, src(ei) = vi and tgt(ei) = vi+1.

Let G be a labeled directed graph as above with a labeling
function λ: N ∪ E → Λ, then a path p = {v1, e1, v2, e2, …, vk−1, ek−1,
vk} in G can be represented by the word from the alphabet Λ as
following:

λ(p) = λ(v1)λ(e1)λ(v2) ... λ(vk−1)λ(ek−1)λ(vk).

We call this the word representation of p.

Definition 2. A flow graph Φ is a triple (G, s, t), where

 G = (N, E, λ) is a connected labeled directed graph;
 Node s ∈ N is the unique start node such that there are

no incoming edges to s in G.
 Node t ∈ N is the unique terminal node such that there

are no outgoing edges to t in G.

Figure 1 shows the simple example of a flow graph graphical
representation, which will be used throughout this paper, because
it contains most of the features needed to explain the
transformation algorithms.

There are two most common types of nodes in a flow graph:

 The functional type (function) which represent some
operations (semantically described by label λ(n)) to be
carried out on an object v ∈ N.
 The predicative type (predicate) which do not operate

on an object but decide on the next operation to be carried
out, according to whether or not a certain property of v ∈
N.

In this paper we distinguish functional and predicative node types
by count of their leaving edges as follows: the functional box can
has just only one leaving edge (with next label for our example in
Figure 1) and the predicative box can has just only two leaving
edges (with true and false labels for our example in Figure 1).

The different node types that are supported by flow graphs,
together with their relationships, are shown in Figure 2, where we
appeal to the reader’s intuition about the meanings of this graph.

Let Φ = (G, s, t) be a flow graph and p be some path in G from
the start node s to the terminal node t. Then we will say that p is a
full path in the flow graph Φ.

Definition 3. Let p be a full path in a flow graph Φ = (G, s, t).
Then an execution sequence Seq(p) is the word representation of
p.

For instance, sequence (s next a true a1 next b next d false d2 next
t) is an execution sequence for our example in Figure 1.

Now, let Path be a set (maybe infinite) of all possible full paths
in the flow graph Φ = (G, s, t) in the light of the discussion above.
The word representation of Path thus regarded as a language
Lang(Φ) = λ(Path) defined over the alphabet Λ.

Definition 4. Two flow graphs Φ1 and Φ2 are equivalent (denote
it as Φ1 ∼ Φ2) if they define the same languages: Lang(Φ1) =
Lang(Φ2).

Algebra of flow diagrams. A flow diagram is a graphical
representation of the flow graph which is suitable for representing
programs, Turing machines, etc. Diagrams are usually composed
of boxes connected by directed lines.

Following [2], we can distinguish three elementary types of flow
diagrams Π, Δ and Ω which denote, respectively, the diagrams of
Figure 3 (a)-(c) and the constructions ‘sequence’, ‘if-then-else’
and ‘while’ in programming languages. Let us call these four
elementary types Γ = {Π, Δ, Ω} base subdiagrams.

For our subsequent definitions we also use the notions of a
signature and algebra, as defined in [5]. The ingredients of these
definitions that are important here are:

 A collection of data sorts Sort.
 A collection of carrier sets Data, partitioned into

subsets for each of the sorts in Sort.
 A mapping par: Oper → Sort+ that associates to every

operation op ∈ Oper a non-empty string of sorts.

Note that an operation op with no parameters represents a
constant value.

Let us assume a universe Θ of arbitrary flow graphs, a set θfunc ⊂
Λ of all functional node labels and a set θpred ⊂ Λ of all
predicative node labels.

Definition 5. Let Φ = (G, s, t) be an arbitrary flow graph where G
= (N, E, λ) and N' = N \ {s, t}. A flow graph substitution is a
mapping Sub: N' → Θ that maps each node v ∈ N' to a flow
graph Φv = (Gv, sv, tv) where Gv = (Nv, Ev, λv), and obeys the

Figure 2. The types in the flow diagram

Figure 1. Flow graph example

(a) Π(a, b) (b) Δ(α, a, b) (c) Ω(α, a)

(d) Seq construction (e) IfThenElse construction (f) While construction

Figure 3. Diagrams of Π(a, b), Δ(α, a, b), Ω(α, a) and respective syntax tree constructions

following rules:

 Φ[Φv / v] = (GSub, sSub, tSub) is a flow graph, GSub =
(NSub, ESub, λSub), sSub = s and tSub = t;
 NSub = (N \ v) ∪ (Nv \ {sv, tv}) ;
 ESub = (E \ EDel) ∪ (Ev \ (Ev

Del) ∪ (Es
Ins ∪ Et

Ins)
where

− EDel = {e ∈ E: src(e) = v or tgt(e) = v},
− Ev

Del = {ev ∈ Ev: src(ev) = sv or tgt(ev) = tv},
− Es

Ins = {eSub ∈ ESub | ∃ ev ∈ Ev: src(ev) = sv, tgt(ev)
= tgt(eSub), λ(ev) = λ(eSub);
∃ e ∈ E: src(e) = src(eSub), tgt(e) = v},

− Et
Ins = {eSub ∈ ESub | ∃ ev ∈ Ev: src(ev) = src(eSub),

tgt(ev) = tv, λ(ev) = λ(eSub);
∃ e ∈ E: src(e) = v, tgt(e) = tgt(eSub)}.

A substitution Sub can be extended to the whole flow graph as

Φ[Sub] = Φ [Φv1 / v1] [Φv2 / v2] … [Φvn / vn].

Let us define the signature Sig = (Sort, Oper, par) for the flow
graphs. We have sorts fg, pred and func, representing the arbitrary
flow graphs, predicative nodes and functional nodes, respectively.
We also define a constant empty for the empty flow graph and
operation symbols for the elementary flow graphs (for each
functional node) and the base subdiagrams Γ = {Π, Δ, Ω}:

Sig =
Sort: fg, pred, func;
Oper: empty, elem, Π, Δ, Ω;
par: empty:→ fg,

elem: func → fg,
Π: fg fg → fg,
Δ: pred fg fg → fg,
Ω: pred fg → fg.

Then the implementation of the signature Sig for flow graphs is
the following algebra FlowGraph:

Dfg = Θ,
Dfunc = θfunc,
Dpred = θpred,
fempty = ε ∈ Θ,
felem : Dfunc → Dfg,

 a a {(N, E, λ) | N = {s, v, t}, E = {(s, l, v), (v, l, t)},
 λ(v) = a}

fΠ : Dfg × Dfg → Dfg,
 (Φa, Φb) a Π[Φa / va][Φb / vb]

fΔ : Dpred × Dfg × Dfg → Dfg,
 (α, Φa, Φb) a Δ[Φa / va][Φb / vb]

fΩ : Dpred × Dfg → Dfg,
 (α, Φa) a Ω[Φa / va].

Definition 6. A flow diagram Φ = (G, s, t) where G = (N, E, λ) is
strongly decomposable (or well-formed in terms of [6] and [13]) if
there exists an expression exp in the Sig-algebra FlowGraph
such that FlowGraph[[exp]] ≅ Φ.

Together with a strong decomposition, [2] considered another
decomposition which is obtained by operating on an equivalent
strongly decomposable flow graph. Formally, a flow graph Φ is
weakly decomposable if Φ ∼ Φ′ for some strongly decomposable
flow graph Φ′.

Algebra of syntax trees. The other data structure for representing
programming language constructs by compilers, converters and
transformation tools is a tree structure known as an abstract
syntax tree [11].

In terms of graph theory, an abstract syntax tree is a tree, that is to
say, an acyclic graph with a single root node, connecting nodes
and leaf nodes. Then, similarly to the graph definition above, we
can define a syntax tree as follows.

Definition 7. An abstract syntax tree, or just syntax tree, is a
tuple T = (GT, root) where

 GT = (NT, ET, λT) is an acyclic connected labeled
directed graph;
 root ∈ NT is a single root node;
 NT = Nn ∪ Nl such as Nn ∩ Nl = ∅ where Nn is a set of

internal nodes and Nl is a set of leaf nodes.

Each node of the syntax tree in our case should denote a
construction occurring in the flow diagram. For instance, the base
subdiagrams in Figure 3 (a)-(c) may be denoted by constructions
Seq, IfThenElse and While n Figure 3 (d)-(f), respectively.
The different node types that are supported by syntax trees,
together with their relationships, are shown in Figure 4.

Similarly to the algebra FlowGraph above, we can implement a
signature Sig with a different algebra SyntaxTree on a set ϑ
of syntax tree constructions {Seq, IfThenElse, While}.

Let us consider now a representation of a flow graph Φ as a
syntax tree T, called a syntax tree decomposition.

Definition 8. A syntax tree decomposition of a weakly
decomposable flow graph Φ = (G, s, t) is a following morphism:

STD: Φ a {SyntaxTree[[exp]] | FlowGraph[[exp]] ≅ Φ′ ∼ Φ}

where Φ′ = (G′, s, t) is an strongly decomposable flow graph
equivalent to Φ.

3. FLOW DIAGRAM DECOMPOSITION
In this section we consider the structuring problems imposed by
our common example. The first problem is a very complicated
graph structure of the flow diagram. One of the decomposition
approaches to solve that kind of problem was provided in [2]. We
discuss details of this approach in Section 3.1. The main flow
diagram also has one meaningful (more than one node) strongly
connected component (SCC); therefore we can improve the
decomposition quality applying the method of [13]. The
application of this algorithm as a part of the general approach is
discussed in Section 3.2. The complexity measure to evaluate the
advantage of different methods is considered in Section 3.3 and
some concrete implementation results are presented in Section 4.

A concise review of many of other results developed in this field
has been prepared in [7]. We also come back to that discussion in
the closing remarks about future work in Section 5.

3.1 Base subdiagram decomposition
The set of definitions introduced in the previous section is within
the scope of the existing graph theory. In this section, we
introduce a way to enrich the usual definitions, and so formalize
the concepts of flow graph decomposition.

The preliminaries of Böhm-Jacopini method [2] were presented in
Section 2. In addition to three base subdiagrams Π, Ω and Δ, they
introduced three new functions denoted by T, F, K, and a new
predicate ω which define a behavior of auxiliary boolean
variables set.

The effect of the first two functions T and F is to create a new
boolean variable with value true or false, respectively, and the
function K deletes the last boolean variable. The predicate ω is
verified or not according to whether the last boolean variable
value is true or false; the value of the predicate ω is true iff the
last boolean variable value is true.

Recall that if Path is a set of all possible full paths in the flow
graph Φ, then the word representation of Path can be regarded as

a language Lang(Φ) defined (in the extended case) over the
alphabet Λ ∪ {T, F, K, ω}. Let the node types and their
relationships be as it shown in Figure 2.

Then we can define a ‘satisfiability’ function Sat: Lang(Φ) →
Lang*(Φ), where Lang*(Φ) = Lang(Φ) ∪ {ε}, as following: for
all words w = (x1 x2 … xi … xj … xn) ∈ Lang(Φ) where xk ∈ Λ ∪
{T, F, K, ω}, k ∈ [1, n]

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

ω∉−+∈∀
∈

ω=∈
<−∈∃

= +

otherwise
};,,,{:]1,1[

and}~{\},{
;};,{

:],2,2[, ifε

)(1

w
KFTxjik

xfalsetruex
xFTx

jinji

w

k

ij

ji

Sat

where .
⎪⎩

⎪
⎨
⎧

=
=

=
otherwise

;if
;if

~

x
Fxfalse
Txtrue

x

Therefore the language Sat(Lang(Φ)) denotes a set of all full
path word representations in the flow graph Φ that satisfy our
definitions of new functions T, F, K and predicate ω.

Let us denote a function Restrict: Lang*(Φ) → Lang*(Φ) \
{T, F, K, ω} as following: for all words w = (x1 x2 … xi–1 xi xi+1
xi+2 … xn) ∈ Lang*(Φ) where xj ∈ Λ, j = 1, 2, … i–1 , i+1, …, n
and xi ∈ {T, F, K, ω}

Restrict(w) = (x1 x2 … xi–1 xi+2 … xn).

Then a language L̅a̅n̅̅g̅̅̅̅̅(Φ) = Restrict(Sat(Lang(Φ))) is a
restricted language of the flow graph Φ over the alphabet Λ.Then
we can extend the definition of flow graph equivalence.

Definition 9. Two flow graphs Φ1 and Φ2 extended by functions T,
F, K and predicate ω are equivalent if they define the same
restricted languages, that is L̅a̅n̅̅g̅̅̅̅̅(Φ1) = L̅a̅n̅̅g̅̅̅̅̅(Φ2).

In the light of this discussion above the definition of weak
decomposition can be extended as a decomposition which is
obtained by operating on an equivalent strongly decomposable
extended flow graph.

Theorem 1. For any flow graph Φ1 there exists (at least) one
equivalent strongly decomposable flow graph Φ2 extended by the
functions K, T, F and predicate ω; in other words, any flow graph
is weakly decomposable.

The proof of the theorem and the decomposition algorithm is
based on the flow diagram classification represented in Figure 5
(a)-(c). The equivalent strongly decomposed flow diagrams of
type I and II are shown in Figure 6 (for more details see [14]).

3.2 SCC decomposition
Peterson et al. present the algorithm enabled to improve
characteristics of Böhm-Jacopini method in case if flow graph
consists of strongly connected components with multiple entry
points [13].

Theorem 2. Every flow diagram can be transformed into an
equivalent strongly decomposable (well-formed) flow diagram by
node duplication (proof see [13]).

Figure 4. The types in the syntax trees

In the proof of this theorem the authors presented the algorithm
that examines strongly connected components for multiple entry
points and removes extra entry points by node duplication.

Let us come back to our main example in Figure 1 where nodes b,
c, d and d1 form a strongly connected component, and b and c are
multiple entry nodes. If b is chosen as the entry node and c is
duplicated, the well-structured flow diagram with the extended
flow graph shown in Figure 7 (d) results. This turns out to be the
better choice because this flow graph is intuitively ‘better’ than
the flow graph in Figure 7 (a).

But if c is chosen as the entry node and b is duplicated, some
more duplicating steps are necessary, and after four steps we can
obtain the same flow graph as in Böhm-Jacopini method shown in
Figure 7 (a), as well as three different flow graphs not shown
here.

The fact that there are many variants of equivalent flow graphs,
and some of them are ‘better’ than another, brings us to the issue
of complexity measuring presented in the next section.

3.3 Complexity measuring
Maintenance typically requires more resources than new software
development. For years researchers have tried to understand how
programmers comprehend programs. The literature provides two
approaches to comprehension: cognitive models that emphasize
cognition by what the program does (a functional approach) and a
control-flow approach which emphasizes how the program works.
A modern state of the art of this direction is reflected in the
review [3].

A well-known and often used complexity measure was proposed
by McCabe in [10].

Definition 10. The cyclomatic number v(Φ) of flow graph Φ with
n nodes, e edges, and p connected components is

v(Φ) = e – n + 2p.

In addition, McCabe proposed a method of measuring the
"structuredness" of a program as follows.

Let a decomposition degree m(Φ) of a flow graph Φ be a number
of substitutions Φvi

 , i = 1, …, n, such that Φvi
 ∈ Γ \ {Π}. Then

Definition 11. The following definition of essential complexity
ve(Φ) is used to reflect the lack of structure:

ve(Φ) = v(Φ) – m(Φ).

In the large, we propose to measure a full complexity of the flow
diagram as follows:

Definition 12. Let v(Φ) be the cyclomatic number, ve(Φ) - the
essential complexity number and vd(Φ) - the number of duplicated
nodes in a flow graph Φ. Then the following defines the full
complexity V(Φ):

V(Φ) = [v(Φ) + vd(Φ)] × ve(Φ).

This formula stresses that the full complexity of a flow diagram is
equal to the summation of its cyclomatic number and number of
duplicates. The multiplication dictates that the full complexity
and essential complexity of a flow diagram must be in the same
order of magnitude.

Let us illustrate all of that complexity measuring by our main
example shown in Figure 1. The initial flow diagram contains two
predicates, therefore v = 3, ve = 3, vd = 0 and V = (3 + 0) × 3 = 9.
If we apply the straight Böhm-Jacopini method the final flow
diagram shown in Figure 7 (a) has v = 6, ve = 1, vd = 4 and V = (6
+ 5) × 1 = 11. The ‘best choice’ of SCC method represented in

(a) Transformation of a type I diagram (b) Transformation of a type II diagram

(a) Structure of a type I diagram

(b) Structure of a type II diagram

(c) Structure of a type III diagram

Figure 5. Three types of flow diagrams

Figure 6. Transformation of a type I and type II diagrams

Figure 7 (b) has v = 4, ve = 1, vd = 1 and V = (4 + 1) × 1 = 5. Other
four flow graphs obtained by SCC method have V = 6, V = 11, V
= 12 and V = 12, respectively.
Hereby, the introduced full complexity measure V reflects an
intuitive notion of readability and enables us to compare the final
syntax trees and minimize their complexity.

4. GROOVE IMPLEMENTATION
We implemented techniques described in Section 3 within the
Groove (see [5], [9], [14]) framework, a standard tool for graph
transformations. This allowed a more thorough exploration of

more examples and for a qualified judgment on practical
scalability.

The flow diagram decomposition rules construct a syntax tree by
contracting and transforming a flow diagram. In this
transformation process, syntax tree elements are introduced to the
flow diagram and flow diagram elements are contracted
(iteratively) to one node. Our flow diagram decomposition
approach consists of following issues:

 Flow diagram and syntax trees. On the first step of our
transformations we copy the initial flow diagram Φ to
create the same structure for the syntax tree T.

begin
 if a then begin

 a1;
 var_bool := true;
 repeat
 b;
 if d then begin
 d1; c;
 var_bool := false;
 end else
 var_bool := true;
 until var_bool;
 end else begin
 a2;
 var_bool := true;
 repeat
 c; b;
 if d then begin
 d1;
 var_bool := false;
 end else
 var_bool := true;
 until var_bool;
 end;
 d2;
end.

(a) Böhm-Jacopini
decomposition

(b) The syntax tree decomposition of
graph (a) with V = 11

(c) The text code representation of
the syntax tree (b)

begin
if a then
 a1;
else begin
 a2;
 c;
end;
var_bool := true;
repeat
 b;
 if d then begin
 d1;
 c;
 var_bool:= false;
 end else
 var_bool:= true;
until var_bool;
d2;

end.

(d) Decomposition using
SCC method

(e) The syntax tree decomposition of
graph (d) with V = 5

(f) The text code representation of
the syntax tree (e)

Figure 7. Two strongly decomposable (well-formed) extended flow graphs equivalent
to the flow graph in Figure 1, respective final syntax trees and text code representations

 Contraction rules. For each type of elementary flow
diagrams Π, Ω and Δ, we design one flow diagram
contraction rule that introduce the necessary syntax tree
elements and contracts elementary flow diagram to one
node.

 Decomposition rules. The flow diagram decomposition
process operates top-down, starting from the root-node of
the flow diagram under construction and choosing an
appropriate type of flow diagram as was discussed in
Section 3.1.

 SCC rules. To improve readability of the flow diagrams,
we also use strongly connected component (SCC)
decomposition rules as it was discussed in Section 3.2.

 Bottom-up and top-down decomposition. In general, the
flow diagram contraction and decomposition process
operates in both directions: while an extraction of
elementary flow diagram is possible, we are applying one
of contraction rules and have a bottom-up process;
otherwise we are applying one of decomposition rules and
have a top-down decomposition.

 Syntax trees. On the last step of our transformation we
delete the contracted flow diagram elements and get a final
syntax tree.

Unfortunately, we cannot explain the precise workings of the
Groove implementation in the available space; however, the rules
and some example cases are available at [15] for the reader to try
out.

The example of the final syntax tree for the straight Böhm-
Jacopini method applied to the initial flow diagram in Figure 1 is
shown in Figure 7 (b) and has v = 6, ve = 1, vd = 4 and V = (6 + 5)
× 1 = 11. The best of five final syntax trees corresponding to that
initial diagram obtained by the nondeterministic SCC method (see
Section 3.2) is shown in Figure 7 (e) and has v = 4, ve = 1, vd = 1
and V = (4 + 1) × 1 = 5. The text code representation
corresponding to the final syntax trees in Figure 7 (b) and Figure
7 (e) are presented in Figure 7 (c) and Figure 7 (f), respectively.

Some example results for the complexity measuring
implementation are given in Table 1. From the table, we can
observe that (as expected) the SCC method always yields results
at least as good as, and in all larger cases better than, the Böhm-
Jacopini method. The detailed description of examples is
available at [15].

Two flow graphs with 50 and 100 random nodes and edges are
interesting as performance and scaling test cases. The results
comprise about 1500 and 2500 transitions, respectively (as
compared with 8 transitions for the first simple case). This shows
that the potential advantages of the approach, in terms of graph
transformations, could be applied in practice.

5. CONCLUSIONS
In this paper we take a first step towards an implementation of
existing flow graph decomposition methods using graph
transformations.

As stated in the introduction, well-structuredness was one of our
main guidelines. We investigated several alternative and mutually
complementary classical methods of flow diagram decomposition.
We implemented the Böhm-Jacopini approach in terms of graph
transformations employing the graph-transformation tool Groove.
For the implementation we used an extended concept of
equivalent flow graphs defined through the notion of context-free
languages.

The Böhm-Jacopini decomposition method was enhanced and
improved by using the Peterson et al. method that examines
strongly connected components for multiple entry points and
removes extra entry points by node duplicating.

In the introduction we stated that the well-structuredness of
models is very important. Our full complexity measuring of a
flow diagram reflects an intuitive notion of readability and
enables us to compare the final syntax trees to evaluate different
decomposition methods and different results of non-deterministic
methods and minimize their complexity.

An important issue is to expand the set of implemented methods
and apply them to improve software reliability and readability, for
instance in model transformations from UMLA to Java programs.
A concise review of many of other results developed in this field
has been prepared in [7].

The described approach is still work in progress. The applying
well-formed structures is just the first step in the general
decomposition approach: the next step is to review the different
cases of flow graphs with parallelism and loops and develop
universal method similar simple flow graphs without parallelism.

In general, we intend to investigate the applicability of our
framework to enhance a model transformation from UMLA to
structured models and formally prove the correctness of this

Table 1. Example cases for the complexity measuring implementation (n is the number of nodes in the flow graph
and V is the complexity measure proposed in the Section 3.3). The bold line (case #3) represents the example from Figure 1.

Initial Böhm-Jacopini
method (deterministic) SCC method (non-deterministic) flow graph

Min V Max V
Case

n V n V Result count

n V n V
1 8 3 8 3 1 8 3 8 3
2 9 9 12 4 1 12 4 12 4
3 10 9 26 11 5 17 5 32 12
4 14 36 38 18 12 25 11 63 29
5 50 156 82 64 52 71 32 82 64
6 100 276 237 154 72 112 84 289 312

transformation. After enriching that model transformation, our
long-term goal is to implement the same methods to
transformations from UMLA to business process execution
languages.

6. ACKNOWLEDGEMENTS
The research in this paper was carried out in the GRASLAND
project, funded by the Dutch NWO (project number 612.063.408).

7. REFERENCES
[1] Allen, F.E., 1970. Control Flow Analysis. In ACM Sigplan

Notices.
[2] Böhm, C., Jacopini, G., 1966. Flow diagrams, Turing

machines and languages with only two formation rules. In
Communications of ACM, Vol. 9, No. 5, pp. 366-371.

[3] Collar, E., Valerdi R., 2006. Role of Software Readability on
Software Development Cost. In 21st Forum on COCOMO
and Software Cost Modeling, Herndon, VA.

[4] Dumas, M., ter Hofstede A.H.M., 2001. UML Activity
Diagrams as Workflow Specification Language. In
Proceedings of the UML’2001 Conference. Toronto,
Canada.

[5] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G., 2006.
Fundamentals of Algebraic Graph Transformation. Springer-
Verlag, Berlin, Germany.

[6] Engels, G., Kleppe, A.G., Rensink, A., et. al., 2008. From
UML Activities to TAAL - Towards Behavior-Preserving
Model Transformations. In Proceeding of the European
Conference on Model Driven Architecture (ECMDA-FA).
Lecture Notes in Computer Science 5095, Springer-Verlag,
Berlin, Germany, pp. 94-109.

[7] Erosa, A.M., Hendren L.J., 1994. Taming control flow: A
structured approach to eliminating goto statements. In
Proceedings of ICCL, Toulouse, France, pp 229–240.

[8] Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C., 2000.
On Structured Workflow Modelling. In Proceedings
CAiSE'2000, Stockholm, Sweden, Vol. 1789, pp. 431-445.

[9] Kleppe, A.G., Rensink, A., 2008. A Graph-Based Semantics
for UML Class and Object Diagram. Technical Report TR-
CTIT-08-06 Centre for Telematics and Information
Technology, University of Twente, Enschede.

[10] McCabe T., 1976. A Complexity Measure. In IEEE
Transactions on Software Engineering, Vol. 2, No. 4, pp.
308-320.

[11] Object Management Group, 2005. Abstract Syntax Tree
Metamodel, Request For Proposals (RFP).
http://www.omg.org/cgi-bin/doc?admtf/05-02-02.pdf.

[12] Object Management Group, 2008. Business Process
Modeling Notation, V1.1. http://www.omg.org/docs/formal/
08-01-17.pdf

[13] Peterson, W.W., Kasami, T., Tokura, N., 1973. On the
capabilities of while, repeat and exit statements. In
Communications of ACM, Vol. 16, No. 8, pp. 503-512.

[14] Rensink, A., 2004. The GROOVE Simulator: A Tool for
State Space Generation. In AGTIVE 2003. Springer,
Heidelberg, Germany, Vol. 3062, pp. 479–485.

[15] Rensink, A., Zimakova, M., 2009. Examples of
Implementation in Groove. Available at
http://ewi.utwente.nl/~mzimakova/bm-mda_2009.

[16] Zhao, W., Hauser, R., Bhattachaya, K., Bryant B., 2005.
Compiling Business Processes: Untangle Unstructured
Loops in Irreducible Flow Graphs. Technical report
UABCIS-TR-2005-0505-1, Birmingham, USA.

http://www.omg.org/cgi-bin/doc?admtf/05-02-02.pdf
http://www.omg.org/docs/formal/08-01-17.pdf
http://www.omg.org/docs/formal/08-01-17.pdf
http://ewi.utwente.nl/%7Emzimakova/bm-mda_2009

	1. INTRODUCTION
	2. BASIC NOTIONS
	3. FLOW DIAGRAM DECOMPOSITION
	3.1 Base subdiagram decomposition
	3.2 SCC decomposition
	3.3 Complexity measuring

	4. GROOVE IMPLEMENTATION
	5. CONCLUSIONS
	6. ACKNOWLEDGEMENTS
	7. REFERENCES

