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ABSTRACT 
The key challenge of model transformations in model-driven 
development is in transforming higher-level abstract models into 
more concrete ones that can be used to generate implementation 
level models, including executable business process 
representations and program code. Many of the modelling 
languages (like UML Activity Diagrams or BPMN) use 
unstructured flow graphs to describe the operation sequence of a 
business process. If a structured language is chosen as the 
executable representation, it is difficult to compile the 
unstructured flows into structured statements. Even if a target 
language structure contains goto-like statements it is often simpler 
and more efficient to deal with programs that have structured 
control flow to make the executable representation more 
understandable. 

In this paper, we take a first step towards an implementation of 
existing decomposition methods using graph transformations, and 
we evaluate their effectiveness with a view to readability and 
essential complexity measures. 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Techniques – 
flow charts, state diagrams.  

General Terms 
Algorithms, Management, Measurement, Performance, Design, 
Languages, Theory. 

Keywords 
Model transformations, graph transformations, model structuring, 
flow diagram decomposition, data flow graph, complexity 
measure. 

1. INTRODUCTION 
Over the last few years, a new option has evolved to define 
solutions in software industry: Model-Driven Development 
(MDD). The key challenge of model transformations in MDD is 

in transforming higher-level abstract models into more concrete 
ones that can be used to generate implementation level models, 
including executable business process representations and 
program code. With this trend, the decomposition of the models 
into structured elements is of increasing importance. 

In the large, a number of motivations can be given to justify 
the implementation of this work: 

 Imagine a dynamic behaviour of business process is 
described as an unstructured flow graph (which can 
represent, by-turn, a UML activity or BPMN diagrams). If 
a structured language is chosen as the target executable 
representation, it is difficult to transform the unstructured 
flows into structured statements. This problem is analyzed, 
for instance, in [6] and attempts to compile UMLA to 
BPEL programs; the last issue is discussed, for instance, in 
[16]. The main task of our graph transformations is to 
translate the unstructured goto-like statements into well-
structured statements in the target language. 

 The second very important reason for the presented work is 
to improve software reliability and readability – making 
programs less error prone and easier to understand. 
Because understanding of behavior is an essential 
prerequisite to effective program development and 
modification, programmers are forced to devote substantial 
time to this task [3].  

There exists today a number of variants on the idea of well-
structured models. A lot of restructuring methods were done in 
the context of flow diagram decomposition. It is commonly 
agreed that a natural interpretation of flow diagrams is in terms of 
graphs – essentially, just nodes with connecting edges. 
Consequently, a most natural implementation of flow diagram 
decomposition methods is by graph transformations. 

The aim of this work is to bridge the gap between formalism of 
the existing flow diagram decomposition methods and practical 
implementation in terms of graph transformations to use it for 
modern programming environments including executable business 
process languages.  

The remainder of this paper is structured as follows: after 
providing the basic definitions to set the stage in Section 2, we 
discuss the flow graph decompositions and complexity measure 
problem in Section 3. We consider these to be the heart of our 
contribution. In Section 4 we implement those methods with 
graph transformations, employing the graph-transformation tool 
Groove [14] for rule execution. Finally, in the conclusion (Section 
5) we come back to the above considerations, evaluate our results 
and discuss plans for future work. 
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2. BASIC NOTIONS 

 

Graphs and flow graphs. One of the core concepts of this paper 
is that of graphs. We start by repeating the usual definition of a 
graph. 

Definition 1. A labeled directed graph is a tuple G = (N, E, λ) 
where 

 N is a finite nonempty set called a set of nodes; 
 E ⊆ N × Λ × N is a set of edges where Λ is a finite set of 

node and edge labels; 
 λ is a labeling function λ: N ∪ E → Λ. 

Given e = (v, a, w) ∈ E, we denote src(e) = v, tgt(e) = w and a = 
λ(e) for its source, target and label, respectively. A path in a 
graph G is an alternating sequence of nodes and edges beginning 
and ending with nodes such that for each i ≥ 1 we have vi ∈ N, ei 
∈ E, src(ei) = vi and tgt(ei) = vi+1. 

Let G be a labeled directed graph as above with a labeling 
function λ: N ∪ E → Λ, then a path p = {v1, e1, v2, e2, …, vk−1, ek−1, 
vk} in G can be represented by the word from the alphabet Λ as 
following:  

λ(p) = λ(v1)λ(e1)λ(v2) ... λ(vk−1)λ(ek−1)λ(vk). 

We call this the word representation of p. 

Definition 2. A flow graph Φ is a triple (G, s, t), where 

 G = (N, E, λ) is a connected labeled directed graph; 
 Node s ∈ N is the unique start node such that there are 

no incoming edges to s in G. 
 Node t ∈ N is the unique terminal node such that there 

are no outgoing edges to t in G. 

Figure 1 shows the simple example of a flow graph graphical 
representation, which will be used throughout this paper, because 
it contains most of the features needed to explain the 
transformation algorithms.  

There are two most common types of nodes in a flow graph: 

 The functional type (function) which represent some 
operations (semantically described by label λ(n)) to be 
carried out on an object v ∈ N.  
 The predicative type (predicate) which do not operate 

on an object but decide on the next operation to be carried 
out, according to whether or not a certain property of v ∈ 
N. 

In this paper we distinguish functional and predicative node types 
by count of their leaving edges as follows: the functional box can 
has just only one leaving edge (with next label for our example in 
Figure 1) and the predicative box can has just only two leaving 
edges (with true and false labels for our example in Figure 1). 

The different node types that are supported by flow graphs, 
together with their relationships, are shown in Figure 2, where we 
appeal to the reader’s intuition about the meanings of this graph. 

Let Φ = (G, s, t) be a flow graph and p be some path in G from 
the start node s to the terminal node t. Then we will say that p is a 
full path in the flow graph Φ.  

Definition 3. Let p be a full path in a flow graph Φ = (G, s, t). 
Then an execution sequence Seq(p) is the word representation of 
p.  

For instance, sequence (s next a true a1 next b next d false d2 next 
t) is an execution sequence for our example in Figure 1. 

Now, let Path be a set (maybe infinite) of all possible full paths 
in the flow graph Φ = (G, s, t) in the light of the discussion above. 
The word representation of Path thus regarded as a language 
Lang(Φ) = λ(Path) defined over the alphabet Λ. 

Definition 4. Two flow graphs Φ1 and Φ2 are equivalent (denote 
it as Φ1 ∼ Φ2) if they define the same languages: Lang(Φ1) = 
Lang(Φ2). 

Algebra of flow diagrams. A flow diagram is a graphical 
representation of the flow graph which is suitable for representing 
programs, Turing machines, etc. Diagrams are usually composed 
of boxes connected by directed lines.  

Following [2], we can distinguish three elementary types of flow 
diagrams Π, Δ and Ω which denote, respectively, the diagrams of 
Figure 3 (a)-(c) and the constructions ‘sequence’, ‘if-then-else’ 
and ‘while’ in programming languages. Let us call these four 
elementary types Γ = {Π, Δ, Ω} base subdiagrams.  

For our subsequent definitions we also use the notions of a 
signature and algebra, as defined in [5]. The ingredients of these 
definitions that are important here are:  

 A collection of data sorts Sort.  
 A collection of carrier sets Data, partitioned into 

subsets for each of the sorts in Sort. 
 A mapping par: Oper → Sort+ that associates to every 

operation op ∈ Oper a non-empty string of sorts.  

Note that an operation op with no parameters represents a 
constant value. 

Let us assume a universe Θ of arbitrary flow graphs, a set θfunc ⊂ 
Λ of all functional node labels and a set θpred ⊂ Λ of all 
predicative node labels. 

Definition 5. Let Φ = (G, s, t) be an arbitrary flow graph where G 
= (N, E, λ) and N' = N \ {s, t}. A flow graph substitution is a 
mapping Sub: N' → Θ that maps each node v ∈ N' to a flow 
graph Φv = (Gv, sv, tv) where Gv = (Nv, Ev, λv), and obeys the 

Figure 2. The types in the flow diagram 

Figure 1. Flow graph example 



 

  
(a) Π(a, b) (b) Δ(α, a, b) (c) Ω(α, a) 

   
(d) Seq construction (e) IfThenElse construction (f) While construction 

Figure 3. Diagrams of  Π(a, b), Δ(α, a, b), Ω(α, a) and respective syntax tree constructions 

following rules: 

 Φ[Φv / v] = (GSub, sSub, tSub) is a flow graph, GSub = 
(NSub, ESub, λSub), sSub = s and tSub = t; 
 NSub = (N \ v) ∪ (Nv \ {sv, tv}) ; 
 ESub = (E \ EDel) ∪ (Ev \ (Ev

Del) ∪ (Es
Ins ∪ Et

Ins) 
where 

− EDel = {e ∈ E: src(e) = v or tgt(e) = v}, 
− Ev

Del = {ev ∈ Ev: src(ev) = sv or tgt(ev) = tv}, 
− Es

Ins = {eSub ∈ ESub | ∃ ev ∈ Ev: src(ev) = sv, tgt(ev) 
= tgt(eSub), λ(ev) = λ(eSub); 
∃ e ∈ E: src(e) = src(eSub), tgt(e) = v}, 

− Et
Ins = {eSub ∈ ESub | ∃ ev ∈ Ev: src(ev) = src(eSub), 

tgt(ev) = tv, λ(ev) = λ(eSub); 
∃ e ∈ E: src(e) = v, tgt(e) = tgt(eSub)}. 

A substitution Sub can be extended to the whole flow graph as  

Φ[Sub] = Φ [Φv1 / v1] [Φv2 / v2] … [Φvn / vn]. 

Let us define the signature Sig = (Sort, Oper, par) for the flow 
graphs. We have sorts fg, pred and func, representing the arbitrary 
flow graphs, predicative nodes and functional nodes, respectively. 
We also define a constant empty for the empty flow graph and 
operation symbols for the elementary flow graphs (for each 
functional node) and the base subdiagrams Γ = {Π, Δ, Ω}: 

Sig =  
Sort:   fg, pred, func; 
Oper: empty, elem, Π, Δ, Ω; 
par:   empty:→ fg, 

elem: func → fg, 
Π: fg fg → fg, 
Δ: pred fg fg → fg, 
Ω: pred fg → fg. 

Then the implementation of the signature Sig for flow graphs is 
the following algebra FlowGraph: 

Dfg    = Θ, 
Dfunc = θfunc, 
Dpred = θpred, 
fempty  = ε ∈ Θ, 
felem   : Dfunc → Dfg, 

  a a {(N, E, λ) | N = {s, v, t}, E = {(s, l, v), (v, l, t)},  
              λ(v) = a} 

fΠ      : Dfg × Dfg → Dfg, 
  (Φa, Φb) a Π[Φa / va][Φb / vb] 

fΔ       : Dpred × Dfg × Dfg → Dfg, 
  (α, Φa, Φb) a Δ[Φa / va][Φb / vb] 

fΩ       : Dpred × Dfg → Dfg, 
  (α, Φa) a Ω[Φa / va]. 

Definition 6. A flow diagram Φ = (G, s, t) where G = (N, E, λ) is 
strongly decomposable (or well-formed in terms of [6] and [13]) if 
there exists an expression exp in the Sig-algebra FlowGraph 
such that FlowGraph[[exp]]  ≅ Φ. 

Together with a strong decomposition, [2] considered another 
decomposition which is obtained by operating on an equivalent 
strongly decomposable flow graph. Formally, a flow graph Φ is 
weakly decomposable if Φ ∼ Φ′ for some strongly decomposable 
flow graph Φ′. 

Algebra of syntax trees. The other data structure for representing 
programming language constructs by compilers, converters and 
transformation tools is a tree structure known as an abstract 
syntax tree [11].  

In terms of graph theory, an abstract syntax tree is a tree, that is to 
say, an acyclic graph with a single root node, connecting nodes 
and leaf nodes. Then, similarly to the graph definition above, we 
can define a syntax tree as follows. 

Definition 7. An abstract syntax tree, or just syntax tree, is a 
tuple T = (GT, root) where 

 GT = (NT, ET, λT) is an acyclic connected labeled 
directed graph; 
 root ∈ NT is a single root node; 
 NT = Nn ∪ Nl  such as Nn ∩ Nl = ∅ where Nn is a set of 

internal nodes and Nl is a set of leaf nodes. 

Each node of the syntax tree in our case should denote a 
construction occurring in the flow diagram. For instance, the base 
subdiagrams in Figure 3 (a)-(c) may be denoted by constructions 
Seq, IfThenElse and While n Figure 3 (d)-(f), respectively. 
The different node types that are supported by syntax trees, 
together with their relationships, are shown in Figure 4. 

Similarly to the algebra FlowGraph above, we can implement a 
signature Sig with a different algebra SyntaxTree on a set ϑ 
of syntax tree constructions {Seq, IfThenElse, While}. 



Let us consider now a representation of a flow graph Φ as a 
syntax tree T, called a syntax tree decomposition.      

Definition 8. A syntax tree decomposition of a weakly 
decomposable flow graph Φ = (G, s, t) is a following morphism: 

STD: Φ a {SyntaxTree[[exp]]  | FlowGraph[[exp]]    ≅ Φ′ ∼ Φ} 

where Φ′ = (G′, s, t) is an strongly decomposable flow graph 
equivalent to Φ. 

3. FLOW DIAGRAM DECOMPOSITION 
In this section we consider the structuring problems imposed by 
our common example. The first problem is a very complicated 
graph structure of the flow diagram. One of the decomposition 
approaches to solve that kind of problem was provided in [2]. We 
discuss details of this approach in Section 3.1. The main flow 
diagram also has one meaningful (more than one node) strongly 
connected component (SCC); therefore we can improve the 
decomposition quality applying the method of [13]. The 
application of this algorithm as a part of the general approach is 
discussed in Section 3.2. The complexity measure to evaluate the 
advantage of different methods is considered in Section 3.3 and 
some concrete implementation results are presented in Section 4.  

A concise review of many of other results developed in this field 
has been prepared in [7]. We also come back to that discussion in 
the closing remarks about future work in Section 5. 

3.1 Base subdiagram decomposition 
The set of definitions introduced in the previous section is within 
the scope of the existing graph theory. In this section, we 
introduce a way to enrich the usual definitions, and so formalize 
the concepts of flow graph decomposition.  

The preliminaries of Böhm-Jacopini method [2] were presented in 
Section 2. In addition to three base subdiagrams Π, Ω and Δ, they 
introduced three new functions denoted by T, F, K, and a new 
predicate ω which define a behavior of auxiliary boolean 
variables set.  

The effect of the first two functions T and F is to create a new 
boolean variable with value true or false, respectively, and the 
function K deletes the last boolean variable. The predicate ω is 
verified or not according to whether the last boolean variable 
value is true or false; the value of the predicate ω is true iff the 
last boolean variable value is true. 

Recall that if Path is a set of all possible full paths in the flow 
graph Φ, then the word representation of Path can be regarded as 

a language Lang(Φ) defined (in the extended case) over the 
alphabet Λ ∪ {T, F, K, ω}. Let the node types and their 
relationships be as it shown in Figure 2. 

 

Then we can define a ‘satisfiability’ function Sat: Lang(Φ) → 
Lang*(Φ), where Lang*(Φ) = Lang(Φ) ∪ {ε}, as following: for 
all words w = (x1 x2 … xi … xj … xn) ∈ Lang(Φ) where xk ∈ Λ ∪ 
{T, F, K, ω}, k ∈ [1, n]  
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Therefore the language Sat(Lang(Φ)) denotes a set of all full 
path word representations in the flow graph Φ that satisfy our 
definitions of new functions T, F, K and predicate ω. 

Let us denote a function Restrict: Lang*(Φ) → Lang*(Φ) \ 
{T, F, K, ω} as following: for all words w = (x1 x2 … xi–1 xi xi+1 
xi+2 … xn) ∈ Lang*(Φ) where xj ∈ Λ, j = 1, 2, … i–1 , i+1, …, n 
and xi ∈ {T, F, K, ω}  

Restrict(w) = (x1 x2 … xi–1 xi+2 … xn). 

Then a language L̅a̅n̅̅g̅̅̅̅̅(Φ) = Restrict(Sat(Lang(Φ))) is a 
restricted language of the flow graph Φ over the alphabet Λ.Then 
we can extend the definition of flow graph equivalence. 

Definition 9. Two flow graphs Φ1 and Φ2 extended by functions T, 
F, K and predicate ω are equivalent if they define the same 
restricted languages, that is  L̅a̅n̅̅g̅̅̅̅̅(Φ1) = L̅a̅n̅̅g̅̅̅̅̅(Φ2).  

In the light of this discussion above the definition of weak 
decomposition can be extended as a decomposition which is 
obtained by operating on an equivalent strongly decomposable 
extended flow graph.  

Theorem 1. For any flow graph Φ1 there exists (at least) one 
equivalent strongly decomposable flow graph Φ2 extended by the 
functions K, T, F and predicate ω; in other words, any flow graph 
is weakly decomposable. 

The proof of the theorem and the decomposition algorithm is 
based on the flow diagram classification represented in Figure 5 
(a)-(c). The equivalent strongly decomposed flow diagrams of 
type I and II are shown in Figure 6 (for more details see [14]). 

3.2 SCC decomposition 
Peterson et al. present the algorithm enabled to improve 
characteristics of Böhm-Jacopini method in case if flow graph 
consists of strongly connected components with multiple entry 
points [13].  

Theorem 2. Every flow diagram can be transformed into an 
equivalent strongly decomposable (well-formed) flow diagram by 
node duplication (proof see [13]).  

Figure 4. The types in the syntax trees  



In the proof of this theorem the authors presented the algorithm 
that examines strongly connected components for multiple entry 
points and removes extra entry points by node duplication. 

Let us come back to our main example in Figure 1 where nodes b, 
c, d and d1 form a strongly connected component, and b and c are 
multiple entry nodes. If b is chosen as the entry node and c is 
duplicated, the well-structured flow diagram with the extended 
flow graph shown in Figure 7 (d) results. This turns out to be the 
better choice because this flow graph is intuitively ‘better’ than 
the flow graph in Figure 7 (a). 

But if c is chosen as the entry node and b is duplicated, some 
more duplicating steps are necessary, and after four steps we can 
obtain the same flow graph as in Böhm-Jacopini method shown in 
Figure 7 (a), as well as three different flow graphs not shown 
here. 

The fact that there are many variants of equivalent flow graphs, 
and some of them are ‘better’ than another, brings us to the issue 
of complexity measuring presented in the next section.  

3.3 Complexity measuring  
Maintenance typically requires more resources than new software 
development. For years researchers have tried to understand how 
programmers comprehend programs. The literature provides two 
approaches to comprehension: cognitive models that emphasize 
cognition by what the program does (a functional approach) and a 
control-flow approach which emphasizes how the program works. 
A modern state of the art of this direction is reflected in the 
review [3].  

A well-known and often used complexity measure was proposed 
by McCabe in [10]. 

Definition 10. The cyclomatic number v(Φ) of flow graph Φ with 
n nodes, e edges, and p connected components is  

v(Φ) = e – n + 2p. 

In addition, McCabe proposed a method of measuring the 
"structuredness" of a program as follows. 

Let a decomposition degree m(Φ) of a flow graph Φ be a number 
of substitutions  Φvi

 , i = 1, …, n, such that Φvi
 ∈ Γ \ {Π}. Then 

Definition 11. The following definition of essential complexity 
ve(Φ) is used to reflect the lack of structure:  

ve(Φ) = v(Φ) – m(Φ). 

In the large, we propose to measure a full complexity of the flow 
diagram as follows: 

Definition 12. Let v(Φ) be the cyclomatic number, ve(Φ) - the 
essential complexity number and vd(Φ) - the number of duplicated 
nodes in a flow graph Φ. Then the following defines the full 
complexity V(Φ):   

V(Φ) = [v(Φ) + vd(Φ)] × ve(Φ). 

This formula stresses that the full complexity of a flow diagram is 
equal to the summation of its cyclomatic number and number of 
duplicates. The multiplication dictates that the full complexity 
and essential complexity of a flow diagram must be in the same 
order of magnitude. 

Let us illustrate all of that complexity measuring by our main 
example shown in Figure 1. The initial flow diagram contains two 
predicates, therefore v = 3, ve = 3, vd = 0 and V = (3 + 0) × 3 = 9. 
If we apply the straight Böhm-Jacopini method the final flow 
diagram shown in Figure 7 (a) has v = 6, ve = 1, vd = 4 and V = (6 
+ 5) × 1 = 11. The ‘best choice’ of SCC method represented in 

 

 
(a) Transformation of a type I diagram (b) Transformation of a type II diagram 

 
(a) Structure of a type I diagram 

 
(b) Structure of a type II diagram 

 
(c) Structure of a type III diagram 

Figure 5. Three types of flow diagrams 

Figure 6. Transformation of a type I and type II diagrams 



Figure 7 (b) has v = 4, ve = 1, vd = 1 and V = (4 + 1) × 1 = 5. Other 
four flow graphs obtained by SCC method have V = 6, V = 11, V 
= 12 and V = 12, respectively. 
Hereby, the introduced full complexity measure V reflects an 
intuitive notion of readability and enables us to compare the final 
syntax trees and minimize their complexity. 

4. GROOVE IMPLEMENTATION 
We implemented techniques described in Section 3 within the 
Groove (see [5], [9], [14]) framework, a standard tool for graph 
transformations. This allowed a more thorough exploration of 

more examples and for a qualified judgment on practical 
scalability. 

The flow diagram decomposition rules construct a syntax tree by 
contracting and transforming a flow diagram. In this 
transformation process, syntax tree elements are introduced to the 
flow diagram and flow diagram elements are contracted 
(iteratively) to one node. Our flow diagram decomposition 
approach consists of following issues:  

 Flow diagram and syntax trees. On the first step of our 
transformations we copy the initial flow diagram Φ to 
create the same structure for the syntax tree T. 

 

begin 
  if a then begin 

 

     a1;   
     var_bool := true; 
     repeat 
       b; 
       if d then begin 
          d1;  c; 
          var_bool := false; 
       end else 
          var_bool := true; 
     until var_bool; 
  end else begin 
     a2; 
     var_bool := true; 
     repeat 
       c;  b; 
       if d then begin 
           d1; 
           var_bool := false; 
       end else 
           var_bool := true; 
      until var_bool; 
  end; 
  d2; 
end. 

(a) Böhm-Jacopini  
decomposition 

(b) The syntax tree decomposition of 
graph (a) with V = 11 

(c) The text code representation of  
the syntax tree (b) 

  

begin 
if a then 
     a1; 
else begin 
     a2;  
     c; 
end; 
var_bool := true; 
repeat 
     b;    
     if d then begin 
         d1; 
         c; 
         var_bool:= false; 
     end else 
         var_bool:= true; 
until var_bool; 
d2; 

end. 

(d) Decomposition using  
SCC method 

(e) The syntax tree decomposition of 
graph (d) with V = 5 

(f) The text code representation of  
the syntax tree (e) 

Figure 7. Two strongly decomposable (well-formed) extended flow graphs equivalent  
to the flow graph in Figure 1, respective final syntax trees and text code representations 



 Contraction rules. For each type of elementary flow 
diagrams Π, Ω and Δ, we design one flow diagram 
contraction rule that introduce the necessary syntax tree 
elements and contracts elementary flow diagram to one 
node.  

 Decomposition rules. The flow diagram decomposition 
process operates top-down, starting from the root-node of 
the flow diagram under construction and choosing an 
appropriate type of flow diagram as was discussed in 
Section 3.1.  

 SCC rules. To improve readability of the flow diagrams, 
we also use strongly connected component (SCC) 
decomposition rules as it was discussed in Section 3.2. 

 Bottom-up and top-down decomposition. In general, the 
flow diagram contraction and decomposition process 
operates in both directions: while an extraction of 
elementary flow diagram is possible, we are applying one 
of contraction rules and have a bottom-up process; 
otherwise we are applying one of decomposition rules and 
have a top-down decomposition. 

 Syntax trees. On the last step of our transformation we 
delete the contracted flow diagram elements and get a final 
syntax tree.  

Unfortunately, we cannot explain the precise workings of the 
Groove implementation in the available space; however, the rules 
and some example cases are available at [15] for the reader to try 
out. 

The example of the final syntax tree for the straight Böhm-
Jacopini method applied to the initial flow diagram in Figure 1 is 
shown in Figure 7 (b) and has v = 6, ve = 1, vd = 4 and V = (6 + 5) 
× 1 = 11. The best of five final syntax trees corresponding to that 
initial diagram obtained by the nondeterministic SCC method (see 
Section 3.2) is shown in Figure 7 (e) and has v = 4, ve = 1, vd = 1 
and V = (4 + 1) × 1 = 5. The text code representation 
corresponding to the final syntax trees in Figure 7 (b) and Figure 
7 (e) are presented in Figure 7 (c) and Figure 7 (f), respectively. 

Some example results for the complexity measuring 
implementation are given in Table 1. From the table, we can 
observe that (as expected) the SCC method always yields results 
at least as good as, and in all larger cases better than, the Böhm-
Jacopini method. The detailed description of examples is 
available at [15]. 

Two flow graphs with 50 and 100 random nodes and edges are 
interesting as performance and scaling test cases. The results 
comprise about 1500 and 2500 transitions, respectively (as 
compared with 8 transitions for the first simple case). This shows 
that the potential advantages of the approach, in terms of graph 
transformations, could be applied in practice.  

5. CONCLUSIONS 
In this paper we take a first step towards an implementation of 
existing flow graph decomposition methods using graph 
transformations. 

As stated in the introduction, well-structuredness was one of our 
main guidelines. We investigated several alternative and mutually 
complementary classical methods of flow diagram decomposition. 
We implemented the Böhm-Jacopini approach in terms of graph 
transformations employing the graph-transformation tool Groove. 
For the implementation we used an extended concept of 
equivalent flow graphs defined through the notion of context-free 
languages.  

The Böhm-Jacopini decomposition method was enhanced and 
improved by using the Peterson et al. method that examines 
strongly connected components for multiple entry points and 
removes extra entry points by node duplicating. 

In the introduction we stated that the well-structuredness of 
models is very important. Our full complexity measuring of a 
flow diagram reflects an intuitive notion of readability and 
enables us to compare the final syntax trees to evaluate different 
decomposition methods and different results of non-deterministic 
methods and minimize their complexity. 

An important issue is to expand the set of implemented methods 
and apply them to improve software reliability and readability, for 
instance in model transformations from UMLA to Java programs. 
A concise review of many of other results developed in this field 
has been prepared in [7]. 

The described approach is still work in progress. The applying 
well-formed structures is just the first step in the general 
decomposition approach: the next step is to review the different 
cases of flow graphs with parallelism and loops and develop 
universal method similar simple flow graphs without parallelism. 

In general, we intend to investigate the applicability of our 
framework to enhance a model transformation from UMLA to 
structured models and formally prove the correctness of this 

Table 1. Example cases for the complexity measuring implementation (n is the number of nodes in the flow graph  
and V is the complexity measure proposed in the Section 3.3). The bold line (case #3) represents the example from Figure 1. 

Initial  Böhm-Jacopini 
method (deterministic) SCC method (non-deterministic) flow graph 

Min V Max V 
Case 

# 
n V n V Result count 

n V n V 
1 8 3 8 3 1 8 3 8 3 
2 9 9 12 4 1 12 4 12 4 
3 10 9 26 11 5 17 5 32 12 
4 14 36 38 18 12 25 11 63 29 
5 50 156 82 64 52 71 32 82 64 
6 100 276 237 154 72 112 84 289 312 



transformation. After enriching that model transformation, our 
long-term goal is to implement the same methods to 
transformations from UMLA to business process execution 
languages. 
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