
Design Support and Tooling for Dependable Embedded
Control Software

J. F. Broenink
University of Twente

The Netherlands
J.F.Broenink@utwente.nl

P. G. Larsen
Engineering College of Aarhus

Denmark
pgl@iha.dk

M. Verhoef
CHESS BV

The Netherlands
Marcel.Verhoef@chess.nl

C. Kleijn
Controllab Products BV

The Netherlands
Christian.Kleijn@controllab.nl

D. Jovanovic
Neopost BV

The Netherlands
D.Jovanovic@neopost.com

K. Pierce
Newcastle University

UK
K.G.Pierce@ncl.ac.uk

ABSTRACT
The efficient design of resilient embedded systems is ham-
pered by the separation of engineering disciplines in current
development approaches. We describe a new project en-
titled “Design Support and Tooling for Embedded Control
Software” (DESTECS), which aims to develop a method-
ology and open tools platform for collaborative and multi-
disciplinary development of dependable embedded real-time
control systems. We also present some initial results from a
small co-simulation case study.

The DESTECS methodology combines continuous-time
and discrete-event modelling via co-simulation, allowing ex-
plicit modelling of faults and fault-tolerance mechanisms
from the outset. Continuous-time models are expressed us-
ing differential equations, which we represent using the well-
known bond graph notation, supported by the 20-sim tool.
We model discrete-event controllers using the Vienna Devel-
opment Method (VDM), supported by the Overture tools.
An open, extensible tools platform will be developed, popu-
lated with plug-ins to support static analysis, co-simulation,
testing and fault analysis. Trials will be conducted on in-
dustrial case studies from several domains, including doc-
ument handling, inertial measurement and personal trans-
portation.

Categories and Subject Descriptors
B.2.3 [Reliability, Testing, and Fault-Tolerance]: Error
checking; B.8 [Performance and Reliability]: General;
I.6.4 [Simulation and Modeling]: Model Validation and
Analysis

Keywords
Formal Methods, Resilience, Fault Tolerance, Embedded
Systems, Co-simulation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SERENE ’10, 13-16 April, London, United Kingdom
Copyright 2010 ACM 978-1-4503-0289-0/10/04 ...$10.00.

1. INTRODUCTION
The embedded systems market is a rapidly evolving one,

making it imperative that developers can conceive and evalu-
ate designs quickly and with confidence. This is made all the
more challenging by two factors. First, ever more demand-
ing and interdependent requirements, including the need for
reliability, fault tolerance, performance and interoperability.
Second, the increasingly distributed character of embedded
systems, which introduces a wider range of architectures –
and faults – for controllers. This paper describes a new
project (DESTECS)1 that addresses collaborative, multi-
disciplinary design of embedded systems using methodology
and tools that promote rapid construction and evaluation of
system models.

One of the main impediments to the design of embedded
real-time control solutions is the separation of control engi-
neering, which typically uses tools operating on continuous-
time models, and software engineering, which is founded on
discrete-event models. In order to evaluate alternative de-
signs and support early defect analysis / correction, it is es-
sential that engineers collaborate across disciplines in short
windows of opportunity. Model-based approaches provide
a way of encouraging collaboration, but engineers need to
perform design evaluation and analysis using models ex-
pressed in different tools. These tools should reflect the
relevant aspects of the design in a natural way, but also
allow consistent, rapid analysis and comparison of models.
Achieving this requires advances in continuous-time mod-
elling; formal discrete-event modelling of controllers and ar-
chitectures; fault modelling and fault tolerance; and open
tools frameworks. These various advances are the aim of
the DESTECS project.
The rest of this paper is structured as follows. Section 2

briefly discusses our initial selection of continuous-time tool
and discrete-event method. The concept of co-simulation
is also introduced. Section 3 describes an early result in
co-simulating a simple water tank case study. Section 4 dis-
cusses the goals of the DESTECS project and sets out some
of the challenges we face. Section 5 describes how we hope
to support the design of dependable embedded systems by
allowing designers to explore and create fault tolerant de-
signs. Section 6 introduces the main industrial case studies.
Finally, we provide a few concluding remarks in Section 7.

1http://www.destecs.org.

2. MODEL-BASED DESIGN
Many tools and techniques have been developed to sup-

port model-based design as a way to support the collabora-
tion of engineering teams. For the development of embed-
ded control systems, the greatest challenge lies in bridging
the gaps between the different computational models un-
derpinning the disciplines involved [7], particularly between
continuous-time (CT) and discrete-event (DE) modelling.

In a development led by control engineering, the plant to
be controlled is described in a CT model using differential
equations and with, initially, an assumption of fault-free be-
haviour. The control software will typically be described
at a low level of abstraction, so that the major part of the
controller model is devoted to a complex description of spe-
cial cases, including faults. The lack of abstraction raises the
complexity of analysis of system behaviour and increases the
maintenance effort on the models. By contrast, a software
engineering approach typically starts from an abstract model
of the logic of the controller software. This facilitates model-
driven development and the description of fault handling at
a higher level of abstraction. However, the discrete-event
formalisms used to describe such systems are inappropriate
for describing the whole system’s dynamic behaviour. Con-
trol laws are typically expressed as algorithms, making it
complex to analyse the desired control properties.

There are several attempts to integrate CT and DE mod-
els. Matlab/Simulink, in combination with the Stateflow
toolbox, provides a tool chain that is well-suited for fine
grained controller design. The abilities of the Stateflow
toolbox to support existing methods and practices of soft-
ware engineering are, however, limited by the low level of
abstraction in the notations. Ptolemy-II, a more radical
component-based approach, supports several domains, each
of which is based on a particular model of computation and
may be combined with others to build a system model [1,
3]. Industrial adoption has been limited, possibly because
of the extent to which it represents a departure from cur-
rent design practice, leading to it being regarded as high risk
for adoption. Possibly the most promising method to com-
bine the computational models is to use the most successful
tools chains of the various engineering domains and integrate
them at simulation level. This is known as co-simulation.

In a co-simulation, both the CT and DE models appear
to execute at the same time. In fact, each model is executed
alterately with the other, simulating for a period of time
(that is, performing a step). This time step is initially sug-
gested by the DE controller, which calculates the smallest
time it can simulate before it will perform an action, e.g.
Δt. This is time-triggered control. The CT model can then
simulate for this period, but may discover that before the
end of the step, a change occurs which the controller should
know about, e.g. at Δt/2. The DE model must then simu-
late for this shorter period instead. This is event-triggered
control.

2.1 Continuous-Time Modelling
Without doubt, Matlab/Simulink [14] has the largest user

base in industry as well as in the academic world. The mod-
elling and simulation part, Simulink, is built upon the Mat-
lab environment and provides block diagram modelling. The
base library of Simulink is limited to block diagrams. Ex-
ternal libraries with physical components can be purchased.
These libraries are comparable to what is offered in Modelica

and 20-sim [12], but not with the same level of sophistica-
tion. Moreover, the library models are closed source.

Scilab is an open-source scientific software package con-
taining two toolboxes for modelling and simulation: Scicos
and the OpenModelica Toolbox [2]. Scicos is the counter-
part of Simulink but is limited to block diagrams only. The
Open Modelica Toolbox is an attempt to create models at
the physical component level. The toolbox however has not
reached a sufficient level of maturity yet for use in an indus-
trial setting.

Modelica is an open-source, object-oriented multi-domain
language for modelling physical systems [19]. Next to the
language, Modelica has a number of open and closed source
libraries of physical components. There are several tools
available for simulating Modelica based models. Some of
them are open source but have limited capabilities. Proba-
bly the best known tool is the Dymola package.

20-sim is a multi-domain modelling and simulation pack-
age for modelling complex physical systems. All model li-
braries of 20-sim are open source, and have the same level
of sophistication as Modelica. The package supports mixed
mode integration techniques to allow the modelling and sim-
ulation of computer controlled physical systems that con-
tain continuous as well as discrete time parts. The package
supports the connection of external software through dll-
functions, both at modelling and simulation level (discrete-
time, continuous-time or hybrid). 20-sim allows export to
Matlab/Simulink at all levels.

Other well-known packages are Easy5, Vissim, AMESim,
Labview and ACSL. They are not described in detail here,
because they all lack one or more important capabilities (in-
tegrated simulator with discrete-event support, co-simulation
interface, on-board libraries for plant design etc.).

2.2 Discrete-Event Modelling
DE modelling notations used in industry are mostly based

on finite state machines and have a low level of abstrac-
tion. IBM Rational Technical Developer (formerly Rational
Rose Real-time) and IBM/Telelogic Rhapsody provide mod-
elling capabilities based on the Unified Modelling Language
(UML) and the System Modelling Language (SysML) and
are supported by mature development processes (RUP and
Harmony/ESW respectively). Both tools aim to develop ex-
ecutable models that are deployed on the target system as
soon as possible to close the design loop, requiring that the
model evolves to a low level of abstraction early in the de-
sign process: for instance, the resolution and accuracy of
the timing objects are already determined at the modelling-
language level by the target platform’s operating system ser-
vices.

In model-oriented formal methods such as VDM [5] we
can describe the desired functionality at a higher level of ab-
straction. VDM is supported at industrial-strength level by
VDMTools [4, 6] and it is already coupled to UML. Recently,
VDM and VDMTools have been extended to better support
the description and analysis of real-time embedded and dis-
tributed systems. These include primitives for modelling de-
ployment to a distributed hardware architecture and support
for asynchronous communication. The VDM technology has
been extended with a capability to generate traces derived
from simulations [17, 16]. An initial proof of concept of
integration between VDM and 20-sim (for continuous-time
simulation) has already been carried out [18, 15]. Overture

[13] includes the same support directly on top of the Eclipse
platform. This tool will form the basis for the DE simula-
tion since a simulator for the executable subset of VDM is
already a part of the Overture tool suite.

Is it possible to support both control engineering and soft-
ware engineering using a single unified method or tool? Sev-
eral attempts have been made to unify both worlds. For
example, Hooman et al. have co-simulated Rose Real-time
software models with control laws specified in Matlab/Simu-
link by providing a platform neutral notion of time instead
[9]. This is a step forward, but also suggests that Rose Real-
time lacks a suitable notion of simulation time and does not
allow interrupts due to events in the plant. IBM/Telelogic
Rhapsody is able to integrate with Simulink models running
in discrete time.

3. CO-SIMULATION EXAMPLE
As an initial case study, we use a small water tank exam-

ple. Here, the water level in the tank forms a continuous-
time system, described by differential equations. This is the
plant. In this simple example, the tank is subject to an ar-
bitrary input flow, however it could be extended with other
“disturbances”, such as evaporation of the water. The term
“disturbance” is used for phenomenon that are not caused by
the controller but nevertheless influences the system. The
controller can observe properties of this plant (the water
level) and can change the state of the plant by performing a
control action (opening a valve to allow water to flow out),
according to some control law. This control law keeps the
system as a whole in some desired state.

In our case study, the aim of the controller is to keep the
water level between the low and high watermark. The con-
troller can observe the water level through three sensors: a
pressure sensor at the bottom of the tank, which measures
the current water level continuously; and two discrete sen-
sors, which measure the water level within the tank. The
upper sensor informs the controller when the water level ex-
ceeds the high water mark and the lower sensor fires if the
water level drops below the low water mark. The controller
can influence the water level by opening or closing a valve
at the bottom of the tank.

The reason why co-simulation is needed for an example
such as this is that the speed by which the water pours out
of the water tank depends upon the volume of water in the
tank so the response time of DE depends on the state of
CT. The case study concerns a water tank that is filled by
a constant input flow fI and can be emptied by opening a
valve resulting in an output flow fO. The volume change is
described by equations (1) and (2), where A is the surface
area of the tank bottom, V is the volume, g is the gravitation
constant, ρ is the density of liquid and R is the resistance of
the valve exit.

dV

dt
= fI − fO (1)

fO =

{
ρ·g
A·R ·V if valve = open

0 if valve = closed
(2)

Modelling physics laws such as these can conveniently be
expressed in a continuous-time tool such as 20-sim. In order
to cope with both event-based as well as time-triggered we
need to identify events of interests. The event ree is the so-
called rising edge zero crossing and fee is the falling edge

zero crossing. For our case study, we define two edge trig-
gered events: ree (level, 3.0) and fee (level, 2.0), whereby
level is a shared continuous time variable that represents
the height of the water level in the tank. In case such events
happend before the time limit for the co-simulation is due a
smaller time step will be taken such that the controller will
be able to react at the right point of time.

On the controller side we model the intended behaviour
using VDM. The shared continuous sensor and actuator vari-
ables level and valve are declared on Line 4 and 5 below.
Whenever level is read, it contains the actual value of the
corresponding continuous time.

01 class Controller

02

03 instance variables

04 static public level : real;

05 static public valve : bool := false

06

07 operations

08 static public async open : () ==> ()

09 open () == valve := true;

10

11 static public async close : () ==> ()

12 close () == valve := false;

13

14 loop : () ==> ()

15 loop () ==

16 if level >= 3 then open ()

17 elseif level <= 2 then close ();

18

19 threads

20 periodic(1000,0,0,0)(loop)

21

22 sync

23 mutex(open , close , loop)

24

25 end Controller

For illustration purposes the loop operation which does the
control is periodically invoked every second and it will open
or close the value whenever necessary. However, it may be
actived more freqently in case the events mentioned above
are activated.

This case study was presented as a co-simulation between
20-sim and VDM in [15]. The initial result from DESTECS
is to port this example to the Overture platform. This serves
as both a technical exercise in the mechanics of co-simulation
between 20-sim and Overture and as a starting point for
exploring the methodological issues of collaborative design
and co-simulation. This co-simulation example also includes
a 3D animation of the water tank and its associated level,
which reflects the state of the model over time, as illustrated
in Figure 1.

Further case studies for the DESTECS project are de-
scribed in Section 6.

4. DESTECS GOALS AND CHALLENGES
The goal of DESTECS is to improve the productivity of

innovative embedded system design by providing and eval-
uating new methods and tool support that can be used to
design fault-tolerant, embedded systems using a multidisci-
plinary, collaborative model-based approach (see Figure 2).
Achieving this goal entails the following objectives:

Figure 1: Screen dump from a 3D animation

1. To reduce the effort spent in design iterations com-
pared to current best practice for fault-tolerant em-
bedded control systems by means of multidisciplinary
collaborative modelling.

2. To demonstrate the viability of industry-strength tool
support for collaborative modelling and co-simulation.

3. To evaluate, in an industrial setting, the effectiveness
of collaborative modelling methods and tools for rapid
design exploration and tool support.

4. Development of a user and research community in col-
laborative modelling and co-simulation for embedded
systems development.

Figure 2: DESTECS: co-simulated controller and
system, tested using fault scenarios

The main outputs of the DESTECS project will be an
Integrated Development Environment (IDE) and an asso-
ciated design methodology that supports the collaborative
modelling and analysis by co-simulation of candidate designs
for dependable embedded control systems.

The IDE will combine 20-sim and Overture, allowing the
user to connect models and perform both static checks across
the boundaries of the notations as well as co-simulation be-
tween them. The co-simulation will enable both a time-
triggered approach [8] as well as an event-triggered approach.
The methodology will be described in a set of guidelines,
intended to be a manual for designers and users of our ap-
proach.

There are a number of challenges that we face in achieving
the above goals. The IDE needs to handle multiple versions

of each model (for design space exploration) and mutliple
fault scenarios, all in various combinations. This will re-
quire static checks to be performed before co-simulation can
occur. In addition, the tools should allow automatic combi-
nation and regression testing over various models and fault
scenarios.

The IDE should also allow the user to interact with the
co-simulation (e.g. pause the simulation) and to inspect the
state of the co-simulation. Although the state of two mod-
els within a co-simulation may well be extremely complex,
this information must to be accessible to the user, hence an-
other challenge lies in finding a practical and natural way of
presenting this information.

Our proposed solution is to create a co-simulation tool
connector. The tool connector would be responsible for co-
simulation, controlling the global flow of time, advancing
each model as required. The tool connector would also be
responsible for allowing the user to control and inspect the
co-simulation in a meaningful way. It would also be respon-
sible for combination testing of model variations and fault
scenarios, as well as regression testing. The construction of
such a tool connector is non-trivial.

On the methodology side, the challenges lie in present-
ing useful guidelines that target co-simulation, but which
do not constrain the user unnecessarily. For example, de-
vleopments may begin with informal, natural language re-
quirements, but equally a user may approach DESTECS
having previously performed some formal analysis of the re-
quirement. The methodology should support both starting
points. We would also wish to provide support for different
design patterns, which reflect the user’s needs. For exam-
ple: a simple, single-layered host controller pattern may suit
a certain project, whereas a multi-layered controller based
on a three-tiered architecture may be necessary for another.

There are also sociological issues involved in collaborat-
ing in multidisciplinary domains. For example, the need to
become familiar with new paradigms and ways of thinking,
such as CT versus DE modelling and fault tolerance tech-
niques. It is hoped that the DESTECS tools and methodol-
ogy will mitigate the need to study new paradigms in depth,
for end users at least.

5. DEPENDABILITY/FAULT TOLERANCE
The DESTECS project aims to support the design of

dependable embedded systems by allowing designers to ex-
plore, model and reason about the use of fault tolerance
techniques. The benefit of combining CT and DE modelling
in a single methodology and tools platform is that it allows
faults to be considered in parts of the system model in a
consistent way. In addition, the effect of faults between the
boundary of the models —at the interface level— can be ex-
plored. Co-simulation is a key component to achieving this
combined approach.

One aim is to allow designers to model faulty components
and explore: how individual faults affect the system; how
combinations of faults affect the system; and how faults
propagate through the system. These are the “scenarios”
in Figure 2. 20-sim already allows for components to be re-
alised by different implementations, including implementa-
tions with non-ideal behaviour. This could be extended to
provide faulty components and perhaps include stochastic
metadata to allow for the modelling of intermittent faults.

The methodology component of the DESTECS method

should aid designers in applying fault tolerance methods to
deal with these faults. The ultimate aim is to provide sophis-
ticated fault tolerance patterns that designers can appeal to
in both their exploration of possible designs and directly in
the design of fault-tolerant controllers. Support for these
patterns should also be incorporated in the tools platform.
For example, in the case of the water tank example from Sec-
tion 3, the designer might explore how the controller behaves
if a sensor incorrectly reports the water level. They could
then apply a replication pattern, which introduces multiple
sensors to deal with this single point of failure.

Another goal is to allow the designers to describe degraded
behaviours within the system and controller (for circum-
stances where faults may make fully correct behaviour im-
possible) and fail-safe behaviours, for when the system can-
not continue after faults. For example, the personal trans-
porter (see Section 6) is a good example of where we might
wish to explore these behaviours, where personal safety is at
stake. The use of a formal method such as VDM to model
the controller offers the potential to reason about these de-
graded behaviours and fail-safes, in order to increase confi-
dence in the dependability of the design.

Fault tolerance techniques which we hope to incorporate
include error detection, compensation and recovery; redun-
dancy in hardware, software or time; and both backward
(e.g. roll-back) and forward (e.g. exception handling) error
handling. For embedded systems, there is only limited re-
search on the analysis of the tight time bounds required
for these mechanisms. There is a large body of work on
identifying and isolating failing nodes, however the integra-
tion of these aspects to develop fault tolerant systems cost-
effectively remains a challenge [11].

Design support for fault tolerance exists for hard real-time
fault tolerance at the low level (custom hardware or spe-
cialised facilities such as a global time base); at the schedul-
ing level; at software level (e.g. using SWIFT code transfor-
mation); at the architectural level (nested recovery units)
and at the formal specification/refinement level. DESTECS
is complementary to all these in aiming to make progress to-
wards the selection of fault tolerance strategies at the very
early modelling and simulation stage. An important area
is the incorporation of stochastic metadata into models; al-
though there is initial work on this aspect in the discrete-
event side, there is little investigation of recording stochas-
tic information to support co-simulation of the system as a
whole.

DESTECS will also be supporting trade-off analysis such
that alternative candidate system solutions can be compared
against each other. The achievement of dependability tar-
gets of a given system should be incorporated explicitly into
the full system life cycle [10]. Relatively little research has
been conducted for dependability data to support decision
making during design. Work on modelling multi-layered
approaches to dependability and alternative fault tolerance
strategies in early stages appear promising. Here again, the
ability to model and simulate the effects of such an approach
in an embedded system context is still lacking.

6. PILOT INDUSTRY STUDIES
The DESTECS project includes three industry partners

who have provided case studies that the project can work
with. These case studies will provide impetus for the re-
search and challenge problems for the resulting DESTECS

methodology and tools.
In addition to the industrial partners, an Industry Fol-

low Group (IFG) has been established. The members of
the IFG will be updated on progress through briefings and
workshops. They are invited to contribute challenges to the
DESTECS project, which the methodology and tools should
try to address. Through the IFG, it is anticipated that the
DESTECS technology will be exploited in more domain ar-
eas. At the start of the project, the IFG consists of 17
members and additional members will be able to join the
IFG during the project.

The case studies have been selected to provide a range of
embedded systems applications with different forms of com-
plexity, involving engineering heterogeneity (so that collab-
orative approaches are of interest) and all having the need
to provide a predictable level of fault tolerance. They are
each chosen to represent a state-of-the-art innovative design
problem but they also intended to be recognisable and ac-
ceptable for the industry at large, in order to ensure impact.
They are each small enough to facilitate an iterative devel-
opment approach with yearly cycles. The diversity of the
case studies will facilitate the generalisation of the research
results.

6.1 Document Handling
The Neopost document handling system folds documents,

inserts them into envelopes and seals these envelopes. The
core operation of the document handling system is the paper
path. Empty envelopes and prepared documents travel along
this paper path. While in transit, the documents are aligned
and folded, before being inserted into the envelopes.

The design of the document handling system involves tight-
ly integrated mechatronic disciplines, including mechanics,
electronics, and software design. In order to release new
generations of the system, it is essential to develop these
components concurrently. For concurrent engineering of the
paper path’s electromechanical components and operational
logic, the concept of Hardware-In-the-Loop is deployed. A
state-machine model of the electromechanical interface to
the paper path allows the embedded controller to be tested
before the electromechanical components of the real paper
path are integrated.

In DESTECS, we want to lift this concept to a higher ab-
straction level (“Model-In-the-Loop”). Instead of an artifi-
cial state-machine model of the electromechanical interface,
we want to directly model the electromechanics in 20-sim.
Instead of testing the operational logic at a low level of ab-
straction, we wish to assess the functionality and depend-
ability at a higher level through VDM.

6.2 Inertial Measurement
Verhaert’s Itrack platform is an inertial measurement unit,

that is able to measure movement in real-time in 6 degrees
of freedom with output rates up to 100 Hz. It is used in ap-
plications where high positioning accuracy and high-speed
acquisition is required. The core of this product is a complex
sensor fusion algorithm which consists of a Kalman filter
which processes several sensor signals in parallel, for example
accelerometers, gyroscopes and magnetometers. This appli-
cation will form the second case study inside the DESTECS
project.

6.3 Personal Transportation

Chess has created a demonstration mobility platform called
the “ChessWay”, inspired by the famous Segway personal
transporter. This is basically an inverted pendulum with
two powerful electric motors to provide active stability. The
person standing on the platform can move in a forward di-
rection by moving their centre of gravity forward or decel-
erate by moving their centre of gravity backward. It is con-
ceptually very simple, but an intrinsically unstable system.
Therefore, the control algorithms need to be carefully de-
signed, which is quite challenging and we expect that it can
be done elegantly using the DESTECS model-driven ap-
proach. In particular, fault detection, isolation and repair
strategies will be the major challenge in this case study.
These strategies must be carefully selected; efficiently mod-
elled and analysed; and implemented effectively.

7. CONCLUSIONS
The DESTECS project aims to support the rapid devel-

opment of dependable embedded control systems through
co-simulation of 20-sim (continuous time) and VDM (dis-
crete event) models. The use of co-simulation allows de-
signers to model and test both the environment and con-
troller early within the delveopment process, reducing time-
to-market and increasing confidence in correctness.

We aim produce a tools platform that supports co-simulation,
including model versioning, combinatorial tesing, regression
testing; and fault injection. We face challenges in producing
a tools that can manage these complex, interacting goals in a
practical way. We also face challenges in developing method-
ological guidelines which complement the DESTECS tools
and support rather than constrain the users of our approach.

Acknowledgments
The research leading to these results have received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no 248134.

We would like to thank Nick Battle and the anonymous
reviewers for providing valuable input on the contents of this
paper.

8. ADDITIONAL AUTHORS
Additional authors: F. Wouters, Verhaert NV, Belgium,

email: Frederik.Wouters@verhaert.com.

9. REFERENCES
[1] C. Brooks, C. Cheng, T. H. Feng, E. A. Lee, and

R. von Hanxleden. Model engineering using
multimodeling. In 1st International Workshop on
Model Co-Evolution and Consistency Management
(MCCM ’08), September 2008.

[2] S. L. Campbell, J.-P. Chancelier, and R. Nikoukhah.
Modeling and Simulation in Scilab/Scicos with
ScicosLab 4.4. Springer, 2006. ISBN:
978-0-387-27802-5.

[3] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig,
S. Neuendorffer, S. Sachs, and Y. Xiong. Taming
heterogeneity – the ptolemy approach. Proceedings of
the IEEE, 91(1):127–144, January 2003.

[4] R. Elmstrøm, P. G. Larsen, and P. B. Lassen. The
IFAD VDM-SL Toolbox: A Practical Approach to

Formal Specifications. ACM Sigplan Notices,
29(9):77–80, September 1994.

[5] J. Fitzgerald, P. G. Larsen, P. Mukherjee, N. Plat,
and M. Verhoef. Validated Designs for Object–oriented
Systems. Springer, New York, 2005.

[6] J. Fitzgerald, P. G. Larsen, and S. Sahara. VDMTools:
Advances in Support for Formal Modeling in VDM.
Sigplan Notices, 43(2):3–11, February 2008.

[7] T. A. Henzinger and J. Sifakis. The discipline of
embedded systems design. Computer, 40(10):32–40,
2007.

[8] Hermann Kopetz and Günther Bauer. The
Time-Triggered Architecture. Proceedings of the IEEE,
91(1), January 2003.

[9] J. Hooman, N. Mulyar, and L. Posta. Coupling
Simulink and UML Models. In B. Schnieder and
G. Tarnai, editors, Proceedings of Symposium
FORMS/FORMATS 2004, Formal Methods for
Automation and Safety in Railway and Automotive
Systems, pages 304 – 311, 2004.

[10] M. Kaaniche, J. C. Laprie, and J. P. Blanquart. A
Framework for Dependability Engineering of Critical
Computing Systems. Safety Science, 40(9):731–752,
2002.

[11] K. Kim. Fault-tolerant distributed computing:
Evolution and issues. IEEE Distributed System
Online, 3(7), July 2002.

[12] C. Kleijn. Modelling and Simulation of Fluid Power
Systems with 20-sim. International Journal of Fluid
Power, 7(3), November 2006.

[13] P. G. Larsen, N. Battle, M. Ferreira, J. Fitzgerald,
K. Lausdahl, and M. Verhoef. The Overture Initiative
– Integrating Tools for VDM. ACM Software
Engineering Notes, 35(1), January 2010.

[14] Simulink - Simulation and Model-Based Design.
http://www.mathworks.com/products/simulink/,
2009.

[15] M. Verhoef. Modeling and Validating Distributed
Embedded Real-Time Control Systems. PhD thesis,
Radboud University Nijmegen, 2009. ISBN
978-90-9023705-3. Available on-line at
www.marcelverhoef.nl/uploads/Main/thesis.pdf.

[16] M. Verhoef and P. G. Larsen. Interpreting Distributed
System Architectures Using VDM++ – A Case Study.
In B. Sauser and G. Muller, editors, 5th Annual
Conference on Systems Engineering Research, March
2007.

[17] M. Verhoef, P. G. Larsen, and J. Hooman. Modeling
and Validating Distributed Embedded Real-Time
Systems with VDM++. In J. Misra, T. Nipkow, and
E. Sekerinski, editors, FM 2006: Formal Methods,
pages 147–162. LNCS 4085, 2006.

[18] M. Verhoef, P. Visser, J. Hooman, and J. Broenink.
Co-simulation of Real-time Embedded Control
Systems. In J. Davies and J. Gibbons, editors,
Integrated Formal Methods: Proc. 6th. Intl.
Conference, Lecture Notes in Computer Science 4591,
pages 639–658. Springer-Verlag, July 2007.

[19] M. Wetter. Modelica-based Modelling and Simulation
to support Research and Development in Building
Energy and Control Systems. Journal of Building
Performance Simulation, 2(2):143–161, June 2009.

