
Higher-Order Abstraction in Hardware Descriptions with CλaSH

Marco Gerards, Christiaan Baaij, Jan Kuper, Matthijs Kooijman
University of Twente, Department of EEMCS

P.O. Box 217, 7500 AE Enschede, The Netherlands
m.e.t.gerards@utwente.nl

Abstract—Synchronous hardware can be straightforwardly
modelled as a function from input and (current) state to an
updated state and output. The CλaSH compiler can translate
such a transition function, described in a functional language,
to synthesisable VHDL. Taking a hardware-oriented viewpoint,
components can then be seen as an instantiation of such a
transition function. An abstraction called Arrows is used to
directly model components by combining a transition function
and its state. The abstraction also provides an uniform interface
for composition, without losing the referential transparency
offered by a functional description. Furthermore, readability of
hardware designs is increased by the use of the γ-syntax, that
automatically composes components according to the Arrow
interface. The advantages of the Arrow abstraction and the
γ-syntax are demonstrated by means of a realistic example
circuit consisting of multiple components. This is a significant
extension to CλaSH and enables many high level abstractions.

Keywords-Functional Programming, Hardware description
languages, Pipeline processing

I. INTRODUCTION

Synchronous digital hardware can be modelled using a
Mealy machine, where current inputs (i) and the current
state (s) are mapped, using a transition function, to a new
state (s′) and output of the circuit (o), see figure 1. The state
is stored inside registers.

f
i o

s s′

Figure 1: Mealy machine

This transition function can be seen as a mathematical
function, which is applied to the inputs and state at every
clock cycle. Since manual translation of a transition function
to descriptions that can be used to produce the physical
hardware is very cumbersome, this is often automated using
software.

Two popular HDLs are VHDL and Verilog. Although
it is possible to use these languages and the respective
tools to design hardware and synthesise it, the source
code descriptions are very different from the mathematical

function we started with. For instance in a VHDL process,
sequential statements are used to describe parallel hardware.
Furthermore, it is hard to prove that functionality remains
the same after some design steps. In our experience, the
hardware descriptions written in a (modified) Haskell subset
are very compact and well readable when compared to their
equivalent VHDL descriptions since the level of abstraction
is raised and less syntactical overhead is required. Because
of these reasons, it is natural to use functional programming
languages to design synchronous digital hardware. In [1], [2]
we have introduced a modified subset of Haskell, together
with a compiler called CλaSH, which is based on the
Glasgow Haskell Compiler (GHC).

In this paper we describe a substantial extension to CλaSH
which makes it possible to describe components as a tran-
sition function together with state. In our implementation,
the result remains functional (hence, a “normal” Haskell
description), allows for extensions to CλaSH like multiple
clock domains and it yields a pleasant notation for port
mappings.

In this paper, we describe how to hide the state from
the user in function compositions, i.e. the state is part of
the function arguments but this is hidden while composing
components, by using an automata arrow [3]. Each arrow
describes a component, which can be combined with other
arrows (components). It is possible to combine multiple
arrows to a single arrow, which is similar to combining
many subcomponents to a single component. The main
contribution of this article is showing how to deal with state
when designing synchronous hardware using CλaSH and
presenting this using a nontrivial example.

Section II discusses related work and compares this to our
own work. Section III will elaborate on CλaSH. Arrows will
be shortly discussed in section IV. Section V explains how
to deal with the hardware state, when designing synchronous
hardware in CλaSH. In section VI, the streaming reduction
circuit [1] is introduced as a non-trivial circuit and an
implementation using arrows is elaborated upon.

II. RELATED WORK

Where the CλaSH compiler takes Haskell code as input,
Lava [4] and ForSyDe [5] are domain specific embedded
languages defined within Haskell. Both languages are stream
processing languages, i.e. they operate on infinite streams. In



stream processing languages, the state of synchronous hard-
ware can be modelled using a delay function. In CλaSH, the
delay function is a special case and can be trivially written
as a simple transition function. Instead of defining mappings
from streams to streams, CλaSH defines a mapping from
current input and current state to the next state and output,
this mapping corresponds to a Mealy machine. Since the
input of CλaSH is not a domain specific language, all choice
constructs in Haskell (if, guards, pattern matching, etc) are
available. Lava has only the “mux” primitive, ForSyDe
supports the if-then-else and case-expressions. Like Kansas
Lava [6] and ForSyDe, CλaSH has support for integer
types and primitive operations; Chalmers Lava has only
support for the bit type and related primitives. CλaSH, Lava
and ForSyDe support polymorphic, higher-order functions.
ForSyDe requires explicit wrapping of functions and pro-
cesses and also explicit component instantiations, making
descriptions in ForSyDe more verbose than those in CλaSH.

VHDL [7] components are created using component dec-
larations and connected using port maps. In VHDL it is not
clear from variable and signal declarations whether these
variables and signals will become part of the state. This
depends on the actual code, not on the declarations. When
using CλaSH, this is more transparent, as the current and
next states are explicitly defined. Higher-level abstractions
such as (but not limited to) using functions as function
argument or functions returning a function as result are cum-
bersome in VHDL, functional languages are better suited
when high-level abstractions are desired.

In [3], arrows are introduced and circuits using delay func-
tions are taken as an example. In section V, we show that
arrows can also be used for functional hardware modelled
with Mealy machines whereas examples in [3] do not make
the state explicit in the arguments of a function and use a
delay function instead. In the examples in [3], only very
small hardware designs were explored. We will show it is
possible, using CλaSH, to create relatively large hardware
designs. In our approach we will use the automata arrow as
introduced in [3].

III. CλASH

Using the CλaSH libraries one can simulate synchronous
hardware designs written in Haskell using any Haskell inter-
preter or compiler. When describing hardware in CλaSH, it
is possible to use Haskell choice constructs like if-then-else
and pattern matching, higher order functions, etc. It is not
trivial to compile all Haskell code to hardware, since not
all Haskell constructs have a direct structural counterpart in
hardware. For instance, Haskell types like Integer and lists
do not have a size that can always be fixed at compile time.
Therefore, there is no (direct) translation from such types to
hardware, as in hardware the number of bits is fixed.

On the other hand, some types are important when
designing hardware, while they are less important when

designing software. In software mainly words which are a
multiple of 8 bits are used, while in hardware it is common
to let the designer choose the number of bits in a word.
Furthermore, operations on bits and vectors of bits are
crucial for hardware designs.

Several built-in types are available:
Bit This is a predefined algebraic data type which

is either Low or High
Bool Values of this boolean type can either be True

or False. This can, for instance, be used in if-
then-else constructs.

Vector Vectors have a static length, dependent types
are used to fix their length.

Index The index type is used to index elements in
a Vector.

(Un)signed Integer types in CλaSH have a fixed number
of bits and can be either signed or unsigned,
they will wrap around when an overflow
occurs.

Besides these predefined types, tuples and algebraic data
types are supported. Together these types are sufficient to
describe most synchronous hardware. The way of describing
synchronous functional hardware is the topic of the next
section.

To translate the extended Haskell subset supported by
CλaSH to a description of physical hardware, VHDL is
used as intermediate language. Although it is certainly
possible to directly translate Haskell to a network of hard-
ware components, using VHDL as intermediate language
makes it possible to use all existing tools that facilitate
hardware design. For instance, a lot of optimisations, power
simulations, etc. are enabled this way.

To translate Haskell to VHDL, CλaSH rewrites GHCs
internal Core to a normal form using a set of rewrite rules
[8]. This normal form is very close to a netlist, the actual
transformation from Core in the normal form to VHDL is
more or less trivial. Examples of these transformations are β-
reduction and η-expansion, but there are also transformations
to unfold higher-order functions to first order functions by
repeated application of the appropriate function. In a similar
fashion, CλaSH recognises the automata arrow in Core and
knows how to extract state from these arrows.

IV. ARROWS

This section briefly discusses arrows in CλaSH and
Haskell, enough to understand the remainder of this article.
For an elaborate discussion we refer to [9] or [3] which both
contain an excellent introduction to arrows in Haskell.

Arrows give an uniform interface for composition, and
is a well-known abstraction in the functional programming
community. Every arrow is an instance of the type class
Arrow . Type classes in CλaSH can be compared to inter-
faces in Java [1]. For every arrow, sequential and parallel



f

g

first f second g

⋙

Figure 2: Composition of arrows using first, second and ⋙

f

β γ

δ

Figure 3: An arrow loop

composition can be defined. To create an arrow from a
regular function we use the function pure. The function ⋙
takes two arrows and composes them such that the output
of the first arrow is connected to the input of the second
arrow. For parallel composition the process is somewhat
more elaborate and uses the functions first and second .
The function first takes an arrow with input type β and
output type γ and creates a new arrow with input and output
types respectively (β,δ) and (γ,δ). The arrow that is used as
the argument of first is only applied to the first element of
the tuple (β,δ), the second element in the tuple will not be
modified. The function second is similar to first , except that
it applies the arrow to the second element of the tuple. The
expression (first f ) ⋙ (second g) thus forms the parallel
composition of the arrows f and g . Figure 2 shows this
parallel composition graphically. The type class Arrow is
defined as in Listing 1.

class Arrow α where 1
pure ∶∶ (β → γ) → α β γ 2
(⋙) ∶∶ α β γ → α γ δ → α β δ 3
first ∶∶ α β γ → α (β, δ) (γ, δ) 4

Listing 1: The arrow type class

Using these operators all parallel and sequential structures
can be created. To create feedback loops (Figure 3) another
type class, called ArrowLoop, is required. This type class is
defined as in Listing 2.

class Arrow α⇒ ArrowLoop α where 1
loop ∶∶ α (β, δ) (γ, δ) → α β γ 2

Listing 2: The ArrowLoop type class

To model hardware, we use one specific arrow, namely the

automata arrow. The automata arrow, described in [3] and
shown in Listing 3, takes an input and produces an output
together with a new automata arrow. The functions pure,
>>>, first and loop are defined in [3] for Comp.

newtype Comp i o = C { 1
exec ∶∶ i → (o,Comp i o) 2
} 3

Listing 3: Definition of the Automata Arrow

We will use this functionality of producing a new arrow
to store the state. In that case the arrow is a function that
contains the current state as a constant. In the next section
we define a function that lifts a transition function to an
automata arrow. The reason why we use the automata arrow
together with this lifting function, instead of the circuit arrow
from [3], is that our approach has a strong correspondence
to the transition function. When using the form we propose,
the arrow (which contains the state) receives an input and
produces a new arrow (which contains state) together with
an output.

V. STATE

In a Mealy machine, the transition function maps the input
and the current state to output and a new state, as was
explained in section I. In CλaSH, the state is an argument
of the transition function. All transition functions in CλaSH
have the following type:

state → input → (state,output)

The input state and output state have the same type (state),
as both correspond to the register contents. The types input,
output and state can be freely constructed using the types
that were described in the previous section.

The automata arrow is used to hide state inside the arrow.
Instead of using the transition function, a new function
of type Comp is defined which maps input to an output
and a new function of type Comp. The function of type
Comp is an automata arrow and contains the state. The
type of the state cannot be observed from the type Comp.
Because of this, the state is not required as an argument
to this function and is effectively hidden. A mapping from
a transition function to an automata arrow is defined using
the lifting function ⇑ in listing 4. This lifting function is
recognised by CλaSH in Core expressions and is used to
identify state.

(⇑) ∶∶ (s → i → (s,o)) → s → Comp i o 1
(⇑) f init = C applyS 2

where 3
applyS = λi → let (s,o) = f init i 4

in (o, f ⇑ s) 5

Listing 4: Lifting a transition function to a Component



∗
x

y
+

acc acc′

acc′

Figure 4: Multiply Accumulate transition function

This function requires the transition function and an initial
state as arguments. The initial state is used when the system
is reset, which for instance occurs after power on. Since the
creation of a new arrow can not be implemented in actual
hardware, the CλaSH compiler recognises the arrow, extracts
the state and creates registers that represent the state.

The multiply accumulate (MAC) will be used as an
example. The accumulator adds the product of the inputs
to its state and uses the result as new state and also sends
it to the output. The corresponding transition function is
visualised in figure 4 and defined in listing 5.

mac acc (x , y) = (acc′,acc′) 1
where 2

acc′ = acc + x ∗ y 3

Listing 5: Multiply accumulate

To simulate synchronous hardware described by transition
functions, the simulate function is used, as defined in list-
ing 6. The simulate function receives the transition function
f and initial state s as argument, together with a list of input
values (x ∶ xs).

simulate f s (x ∶ xs) = y ∶ simulate f s ′ xs 1
where 2
(s ′, y) = f s x 3

Listing 6: The simulate function

When the circuit is lifted to an arrow, the initial state is
an argument to the lifting function ⇑, which hides the state
inside the function. To lift the function mac to the arrow
macA using the initial state 0, the following definition is
used:

macA = mac ⇑ 0

Because the state is now hidden in an arrow, the simulation
function for arrows differs slightly from the simulation
function described in Listing 6: instead of using the new
state (s ′) in the recursive call of simulate, we would use a
new function f ′.

For the composition of arrows in CλaSH we introduce a
slightly different notation as originally introduced in [10].
Using this component composition notation, indicated by γ,
the arrows are automatically composed using first , ⋙ and
pure . In this notation, first the inputs and outputs of the
component are described, followed by a where statement
after which the subcomponents are instantiated. The loop

mac

mac

a
b

c
d

+

r1

r2

Figure 5: The arrow macsum

function is automatically used to compose arrows which
require feedback. In listing 7 it is shown how to define
a circuit (using the component composition notation) that
contains two MACs, of which the results are added to
produce an output. This arrow is visualised in figure 5.

macsum = γ (a, b, c,d) ⇒ (r1 + r2) 1
where 2

r1 ⇐ mac ⇑ 0 ⇐ (a, b) 3
r2 ⇐ mac ⇑ 0 ⇐ (c,d) 4

Listing 7: Composing MAC components

In this example, the instantiations of the two components
appear at lines 3 and 4. At the right, the inputs of the
components are specified. When a component has multiple
inputs, tuples are used. Between the two arrows, the tran-
sition function mac is shown, lifted to an arrow using the
initial state 0. The output appears at the left side of the lines
describing the component instantiations. The arrow macsum
receives the inputs (a, b, c,d) and returns r1 + r2 as output
(line 1). Note that arbitrarily deep nesting of components
defined using arrows is possible, as the γ-notation results in
a Comp arrow which again can be used for composition.

Using transition functions it becomes easy to define a
delay function, which will be translated to a register.

delay s0 i = (i , s0)

Note that the delay function is polymorph, hence values
of any type can be passed to this function. One example
where this can be useful is in the definition of pipelines.
Consider components C1, . . . ,CN , where the input ports of
Ci (for i > 1) are connected to the output ports of Ci−1 using
the ⋙ operator defined for arrows. In CλaSH this can be
written as

C1 ⋙ C2 ⋙ ⋅ ⋅ ⋅ ⋙ CN

Suppose this circuit has to be pipelined by inserting
registers between the components. In CλaSH this can be
written as

C1 ⋙ delay ⇑ s2 ⋙ C2 ⋙ ⋅ ⋅ ⋅ ⋙ delay ⇑ sN ⋙ CN

Two big advantages of CλaSH are shown here. Due to
polymorphism, the delay function and compositions can
always be used as long as the types match.

Parameterisation is possible when using the Comp arrow,
for instance as in listing 8. Listing 8 shows how a complex



complexAddition f s0 1
= γ (Cpx a1 b1 ,Cpx a2 b2 ) ⇒ Cpx a b 2
where 3

a ⇐ f ⇑ s0 ⇐ (a1 ,a2 ) 4
b ⇐ f ⇑ s0 ⇐ (b1 , b2 ) 5

Listing 8: Parameterisation

adder can be defined using a given adder. Note that it is
possible to, for instance, instantiate the complex adder with a
certain floating point adder but also with an integer adder due
to the support for polymorphism in CλaSH. The argument
f is a function that describes an adder, the argument s0 the
initial state of f. This makes it possible to replace the adder
without changing the code of the complex multiplication.

Note that if the floating point adder has a certain delay due
to the pipeline, the composition will have the same delay.
In the next section another example of parameterisation is
given.

VI. REDUCTION CIRCUIT

The small example in the previous section does not yet
show the full strength of CλaSH, nor why arrows are useful.
A more elaborate example of a circuit is the streaming
reduction circuit [11], which is introduced below.

When solving the matrix equation Ax = b for a big sparse
positive definite matrix A, the conjugate gradient algorithm
is often used. The conjugate gradient algorithm can be time
consuming, while for some applications a fast response is
required. One method to enable a fast execution of this
algorithm is by implementing this algorithm in hardware, for
instance using an FPGA. A kernel operation of the conjugate
gradient algorithm is the sparse matrix-vector multiplication
(SM×V). When calculating a matrix-vector multiplication,
dot products can be used to calculate the elements of the
result vector. For an SM×V, the number of multiplications
and additions required for an element in the result vector
depends on the number of non-zeros in the respective row
of the matrix. In most FPGA implementations, a binary
pipelined floating point adder is used to calculate the addi-
tions. Pipelining enables a higher clock frequency at the cost
of an increased delay (in clock cycles). Every clock cycle
an addition can be scheduled, however it will take several
clock cycles before the result is available because the adder
is pipelined. In figure 6 pipelining is demonstrated, where it
is shown how values propagate through the pipeline. During
the first clock cycle the calculation a+ b enters the pipeline,
the next cycle the calculation c + d enters the pipeline,
etc. Note that in the input two values enter the pipeline,
whereas inside the pipeline the values are step by step added.
For brevity, in our notation we assume the addition takes
place immediately, while the result propagates through the
pipeline, this leads to an abstract notation for a pipeline.
After α clock cycles, where α is the depth of the pipeline,

a + b

a b

c + d
a + b

c d

e + f
c + d
a + b

e f

g + h
e + f
c + d
a + b

g h

i + j
g + h
e + f
c + d

i j

a + b

Ô⇒ Ô⇒ Ô⇒ Ô⇒

Figure 6: Pipelining, 5 consecutive clock cycles

the results appear at the output of the pipeline. Note that all
pipeline stages operate in parallel.

Summing a row of numbers with a pipelined binary adder,
as is required for an SM×V, is more complex than summing
rows of values with a non-pipelined binary adder. Take for
instance a row of three values summed using a pipelined
binary adder of 14 stages. It is trivial to add the first two
values. However, it will take 14 clock cycles before the result
is available and can be added to the third value, hence this
third value has to be buffered. Meanwhile, values of other
rows might be available for reduction. This illustrates that
the pipeline can be scheduled to reduce values of multiple
rows simultaneously.

Various circuits which can sum variable length rows of
floating point values exist, these are called reduction circuits.
Since these reduction circuits use pipelining and because of
varying row lengths, it is hard to design a reduction circuit.
Reduction circuits are an active area of research. Many
reduction circuits with different properties are available
[11], [12], [13], [14], [15]. Several designs rely on either
a minimum or a maximum row length, where some require
multiple adders, while others schedule a single floating point
adder.

There are two popular methods to deal with complexities
caused by pipelining. In the first method, values at the input
and partial results at the output of the pipelined adder are
placed in a buffer. During a clock cycle there can be multiple
values from different rows in the buffer that holds input
values and there can be multiple values from different rows
in the buffer that holds partial results, a scheduler is used
to choose which values will enter the pipeline. It has to be
shown that the buffers are bounded, since in hardware the
buffers are relatively expensive and have a fixed size. In
the other method, it is assumed that rows have a maximum
length n, in that case an adder with at least n input ports is
created using multiple binary adders. The drawback is that
this approach is less generic and requires a lot of parallel
adders, such a design can become too big if one has to deal
with long rows.

In [11] our streaming reduction circuit is introduced,
together with an algorithm to determine the inputs for the
pipeline and a proof to show that the defined buffer sizes



I

P

Memory

R0 0

Input Output

Controller

Figure 7: Streaming Reduction circuit

are sufficient. In the streaming reduction circuit, values
appear sequentially at the input, one value at every clock
cycle. These values are a two tuple consisting of a floating
point value (which has to be added) together with a row
index which uniquely identifies the rows of values which
have to be accumulated. The streaming reduction circuit
uses a single floating point adder with α pipeline stages.
However, this adder can in general be replaced by any
binary commutative and associative operator. This pipelined
operator is denoted by P .

If two values of the same row are available at the input,
they can be summed by inserting them into the pipeline.
Since intermediate results which appear at the output of
the pipeline have to be further reduced, they have to be
temporarily stored. For the streaming reduction circuit, this
is done in the partial result buffer (denoted by R). This
partial result buffer has an additional task: it will reorder
the final results, such that the results are sent to the output
of the reduction circuit in the order of their arrival. When
two intermediate results are reduced, it is not possible to
simultaneously reduce values which appear at the input.
Therefore, the values at the input must be buffered and their
order of arrival must be preserved. To this end, we use a
FIFO input buffer (denoted by I). To determine if either
values from the input buffer, from the end of the pipeline
and/or from the partial result buffer will be used, five rules
are checked. The rules can determine which values to use,
i.e. the top two values from I (denoted as I1 and I2), the
output of the the adder pipeline (denoted as Pα) or values
from R.

The five rules, in descending order of priority, are:
1) If there is a value available in R with the same row

index as Pα, then this value fromR enters the pipeline
together with Pα.

2) If I1 has the same index as Pα, then I1 and Pα enter
the pipeline.

3) If there are at least two elements in I, and I1 and I2
have the same index, then they enter the pipeline.

4) If there are at least two elements in I, but I1 and
I2 have different indexes, then I1 enters the pipeline

I R

P

(a) Rule 1

I R

P

(b) Rule 2

I R

P

(c) Rule 3

0
I R

P

(d) Rule 4

I R

P

(e) Rule 5

Figure 8: Rules.

together with the unit element of the operation dealt
with by the pipeline (thus for example, 0 in case of
addition, 1 in case of multiplication).

5) In case there are less than two elements available in
I, no elements enter the pipeline.

The rules are schematically shown in figure 8. The dat-
apath of the reduction circuit is shown in figure 7. The
components I, R and P , together with the controller are
shown in this figure. To identify rows within the reduction
circuit, discriminators are used as identification. They are
assigned to new rows which enter the reduction circuit and
are released when a row is fully reduced and leaves the
reduction circuit, after which the discriminator is reused.
Discriminators require less bits than the row index, as the
number of rows within the reduction circuit is bounded.

Although figure 7 makes it clear how data flows through
the reduction circuit, it neglects the control signals. Figure 9
shows the entire circuit including control signals. The con-
troller, denoted by C, checks which rule has to be executed.
The discriminators are assigned by D.

All components of the streaming reduction circuit are
modelled as a function in CλaSH. Taking the input buffer
(I) as an example, which has the type

I ∶∶ ISt → (DVal , Index3 ) → (ISt , (DVal ,DVal))

The type indicates that it has two inputs and one result,
the first input is the current state, and the second input is a
tuple containing the signals coming from other components.
The output is a tuple which consists of the new/updated state
and the output signals for other other components.



D I C R

P

σD
σI σC σR

σP

d
δ

r′

new

ρ

r

i1

i2

a2a1

x

i

y

Figure 9: Reduction circuit signals

A value of type DVal consists of a floating point value
and its discriminator; the discriminator is used to determine
to what row the values belong to. The signals coming from
other components are thus the value (of type DVal ) that has
to be placed in the buffer, and a second signal indicating
how many values will be consumed from the buffer. The
second signal is an index of type Index3 , an index with an
exclusive upper bound of 3.

The state of the input buffer is an algebraic datatype (with
constructor ISt) that contains a vector and two indices;
together used to implement the FIFO as a circular buffer.
The result of the function I is the tuple containing the new
state, and the two values (of type DVal ) that are at the top
of the FIFO. In a similar fashion, the other components that
are shown in figure 9 are written as a Haskell function. We
connect these components to form the complete reduction
circuit by using the code shown in Listing 9.

rc P = γ (x , i) → y 1
where 2
(new ,d) ⇐ D ⇑ D0 ⇐ i 3
(i1, i2) ⇐ I ⇑ I0 ⇐ (x ,d , δ) 4
ρ ⇐ P ⇑ P0 ⇐ (a1,a2) 5
(r , y) ⇐ R ⇑ R0 ⇐ (new ,d , ρ, r ′) 6
(a1,a2, δ, r

′) ⇐ C ⇑ C0 ⇐ (i1, i2, ρ, r) 7

Listing 9: Reduction circuit with arrows

In listing 9 transition functions are now lifted using an
initial state (denoted by the calligraphic letters with subscript
zero) to arrows (lines 3-7). Only the composition of the
components is shown, the state is only visible through the
initial state. Since the component and its initial state belong
together, it is natural to define the initial state where the
component is instantiated. The floating point operator P is
passed as a parameter to the reduction circuit, making the
implementation generic for all kinds of pipelined reduction
operations.

Table I: Design characteristics Reduction circuit

CλaSH VHDL

CLB Slices & LUT 4076 4734
Dffs or Latches 2467 2810
Operating Frequency (MHz) 159 171

When arrows are used to implement the reduction circuit,
an ArrowLoop is required. In line 1 of listing 9 this is
automatically enabled using the γ syntax. The component
(or function) P requires a result from C, while C requires
a result from P , i.e. the functions depend on each other’s
results. In figure 9, this is shown using the signals δ, i1 and
i2. These same signals are shown in listing 9. Because the
result (ρ) produced by the pipeline (P) does not immediately
depend on the signals (a1, a2) sent by the controller (C)
during the same clock cycle, Haskell’s lazy evaluation will
make sure this functional dependency will not be a problem
in simulation since the data which is required is already
available in the state and does not depend on the input. For
exactly the same reason, this will not be a problem in the
actual hardware produced using CλaSH.

Table I displays the design characteristics of both the
CλaSH design and a hand-optimized VHDL design where
the same global design decisions and local optimizations
were applied to both designs. The figures in the table show
that the results are comparable, but we remark that they only
give a first impression.

VII. CONCLUSIONS AND FUTURE WORK

Functional languages are well suited for hardware design.
The well-known Mealy machine can be described using a
function from input and the current state to output and a
new state. This can be modelled in a functional language
using a single function, called the transition function. The
notation of arrows yields both a pleasant notation and a
method to hide the state inside the arrow. This abstraction
is well-known in the functional programming community,
parameterisable and functional.

Our approach was tested by modelling and compiling the
streaming reduction circuit, a nontrivial circuit, in CλaSH.
From this example, it is clear that it is possible to design
nontrivial hardware using Haskell. ArrowLoop is used since
loops are often required for digital hardware design. Because
such (non-combinational) loops occur frequently in digital
designs it is desirable to use lazy functional languages
to simulate hardware designs. The γ syntax automatically
introduces the loop construct in descriptions when a looping
dependency is discovered.

Only synchronous hardware is supported by CλaSH.
In the future, support for asynchronous hardware will be
considered. Further research is required in this direction.



REFERENCES

[1] C. P. R. Baaij, M. Kooijman, J. Kuper, W. A. Boeijink,
and M. E. T. Gerards, “CλaSH: Structural descriptions of
synchronous hardware using Haskell,” in Proceedings of the
13th EUROMICRO Conference on Digital System Design:
Architectures, Methods and Tools, Lille, France. USA: IEEE
Computer Society, September 2010, pp. 714–721. [Online].
Available: http://eprints.eemcs.utwente.nl/18376/

[2] J. Kuper, C. P. R. Baaij, M. Kooijman, and M. E. T. Gerards,
“Exercises in architecture specification using CλaSH,” in Pro-
ceedings of Forum on Specification and Design Languages,
FDL 2010, Southampton, England. Gières, France: ECSI
Electronic Chips & Systems design Initiative, September
2010, pp. 178–183.

[3] R. Paterson, “Arrows and computation,” The Fun of Program-
ming, pp. 201–222, 2003.

[4] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh, “Lava:
Hardware design in Haskell,” in Proceedings of the third ACM
SIGPLAN international conference on Functional program-
ming - ICFP ’98, 1998, pp. 174–184.

[5] I. Sander and A. Jantsch, “System modeling and transforma-
tional design refinement in ForSyDe,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 23, no. 1, pp. 17–32, 2004.

[6] A. Gill, T. Bull, G. Kimmell, E. Perrins, E. Komp, and
B. Werling, “Introducing Kansas Lava,” November 2009,
submitted to The International Symposia on Implementation
and Application of Functional Languages (IFL)’09.
[Online]. Available: http://ittc.ku.edu/ andygill/papers/kansas-
lava-ifl09.pdf

[7] IEEE Standard 1076-2008 VHDL Language Reference Man-
ual, 2009.

[8] M. Kooijman, “Haskell as a higher order structural
hardware description language,” Master’s thesis, Univ.
of Twente, December 2009. [Online]. Available:
http://essay.utwente.nl/59381/

[9] J. Hughes, “Programming with arrows,” Advanced functional
programming: 5th international school, AFP 2004, Tartu,
Estonia, August 14-21, 2004: revised lectures, pp. 73–129,
2005.

[10] R. Paterson, “A new notation for arrows,” in Proceedings
of the sixth ACM SIGPLAN international conference on
Functional programming - ICFP ’01, 2001, pp. 229–240.

[11] M. E. T. Gerards, J. Kuper, A. B. J. Kokkeler, and
E. Molenkamp, “Streaming reduction circuit,” in 2009
12th Euromicro Conference on Digital System Design,
Architectures, Methods and Tools. Los Alamitos: IEEE
Computer Society Press, August 2009, pp. 287–292. [Online].
Available: http://eprints.eemcs.utwente.nl/17041/

[12] M. R. Bodnar, J. P. Durbano, J. R. Humphrey, P. F. Curt, and
D. W. Prather, “FPGA-based, floating-point reduction opera-
tions,” in MATH’06: Proceedings of the 10th WSEAS Inter-
national Conference on APPLIED MATHEMATICS. Stevens
Point, Wisconsin, USA: World Scientific and Engineering
Academy and Society (WSEAS), 2006, pp. 5–9.

[13] F. de Dinechin, B. Pasca, O. Cret, and R. Tudoran, “An
FPGA-specific approach to floating-point accumulation and
sum-of-products,” in 2008 International Conference on Field-
Programmable Technology, 2008, pp. 33–40.

[14] K. K. Nagar, Y. Zhang, and J. D. Bakos, “An integrated
reduction technique for a double precision accumulator,” in
Proceedings of the Third International Workshop on High-
Performance Reconfigurable Computing Technology and Ap-
plications - HPRCTA ’09, 2009, pp. 11–18.

[15] L. Zhuo, G. R. Morris, and V. K. Prasanna, “High-
performance reduction circuits using deeply pipelined oper-
ators on FPGAs,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 18, no. 10, pp. 1377–1392, 2007.


