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Abstract. For arbitrary cycle-free directed graph games tree-type values
are introduced axiomatically and their explicit formula representation is
provided. These values may be considered as natural extensions of the tree
and sink values as has been defined correspondingly for rooted and sink for-
est graph games. The main property for the tree value is that every player
in the game receives the worth of this player together with his successors
minus what these successors receive. It implies that every coalition of players
consisting of one of the players with all his successors receives precisely its
worth. Additionally their efficiency and stability are studied. Simple recur-
sive algorithms to calculate the values are also provided. The application to
the water distribution problem of a river with multiple sources, a delta and
possibly islands is considered.
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1. Introduction

In standard cooperative game theory it is assumed that any coalition of players
may form. However, in many practical situations the collection of coalitions that
can be formed is restricted by some social, economical, hierarchical, communication,
or technical structure. The study of games with transferable utility and limited co-
operation introduced by means of communication graphs was initiated by Myerson
(Myerson, 1977). In this paper we restrict our consideration to the class of cycle-free
digraph games in which the players are partially ordered and the communication
via bilateral agreements between players is represented by a directed graph without
directed cycles. A cycle-free digraph cooperation structure allows modeling of vari-
ous flow situations when several links may merge at a node, while other links split
at a node into several separate ones.

It is assumed that a directed link represents a one-way communication situation.
This restricts the set of coalitions that can be formed. In the paper we consider two
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different scenarios possible for controlling cooperation in case of directed commu-
nication. First it is assumed that players can only control their successors and if in
the underlying graph structure a player is a successor of another player and both
players are members of some coalition, then also within this coalition the former
player must be a successor of the last player. Another scenario assumes that players
can only control their predecessors and nobody accepts that one of his predecessors
becomes his equal partner if a coalition forms.

We introduce tree-types values for cycle-free digraph games axiomatically and
provide their explicit formula representation. On the class of cycle-free digraph
games the (root-)tree value is completely characterized by maximal-tree efficiency
(MTE) and successor equivalence (SE), where a value is maximal-tree efficient if
for every root of the graph, being a player without predecessors, it holds that the
payoff for him and his successors is equal to the worth they can get by their own,
and a value is successor equivalent if when a link towards a player is deleted this
player and all his successors will get the same payoff. It implies that every player
receives what he contributes when he joins his successors in the graph and that the
total payoff for any player together with all his successors is equal to the worth they
can get by their own. Similarly, we introduce the sink-tree value which on the class
of cycle-free digraph games is completely characterized by maximal-sink efficiency
(MSE) and predecessor equivalence (PE). At the sink value every player receives
what he contributes when he joins his predecessors in the graph and the total payoff
for this player and all his predecessors is equal their worth. It is worth to emphasize
that both values should not be considered as personal payment by one player to
another one (the boss to his subordinate) but as distribution of the total worth
according to the proposed scheme. We also provide simple recursive computational
methods for computing these values and study their efficiency and when possible
their stability. The introduced tree and sink values for arbitrary cycle-free digraph
games may be considered as natural extensions of the tree and sink values defined
correspondingly for rooted and sink forest digraph games (cf. (Demange, 2004),
(Khmelnitskaya, 2010)). Furthermore, we extend the Ambec and Sprumont line-
graph river game model of sharing a river (Ambec and Sprumont, 2002) to the
case of a river with multiple sources, a delta and possibly islands by applying the
results obtained to this more general problem of sharing a river among different
agents located at different levels along the river bed restated in terms of a cycle-free
digraph game.

The structure of the paper is as follows. Basic definitions and notation are intro-
duced in Sect. 2.. Sect. 3. provides an axiomatic characterization of the tree value
for a rooted-tree digraph game via component efficiency and subordinate equiva-
lence. In Sect. 4. we discuss application to the water distribution problem of a river
with multiple sources, a delta and possibly islands.

2. Preliminaries

A cooperative game with transferable utility (TU game) is a pair 〈N, v〉, where N =
{1, . . . , n} is a finite set of n, n ≥ 2, players and v : 2N → IR is a characteristic
function, defined on the power set ofN , satisfying v(∅) = 0. A subset S ⊆ N is called
a coalition and the associated real number v(S) represents the worth of coalition
S. The set of TU games with fixed player set N we denote GN . For simplicity of
notation and if no ambiguity appears, we write v instead of 〈N, v〉 when we refer to a
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TU game. A game v ∈ G is superadditive if v(S ∪T ) ≥ v(S)+v(T ) for all S, T ⊆ N ,
such that S ∩ T = ∅, and v ∈ G is convex if v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ),
for all S, T ⊆ N . A value on a subset G of GN is a function ξ : G → IRN that
assigns to every game v ∈ G a vector ξ(v) ∈ IRN ; the number ξi(v) represents the
payoff to player i, i ∈ N , in the game v. In the sequel we use standard notation
x(S)=

∑
i∈S xi, xS=(xi)i∈S for any x∈IRN and S ⊆ N , |A| for the cardinality of a

given set A, and omit brackets when writing one-player coalitions such as i instead
of {i}, i ∈ N .

A payoff vector x ∈ IRN in a game v ∈ G is efficient if it holds that x(N) = v(N).
We also say that a coalition S ⊆ N is efficient in a game v ∈ G with respect to a
payoff vector x ∈ IRN if x(S) = v(S).

The core (Gillies, 1953) of a game v ∈ GN is defined as

C(v) = {x ∈ IRN | x(N) = v(N), x(S) ≥ v(S), for all S ⊆ N}.

For a game v ∈ GN , together with the core, we may consider the weak core defined
as

C̃(v) = {x ∈ IRN | x(N) ≤ v(N), x(S) ≥ v(S), for all S $ N}.

A value ξ on a subset G of GN is stable if for any game v ∈ G it holds that ξ(v) ∈
C(v), and a value ξ on G is weakly stable if for any game v ∈ G it holds that
ξ(v) ∈ C̃(v).

The cooperation structure on the player set N is specified by a graph, directed
or undirected, on N . An undirected graph on N consists of a set of nodes, being the
elements of N , and a collection of unordered pairs of nodes Γ ⊆ Γ cN = { {i, j} | i, j ∈
N, i 6= j}, where Γ cN is the complete undirected graph without loops on N and an
unordered pair {i, j} ∈ Γ is a link between i, j ∈ N . A directed graph, or digraph,
on N is given by a collection of directed links Γ ⊆ Γ̄ cN = {(i, j) | i, j ∈ N, i 6= j}. A
subset Γ ′ of a graph Γ on N is a subgraph of Γ . For a subgraph Γ ′ of Γ , S(Γ ′) ⊆ N
is the set of nodes in Γ ′, i.e., S(Γ ′) = {i ∈ N | ∃j ∈ N : {i, j} ∈ Γ ′}, if Γ is
undirected, and S(Γ ′) = {i ∈ N | ∃j ∈ N : {(i, j), (j, i)}∩Γ ′ 6= ∅}, if Γ is a digraph.
For a graph Γ on N and a coalition S ⊆ N , the subgraph of Γ on S is the graph
Γ |S = {{i, j}∈Γ | i, j∈S}, if Γ is undirected, and Γ |S = {(i, j)∈Γ | i, j∈S}, if Γ
is directed.

In a graph Γ on N a sequence of different nodes p = (i1, . . . , ir) is a path in Γ
from node i1 to node ir if r ≥ 2 and for h=1, . . . , r−1 it holds that {ih, ih+1}∈Γ
when Γ is undirected and {(ih, ih+1), (ih+1, ih)} ∩ Γ 6= ∅ when Γ is directed. In a
digraph Γ on N a path p = (i1, . . . , ir) is a directed path from node i1 to node ir
if for all h=1, . . . , r−1 it holds that (ih, ih+1) ∈ Γ . For a digraph Γ on N and any
i, j∈N we denote by P Γ (i, j) the set of all directed paths from i to j in Γ . Any node
i of a (directed) path p we denote as an element of p, i.e., i ∈ p. Moreover, when
for a directed path p in a digraph Γ we write (i, j) ∈ p, we assume that i and j are
consecutive nodes in p. For any set P of (directed) paths, by S(P ) = {i ∈ p | p ∈ P}
we denote the set of nodes determining the paths in P . A directed link (i, j) ∈ Γ
for which there exists a directed path p in Γ from i to j such that p 6= (i, j) is
inessential, otherwise (i, j) is an essential link. A directed path p is a proper path
if it contains only essential links.

In a graph Γ on N , undirected or directed, a sequence of nodes (i1, . . . , ir+1) is
a cycle if r ≥ 3, (i1, . . . , ir) and (i2, . . . , ir+1) are paths and i1 = ir+1. In a digraph
Γ a sequence of nodes (i1, . . . , ir+1) is a directed cycle if r ≥ 2, (i1, . . . , ir) and
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(i2, . . . , ir+1) are directed paths, and i1 = ir+1. An undirected graph Γ is cycle-free
if it contains no cycles. A digraph Γ on N is cycle-free if it contains no directed
cycles, i.e., no node is a successor of itself. A digraph Γ on N is strongly cycle-free if
it is cycle-free and contains no cycles. Remark that in a strongly cycle-free digraph
all links are essential.

For a directed link (i, j) ∈ Γ , i is the origin and j is the terminus, i is a superior
of j and j is a subordinate or follower of i. If a directed link (i, j) is essential, then
j is a proper subordinate of i and i is a proper superior of j. All nodes having the
same superior in Γ are called brothers. Besides, for i, j ∈ N , j is a (proper) successor
of i and i is a (proper) predecessor of j if there is a directed (proper) path from i to
j. For i ∈ N , we denote by PΓ (i) the set of all predecessors of i in Γ , by OΓ (i) the
set of all superiors of i in Γ , by O∗

Γ
(i) the set of all proper superiors of i, by FΓ (i)

the set of all subordinates of i in Γ , by F ∗
Γ
(i) the set of all proper subordinates of

i, by SΓ (i) the set of all successors of i in Γ , and by BΓ (i) the set of all brothers
of i in Γ . Moreover, for i ∈ N , we define P̄Γ (i) = PΓ (i) ∪ i, S̄Γ (i) = SΓ (i) ∪ i, and
B̄Γ (i) = BΓ (i) ∪ i. A coalition S ⊆ N is a full successors set in Γ , if S = S̄Γ (i)
for some i ∈ N , and is a full predecessors set in Γ , if S = P̄Γ (i) for some i ∈ N .
A node i ∈ N having no superior in Γ , i.e., OΓ (i) = ∅, is a root in Γ . A node
i ∈ N having no subordinate in Γ , i.e., FΓ (i) = ∅, is a leaf in Γ . For any S ⊆ N
denote by RΓ (S) the set of all roots in Γ |S and by LΓ (S) the set of all leaves in
Γ |S . For simplicity of notation, for a digraph Γ on N and i ∈ N , by Γ i we denote
the subgraph Γ |S̄Γ (i) and by Γi the subgraph Γ |P̄Γ (i). Given a digraph Γ on N and
i ∈ N , the in-degree of i is defined as dΓ (i) = |O∗

Γ
(i)| and the out-degree of i as

d̃Γ (i) = |F ∗Γ (i)|, while for any i ∈ N and j ∈ SΓ (i) the in-degree of j with respect to
i is equal to d i(j) = |O∗

Γ i(j)| and for any j ∈ PΓ (i) the out-degree of j with respect
to i is equal to di(j) = |F ∗

Γi
(j)|. Given a digraph Γ on N , i ∈ N and j ∈ PΓ (i),

a node h ∈ S(P Γ (i, j)) such that d i(h) · dj(h) > 1 is called a proper intersection
point in S(P Γ (i, j)).

Given a graph Γ on N , two nodes i and j in N are connected if there exists a
path from node i to node j. Graph Γ on N is connected if any two nodes in N are
connected. Given a graph Γ on N , a coalition S ⊆ N is connected if the subgraph
Γ |S is connected. For a graph Γ on N and coalition S ⊆ N , CΓ (S) is the set of all
connected subcoalitions of S, S/Γ is the set of maximally connected subcoalitions
of S, called the components of S, and (S/Γ )i is the component of S containing
player i ∈ S.

A directed graph Γ on N is a (rooted) tree if it has precisely one root, denoted
r(Γ ), and there is a unique directed path in Γ from this node to any other node in
N . In a tree the root plays the role of the source of the stream presented via this
graph. A directed graph Γ on N is a sink tree if the directed graph composed by
the same set of links as Γ but with the opposite orientation is a rooted tree; in this
case a root of a tree changes its meaning to an absorbing sink. A directed graph Γ is
a (rooted/sink) forest if it is composed by a number of disjoint (rooted/sink) trees.
A line-graph is a forest that contains links only between subsequent nodes. Both a
rooted tree and a sink tree, and in particular a line-graph, are strongly cycle-free.
For a directed graph Γ , a subgraph T is a subtree of Γ if T is a tree on S(T ). A
subtree T of a digraph Γ is a full subtree if it contains together with its root r(T )
all successors of r(T ), in other words, S(T ) = S̄Γ (r(T )). A full subtree T of Γ is a
maximal subtree if its root is a root of Γ .
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In what follows it is assumed that the cooperation structure on the player set N
is specified by a cycle-free directed graph, not necessarily being strongly cycle-free.
A pair 〈v,Γ 〉 of a game v ∈ GN and a cycle-free directed communication graph Γ
on N constitutes a game with cycle-free limited cooperation or cycle-free digraph
structure and is also called a directed cycle-free graph game or just a cycle-free
digraph game. The set of all cycle-free digraph games on a fixed player set N is
denoted GΓ

N . A value on a subset G of GΓ

N is a function ξ : G → IRN that assigns to
every cycle-free digraph game 〈v,Γ 〉 ∈ G a vector of payoffs ξ(v,Γ ) ∈ IRN . For any
graph game 〈v,Γ 〉 ∈ GΓ

N , a payoff vector x ∈ IRN is component efficient if for every
component C ∈ N/Γ it holds that x(C) = v(C).

3. Main results

In this section we introduce two values for the class of cycle-free digraph games, not
being necessarily strongly cycle-free.

For a directed link in an arbitrary digraph there are two different interpretations
possible. One interpretation is that a link is directed to indicate which player has
initiated the communication, but at the same time it represents a fully developed
communication link. In such a case, following Myerson (Myerson, 1977), it is as-
sumed that cooperation is possible among any set of connected players, i.e., the
coalitions in which players are able to cooperate, the productive coalitions, are all
the connected coalitions. In this case the focus is on component efficient values.
Another interpretation of a directed link assumes that a directed link represents
the only one-way communication situation. In that case not every connected coali-
tion might be productive. In this paper we abide by the second interpretation of
a directed link and consider two different options for creation of the productive
coalitions.

3.1. Tree connectedness

In a cycle-free digraph Γ there is at least one node having no superior. A node
without superior, i.e., any root in the graph, can be seen as a topman of the commu-
nication structure given by Γ . There are different scenarios possible for controlling
cooperation in case of directed communication. First we assume that in any coalition
each player can be controlled only by his predecessors and that nobody accepts that
one of his subordinates becomes his equal partner if a coalition forms. This entails
the assumption that the only productive coalitions are the so-called tree connected,
or simply t-connected, coalitions, being the connected coalitions S ∈ CΓ (N) that
also meet the condition that for every root i∈RΓ (S) it holds that i /∈SΓ (j) for any
other root j ∈RΓ (S). It is not difficult to see that the latter condition guarantees
that every t-connected coalition inherits the subordination of players prescribed by
Γ in N . Obviously, every component C ∈ N/Γ is t-connected. Moreover, any full
successors set in Γ is t-connected. A t-connected coalition is full t-connected, if it
together with its roots contains all successors of these roots. Observe that a full
t-connected coalition is the union of several full successors sets.

In what follows for a cycle-free digraph Γ on N and a coalition S ⊆ N , let
CΓ

t (S) denote the set of all t-connected subsets of S, [S/Γ ]t the set of maximally
t-connected subsets of S, called the t-connected components of S, and [S/Γ ]ti the
t-connected component of S containing player i ∈ S.
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Since the communication is assumed to be one-way, we require for efficiency of
a value that the t-connected coalition consisting of one of the roots of the graph
together with all his successors realizes its worth. This gives the first property a
value must satisfy, what we call maximal-tree efficiency.

A value ξ on GΓ

N is maximal-tree efficient (MTE) if for every cycle-free digraph
game 〈v,Γ 〉 ∈ GΓ

N it holds that
∑

j∈S̄Γ (i)

ξj(v,Γ ) = v(S̄Γ (i)), for all i ∈ RΓ (N).

MTE generalizes the usual definition of efficiency for a tree. In a digraph with
only one topman, the maximal-tree efficiency just says that the total payoff should
be equal to the worth of the grand coalition. Still, MTE is not the productive
component efficiency condition. Different from the Myerson case with undirected
communication graph (Myerson, 1977) we assume that not every productive com-
ponent is able to realize its exact capacity but only those with a tree structure. For
example if one worker works in two different divisions, the two managers of these
firms and the worker create a productive coalition. Yet, it is impossible to guarantee
the efficiency of this coalition because there is no communication link between the
managers of the two divisions.

The next property, what we call successor equivalence, says that if a link is
deleted, each successor of the terminus of this link still receives the same payoff.

A value ξ on GΓ

N is successor equivalent (SE) if for every cycle-free digraph game
〈v,Γ 〉 ∈ GΓ

N it holds that for all (i, j) ∈ Γ

ξk(v,Γ\(i, j)) = ξk(v,Γ ), for all k ∈ S̄Γ (j).

SE means that the payoff to any member in the full successors set of a player
does not change if any of the superiors of that player breaks his link to that player. It
implies that for each successors set the payoff distribution is completely determined
by the players of this set.

Along with MTE we consider a stronger efficiency property, what we call full-tree
efficiency, that requires that every full successors set realizes its worth.

A value ξ on GΓ

N is full-tree efficient (FTE) if for every cycle-free digraph game
〈v,Γ 〉 ∈ GΓ

N it holds that
∑

j∈S̄Γ (i)

ξj(v,Γ ) = v(S̄Γ (i)), for all i ∈ N. (1)

Proposition 1. On the class of cycle-free digraph games GΓ

N MTE and SE together
imply FTE.

Proof. Let ξ be a value on GΓ

N that meets MTE and SE, and let a cycle-free digraph
game 〈v,Γ 〉 ∈ GΓ

N be arbitrarily chosen. For every i ∈ N the subgraph Γ i is a
maximal tree in the subgraph Γ\

⋃
j∈OΓ (i)

{(j, i)}. Hence, due to MTE,

∑

j∈S̄Γ (i)

ξj(v,Γ\
⋃

k∈OΓ (i)

{(k, i)})
MTE
= v(S̄Γ (i)).

By successive application of SE,
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ξj(v,Γ\
⋃

k∈OΓ (i)

{(k, i)})
SE
= ξj(v,Γ ), for all j ∈ S̄Γ (i).

Whence, ∑

j∈S̄Γ (i)

ξj(v,Γ ) = v(S̄Γ (i)), for all i ∈ N,

i.e., the value ξ meets FTE.

It turns out that MTE and SE uniquely define a value on the class of cycle-free
digraph games.

Theorem 1. On the class of cycle-free digraph games GΓ

N there is a unique value
t that satisfies MTE and SE. For every cycle-free digraph game 〈v,Γ 〉 ∈ GΓ

N , the
value t(v,Γ ) satisfies the following conditions:

(i) it obeys the recursive equality

ti(v,Γ ) = v(S̄Γ (i))−
∑

j∈SΓ (i)

tj(v,Γ ), for all i ∈ N ; (2)

(ii) it admits the explicit representation in the form

ti(v,Γ ) = v(S̄Γ (i))−
∑

j∈SΓ (i)

κi(j)v(S̄Γ (j)), for all i ∈ N, (3)

where for all i ∈ N , j ∈ SΓ (i)

κi(j) =

n−2∑

r=0

(−1)rκri (j), (4)

and κri (j) is the number of tuples (i0, . . . , ir+1) such that i0 = i, ir+1 = j, ih ∈
SΓ (ih−1), h = 1, . . . , r + 1.

Proof. Due to Proposition 1 the value t on GΓ

N that satisfies MTE and SE meets
FTE as well, wherefrom the recursive equality (2) follows straightforwardly. Next,
we show that the representation in the form (2) is equivalent to the representation
in the form (3). According to (2) it holds for the value t that every player receives
what this player together with his successors can get on their own, their worth,
minus what all his successors will receive by themselves. Since the same property
holds for these successors as well, it is not difficult to see that (3) follows directly
from (2) by successive substitution. Indeed,

ti(v,Γ ) = v(S̄Γ (i))−
∑

j∈SΓ (i)

tj(v,Γ )
(2)
=

v(S̄Γ (i))−
∑

j∈SΓ (i)

v(S̄Γ (j))+
∑

j∈SΓ (i)

∑

k∈SΓ (j)

tk(v,Γ )
(2)
=

v(S̄Γ (i))−
∑

j∈SΓ (i)

v(S̄Γ (j)) +
∑

j∈SΓ (i)

∑

k∈SΓ (j)

v(S̄Γ (k))−
∑

j∈SΓ (i)

∑

k∈SΓ (j)

∑

h∈SΓ (k)

th(v,Γ )
(2)
=

. . . = v(S̄Γ (i))−
∑

j∈SΓ (i)

n−2∑

r=0

(−1)rκri (j)v(S̄Γ (j)) = v(S̄Γ (i))−
∑

j∈SΓ (i)

κi(j)v(S̄Γ (j)).
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From (3), we obtain immediately that the value t meets SE, because in any di-
graph Γ for all (i, j) ∈ Γ and for every k ∈ S̄Γ (j) the full subtrees Γ

k and (Γ\(i, j))k

coincide. This completes the proof, since MTE follows from FTE automatically.

Corollary 1. According to (2) the value t assigns to every player the worth of his
full successors set minus the total payoff to his successors. Wherefrom we obtain
a simple recursive algorithm for computing the value t going upstream from the
leaves of the given digraph.

Observe that the computation of the coefficients κi(j), i ∈ N , j ∈ SΓ (i), in the
explicit formula representation (3) requires, in general, the enumeration of quite
a lot of possibilities. We show below that in many cases the coefficients κi(j) can
be easily computed and the value t can be presented in a computationally more
transparent and simpler form. Before formulating the next theorem we introduce
some additional notation.

For any digraph Γ on N and i ∈ N the set SΓ (i) of all successors of i can be
partitioned into three disjoint subsets F ∗

Γ
(i), S1

Γ
(i), and S2

Γ
(i), i.e.,

SΓ (i) = F ∗
Γ
(i) ∪ S1

Γ
(i) ∪ S2

Γ
(i),

where both sets S1
Γ
(i) and S2

Γ
(i) are composed by successors of i that are not

proper subordinates of i. S1
Γ
(i) consists of any of them for which all paths from i

to that node j can be partitioned into a number of separate groups, might be only
one group, such that all paths in the same group have at least one common node
different from i and j and paths from different groups do not intersect between i
and j, namely,

S1
Γ
(i) =

{
j ∈ SΓ (i)\F

∗
Γ
(i) | P Γ (i, j) =

q⋃

h=1

P h,P h∩P l = ∅, h 6= l :

∀h = 1, ..., q, ∃kh ∈ S(P h)\{i, j} :

kh ∈ p, ∀p ∈ P h and ph∩pl = {i, j}, ∀ph ∈ P h, ∀pl ∈ P l, h 6= l
}

and
S2
Γ
(i) = SΓ (i) \

(
F ∗
Γ
(i) ∪ S1

Γ
(i)

)
.

Remark that all j ∈ SΓ (i) \ F ∗Γ (i) with d i(j) = 1 belong to S1
Γ
(i) since the unique

proper superior of j belongs to all paths p ∈ P Γ (i, j); in particular, it holds that
j ∈ S1

Γ
(i), when there is only one path from i to j, i.e., when |P Γ (i, j)| = 1. From

here besides it follows that for all j ∈ S2
Γ
(i), d i(j) > 1. For every j ∈ S1

Γ
(i) we

define the proper in-degree d̃ i(j) of j with respect to i as the number of groups P h,
h = 1, ..., q, in the partition of P Γ (i, j).

Next, observe that for a given digraph Γ on N , for any i ∈ N and j ∈ SΓ (i),
all nodes forming a tuple (i0, ..., ir+1) in which i0 = i, ir+1 = j, ih ∈ SΓ (ih−1),
h = 1, ..., r+1, belong to the same directed path p ∈ P Γ (i, j). Wherefrom it easily
follows that for all i∈N and j∈SΓ (i), κi(j) given by (4) in fact is defined via tuples
of nodes from the set of nodes S(P Γ (i, j)) that determine the set of directed paths
P Γ (i, j). Similar to the definition of κi(j) given by (4), for any subset of nodes
M ⊆ S(P Γ (i, j)) containing nodes i and j, we may define

κi(M ; j) =

n−2∑

r=0

(−1)rκri (M ; j), (5)
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where κri (M ; j) counts only the tuples (i0, ..., ir+1) for which i0 = i, ir+1 = j,
and ih ∈ SΓ (ih−1) ∩M , h = 1, . . . , r + 1. Remark that κi(j) = κi(S(P Γ (i, j)); j).
The subset of S(P Γ (i, j)) composed by i, j, all proper subordinates h ∈ F ∗

Γ
(i) ∩

S(P Γ (i, j)) and all proper intersection points in S(P Γ (i, j)) is called the upper
covering set for P Γ (i, j) and denotedMΓ (i, j). It turns out that on F

∗
Γ
(i) and S1

Γ
(i)

the exact value of κi(j) can be simply computed, while on S2
Γ
(i) the computation

of κi(j) can be reduced to the enumeration only over the nodes from the upper
covering set for P Γ (i, j). For simplicity of notation we denote κi(MΓ (i, j); j) by
κMi (j).

Theorem 2. For every cycle-free digraph game 〈v,Γ 〉 ∈ GΓ

N the value t given by
(3) admits the equivalent representation in the form

ti(v,Γ ) = v(S̄Γ (i))−
∑

j∈F∗

Γ
(i)

v(S̄Γ (j))+

+
∑

j∈S1
Γ
(i)

(d̃ i(j)− 1)v(S̄Γ (j))−
∑

j∈S2
Γ
(i)

κMi (j)v(S̄Γ (j)), for all i ∈ N. (6)

If the consideration is restricted to only strongly cycle-free digraph games, then
the above representation reduces to

ti(v,Γ ) = v(S̄Γ (i))−
∑

j∈FΓ (i)

v(S̄Γ (j)), for all i ∈ N. (7)

For rooted-forest digraph games defined by rooted forest digraph structures that
are strongly cycle-free, the value given by (7) coincides with the tree value intro-
duced first under the name of hierarchical outcome in (Demange, 2004), where it is
also shown that under the mild condition of superadditivity it belongs to the core
of the restricted game defined in (Myerson, 1977). More recently, the tree value for
rooted-forest games was used as a basic element in the construction of the aver-
age tree solution for cycle-free undirected graph games in (Herings et al., 2008). In
(Khmelnitskaya, 2010) it is shown that on the class of rooted-forest digraph games
the tree value can be characterized via component efficiency and successor equiv-
alence; moreover, it is shown that the class of rooted-forest digraph games is the
maximal subclass in the class of strongly cycle-free digraph games where this ax-
iomatization holds true. It is worth to recall that by definition for a rooted-tree
digraph game every connected component is a tree. Hence, on the class of rooted-
forest digraph games every connected component is productive and maximal-tree
efficiency coincides with component efficiency.

From now on we refer to the value t given by (3), or equivalently by (6), as to the
root-tree value, or simply the tree value, for cycle-free digraph games. The tree value
assigns to every player the payoff equal to the worth of his full successors set minus
the worths of all full successors sets of his proper subordinates plus or minus the
worths of all full successors sets of any other of his successors that are subtracted
or added more than once. Moreover, for any player i ∈ N and his successor j ∈ N
that is not his proper subordinate, the coefficient κi(j) indicates the number of
overlappings of full successors sets of all proper subordinates of i at node j. In fact
a player receives what he contributes when he joins his successors when only the full
successors sets, that are the only efficient productive coalitions, are counted. Since
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a leaf has no successors, a leaf just gets his own worth. Besides, it is worth to note
and not difficult to check that the right sides of both formulas (6) and (7) being
considered with respect not to coalitional worths but to players in these coalitions
contain only player i when taking into account all pluses and minuses.

The validity of the first statement of Theorem 2 follows directly from Theorem 1
and Lemma 1 below. The second statement follows easily from the first one. Indeed,
in any strongly cycle-free digraph Γ all links are essential and d i(j) = 1 for all
i ∈ N , j ∈ SΓ (i). Whence it easily follows that F ∗

Γ
(i) = FΓ (i), S

2
Γ
(i) = ∅, and

d̃ i(j) = d i(j) = 1 for all j ∈ S1
Γ
(i).

Lemma 1. For a given digraph Γ on N , the coefficients κi(j), i ∈ N , j ∈ SΓ (i),
defined by (4) satisfy the following properties:

(i) if a link (k, l)∈Γ is inessential, then for all i∈N and j ∈SΓ (i), κi(j) defined
on Γ is equal to κi(j) defined on Γ\(k, l);

(ii) κi(j) = 1 for all i ∈ N , j ∈ F ∗
Γ
(i);

(iii) κi(j) = −d̃ i(j) + 1 for all i ∈ N , j ∈ S1
Γ
(i);

(iv) κi(j)=κ
M
i (j) for all i∈N and j∈SΓ (i).

Proof. (i). It is sufficient to prove the statement only in case when k ∈ SΓ (i) and
j ∈ SΓ (l). Let p ∈ P Γ (i, j) be such that p ∋ (k, l). By definition of an inessential
link there exists p0 ∈ P Γ (k, l) such that p0 6= (k, l). It is not difficult to see that the
path p1 = p\(k, l)∪ p0 obtained from the path p by replacing the link (k, l) by the
path p0 belongs to P Γ (i, j), and moreover, all tuples (i0, ..., ir+1) in the definition
of κi(j) that belong to p also belong to p1. Whence it follows straightforwardly that
deleting an inessential link does not change the value of κi(j).

(ii). If j ∈ F ∗
Γ
(i), then P Γ (i, j) contains only the path p = (i, j) and the only

tuple (i0, ..., ir+1) is (i, j) with r = 0. Wherefrom it follows that κi(j) = 1.

(iii). Let j ∈ S1
Γ
(i). First consider the case when d̃ i(j) = 1. Then there exists

k ∈ S(P Γ (i, j)), k 6= i, j, such that k ∈ p for all p ∈ P Γ (i, j). By definition,
κri (j) is equal to the number of tuples (i0, . . . , ir+1) such that i0 = i, ir+1 = j,
ih ∈ SΓ (ih−1), h = 1, . . . , r + 1, or equivalently, κri (j) is equal to the number of
these tuples (i0, . . . , ir+1) that do not contain k plus the number of these tuples
(i0, . . . , ir+1) that contain k. Notice that since k ∈ p for all p ∈ P Γ (i, j), for every
r-tuple (i0, . . . , ir+1) that does not contain k there exists a uniquely defined (r+2)-
tuple composed by the same nodes plus the node k. From which together with
equality (4) it follows that κi(j) = 0.

Let now d̃ i(j) > 1. Then P Γ (i, j) =
q⋃

h=1

P h with q = d̃ i(j) and there exist nodes

kh 6= i, j, h = 1, ..., q such that kh ∈ p for all paths p ∈ P h and all paths ph ∈ P h

and pl ∈ P l, h 6= l, intersect only at i and j. We may split the computation of κi(j)
by the computation via groups of paths P h excluding on each step the tuples that
were counted at the previous steps, i.e.,

κi(j) = κi(S(P 1); j)+[κi(S(P 2); j)−κi(S(P 1∩P 2; j)]+ . . .

. . .+ [κi(S(P q); j)− κi(S(

q⋂

h=1

P h); j)].
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Applying the same argument as in the proof of the case when d̃ i(j) = 1, we obtain
that for all h = 1, . . . , q,

κi(S(P h); j) = 0.

Since the paths from different groups P h do not intersect between i and j, only
tuple (i0, i1) = (i, j) with r = 0 belongs to all p ∈ P Γ (i, j). Therefore, for all
h = 2, . . . , q,

κi(S(

h⋂

h=1

P h); j) = −1.

Then the validity of (iii) follows immediately from the last three equalities.

(iv). If MΓ (i, j) 6= S(P Γ (i, j)), consider arbitrary k ∈ S(P Γ (i, j)) \MΓ (i, j).
We may split the computation of κi(j) into two parts:

κi(j) = κi(j; k) + κi(S(P Γ (i, j)) \ {k}; j),

where κi(j; k) is computed via tuples (i0, . . . , ir+1) ∋ k and κi(S(P Γ (i, j))\{k}; j) is
computed via tuples (i0, . . . , ir+1) ⊂ S(P Γ (i, j))\{k}, i.e., tuples (i0, . . . , ir+1) 6∋ k.
By definition of a covering set, MΓ (i, j) contains predecessors of k, i.e., MΓ (i, j) ∩
PΓ (k) 6= ∅. Moreover, since k /∈ MΓ (i, j), i.e., k is neither a proper subordinate
of i nor a proper intersection point in the subgraph Γ |S(P Γ (i,j)), there exists h ∈
MΓ (i, j) ∩ PΓ (k) that belongs to all paths p ∈ P Γ (i, j), p ∋ k. Applying the same
argument as above in the proof of the statement (iii), now with respect to h, we
obtain that κi(j; k) = 0. Thus κi(j) = κi(S(P Γ (i, j))\{k}; j). Repeating the same
reasoning successively with respect to all k′ ∈ S(P Γ (i, j)) \

(
MΓ (i, j) ∪ {k}

)
we

obtain κi(j)=κi(MΓ (i, j); j)
def
= κMi (j).

Example 1. The examples of digraphs given in Figure 1 demonstrate the more com-
plicated situation with the computation of coefficients κi(j) when j ∈ S2

Γ
(i) for some

i ∈ N .

1

2 3 4

5 6

7

a)

1

2 3

4 5

6

b)

1

2 3

4 5

6 7

8

c)

Fig. 1.

Figure 1,a: 7 ∈ S2
Γ
(1), d 1(7) = 2, κ1(7) = 0;

Figure 1,b: 6 ∈ S2
Γ
(1), d 1(6) = 2, κ1(6) = 1.

Figure 1,c: 8 ∈ S2
Γ
(1), d 1(8) = 2, κ1(8) = −1.
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Example 2. Figure 2 provides an example of the tree value for a 10-person game
with cycle-free but not strongly cycle-free digraph structure.

1 2

10

3 4

5

6

7

8 9

v(13456789, 10)−v(356789)−v(46789)−

−v(689, 10)+2v(689)+v(78)−v(8)

v(246789, 10)−v(46789)−

−v(689, 10)+v(689)

v(356789)−v(56789)
v(46789)−v(689)−v(78)+v(8)

v(56789)−v(689)−v(78)+v(8)

v(689)−v(8)−v(9)

v(78)−v(8)

v(8) v(9)

v(689, 10)−v(689)

Fig. 2.

The tree valuemaybe computed in twodifferentways, either by the recursive algorithm
based on the recursive equality (2) or using the explicit formula representation (6).

We explain in detail the computation of t1(v,Γ ) based on the explicit representation
given by (6):
S̄Γ (1) = {1, 3, 4, 5, 6, 7, 8, 9, 10}.
3, 4, 10 ∈ F ∗

Γ
(1) =⇒ κ1(3) = κ1(4) = κ1(10) = 1.

5, 6, 7, 9 ∈ S1
Γ
(1), d 1(5) = d 1(9) = 1, d 1(6) = 3, d 1(7) = 2 =⇒ κ1(5) = κ1(9) =

0, κ1(6)=−2, κ1(7)=−1.
8 ∈ S2

Γ
(1):

P Γ (1, 8) =
{
p1 = (1, 3, 5, 7, 8), p2 = (1, 3, 5, 6, 8), p3 = (1, 10, 6, 8),

p4 = (1, 4, 7, 8), p5 = (1, 4, 6, 8), p6 = (1, 3, 8)
}
;

we eliminate the path p6 since it contains inessential link (3, 8);
M = {1, 4, 5, 6, 7, 8, 10} is a minimal covering set for P Γ (1, 8);
κ1(p1; 8) = 0;
p2\p1 contains tuples (1, 6, 8) and (1, 5, 6, 8) =⇒ κ1(p2\p1; 8) = 0;
p3\(p1∪p2) contains tuples (1, 10, 8), (1, 10, 6, 8)) =⇒ κ1(p3\(p1∪p2); 8) = 0;
p4\(p1∪p2∪p3) contains (1, 4, 8), (1, 4, 7, 8)) =⇒ κ1(p4\(p1∪p2∪p3); 8) = 0;
p5\(p1∪p2∪p3∪p4) contains (1, 4, 6, 8)) =⇒ κ1(p5\(p1∪p2∪p3∪p4); 8) = 1;
=⇒ κ1(8) = 1.

t1(v,Γ ) = v(13456789, 10)−v(356789)−v(46789)−v(689, 10)+2v(689)+v(78)−v(8).
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Example 3. Figure 3 gives an example of the tree value for a 10-person game with
strongly cycle-free digraph structure.

1 2

10

3 4

5

6

7

8 9

v(13456789)− v(356789) v(24689)− v(4689)

v(10, 356789)− v(356789)

v(356789)− v(56789) v(4689)− v(689)

v(56789)− v(7)− v(689)

v(689)− v(8)− v(9)

v(7)

v(8) v(9)

Fig. 3.

It turns out that the tree value not only meets FTE but FTE alone uniquely
defines the tree value on the class of cycle-free digraph games.

Theorem 3. On the class of cycle-free digraph games GΓ

N the tree value is the
unique value that satisfies FTE.

Proof. Since the tree value satisfies FTE, to prove the theorem it is enough to show
that the tree value is the unique value that meets FTE on GΓ

N . Let a value ξ on GΓ

N

satisfy axiom FTE. Then, because of FTE, (1) holds for every 〈v,Γ 〉 ∈ GΓ

N . Every
digraph Γ under consideration is cycle-free, i.e., no player in N appears to be a
successor of itself. Hence, due to the arbitrariness of game 〈v,Γ 〉, the n equalities in
(1) are independent. Therefore, we have a system of n independent linear equalities
with respect to n variables ξj(v,Γ ) which uniquely determines the value ξ(v,Γ )
that in this case coincides with t(v,Γ ).

Corollary 2. FTE on the class of cycle-free digraph games GΓ

N implies not only
MTE but SE as well.

3.2. Overall efficiency and stability

In this subsection we consider efficiency and stability of the tree value. First we
derive for the tree value the total payoff for any t-connected coalition.

Theorem 4. In a cycle-free digraph game 〈v,Γ 〉 ∈ GΓ

N , for any t-connected coali-
tion S ∈ CΓ

t (N) it holds that
∑

i∈S

ti(v,Γ ) =
∑

i∈RΓ (S)

v(S̄Γ (i))−

−
∑

i∈S\RΓ (S)

(
κS(i)−1

)
v(S̄Γ (i))−

∑

i∈S̄Γ (S)\S

κS(i)v(S̄Γ (i)), (8)
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where
S̄Γ (S) =

⋃

i∈RΓ (S)

S̄Γ (i),

κS(i) =
∑

j∈P̄Γ (i)∩S̄Γ (S)

κj(i), for all i ∈ S̄Γ (S),

while κS(i) = 1 when dN (i) = 1, where for any t-connected coalition S ∈ CΓ

t (N),
for all i ∈ S̄Γ (S), dS(i) is the in-degree of i in the subgraph Γ |S̄Γ (S), i.e.,

dS(i) = |OΓ (i) ∩ S̄Γ (S)|,

in particular, dN (i) = dΓ (i) for all i ∈ N .
If the consideration is restricted to only strongly cycle-free digraph games, then

for any t-connected coalition S ∈ CΓ

t (N) it holds that

∑

i∈S

ti(v,Γ ) =
∑

i∈RΓ (S)

v(S̄Γ (i))−

−
∑

i∈S\RΓ (S)

(
dS(i)−1

)
v(S̄Γ (i))−

∑

i∈RΓ (S̄Γ (S)\S)

dS(i)v(S̄Γ (i)). (9)

Proof. Let 〈v,Γ 〉 ∈ GΓ

N be a cycle-free digraph game and let S be any t-connected
coalition S ∈ CΓ

t (N). Then it holds that

∑

i∈S

ti(v,Γ )
(3)
=

∑

i∈S

(
v(S̄Γ (i))−

∑

j∈SΓ (i)

κi(j)v(S̄Γ (j))
)
=

=
∑

i∈RΓ (S)

v(S̄Γ (i))−
∑

i∈S\RΓ (S)

( ∑

j∈SΓ (i)

(κi(j)−1
)
v(S̄Γ (i))

)
−

∑

i∈S̄Γ (S)\S

( ∑

j∈SΓ (i)

κi(j)v(S̄Γ (i))
)
.

Since for all i, j ∈ S with j ∈ SΓ (i) every path from i to j belongs to S, (8) follows
straightforwardly from the last equality.

Next, if dN (i) = 1, then due to Lemma 1 for all j ∈
(
P̄Γ (i) ∩ S̄Γ (S)

)
\FΓ (i),

d j(i) = 0 and therefore κj(i) = 0, and for j ∈ FΓ (i) ∩ S̄Γ (S), κj(i) = 1.
In case Γ is a strongly cycle-free digraph, it holds that

∑

i∈S

ti(v,Γ )
(7)
=

∑

i∈S

(
v(S̄Γ (i))−

∑

j∈FΓ (i)

v(S̄Γ (j))
)
=

=
∑

i∈RΓ (S)

v(S̄Γ (i))−
∑

i∈S\RΓ (S)

(
dS(i)−1

)
v(S̄Γ (i))−

∑

j∈FΓ (i)

i∈S, j /∈S

dS(j)v(S̄Γ (j)).

To complete the proof of (9) it suffices to notice that, since Γ a strongly cycle-free
digraph, every subordinate j∈FΓ (i) of i∈S that does not belong to S is a root in
S̄Γ (S)\S.

From Theorem 4 it follows that for any cycle-free digraph game 〈v,Γ 〉 ∈ GΓ

N the
overall efficiency is given by

∑

i∈N

ti(v,Γ ) =
∑

i∈RΓ (N)

v(S̄Γ (i))−
∑

i∈N\RΓ (N)

(
κN (i)−1

)
v(S̄Γ (i)), (10)
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while if the consideration is restricted to only strongly cycle-free digraph games,
(10) reduces to

∑

i∈N

ti(v,Γ ) =
∑

i∈RΓ (N)

v(S̄Γ (i))−
∑

i∈N\RΓ (N)

(
dΓ (i)−1

)
v(S̄Γ (i)). (11)

To support these expressions we recall the Myerson model in of a game with
undirected cooperation structure (Myerson, 1977), in which the component effi-
ciency entails the equality

∑

i∈N

ξi(v,Γ ) =
∑

C∈N/Γ

v(C). (12)

While the right-side expression in (12) is composed by connected components that
are the only efficient productive elements in the Myerson’s model, the building bricks
in (10) and (11) are the full successors sets which are the only efficient productive
coalitions under the assumption of tree connectedness. Observe also that for strongly
cycle-free rooted-forest digraph games (11) reduces to (12),

∑

i∈N

ti(v,Γ ) =
∑

i∈RΓ (N)

v(S̄Γ (i)) =
∑

C∈N/Γ

v(C).

For a cycle-free digraph game 〈v,Γ 〉 ∈ GΓ

N , we define the t-core Ct(v,Γ ) as the
set of component efficient payoff vectors that are not dominated by any t-connected
coalition,

Ct(v,Γ ) = {x ∈ IRN | x(C) = v(C), ∀C ∈ N/Γ ; x(S) ≥ v(S), ∀S ∈ CΓ

t (N)}, (13)

while the weak t-core C̃t(v,Γ ) is the set of weakly component efficient payoff vectors
that are not dominated by any t-connected coalition,

C̃t(v,Γ ) = {x ∈ IRN | x(C) ≤ v(C), ∀C ∈ N/Γ ; x(S) ≥ v(S), ∀S ∈ CΓ

t (N)}. (14)

Theorem 5. The tree value on the subclass of superadditive rooted-forest digraph
games is t-stable.

Proof. Let 〈v,Γ 〉 ∈ GΓ

N be a superadditive rooted-forest digraph game arbitrarily
chosen. We show that the tree value t(v,Γ ) belongs to the core Ct(v,Γ ). Consider
arbitrary C ∈ N/Γ , then C is a tree. Let i ∈ C be a root in Γ , then C = S̄Γ (i)
because of the rooted-forest structure of Γ . Due to the full-tree efficiency of the tree
value, it holds that ∑

j∈S̄Γ (i)

tj(v,Γ )
FTE
= v(S̄Γ (i)),

wherefrom it follows that ∑

j∈C

tj(v,Γ ) = v(C).

Let now S ∈ CΓ

t (N). Because of the rooted-forest structure of Γ , it holds
that dN (i) = 1 for all i ∈ N\RΓ (N). Wherefrom it follows that Γ |S contains
exactly one root, say, node i, Γ |S is a subtree, and S ⊆ S̄Γ (i). Moreover, since Γ is
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strongly cycle-free, Γ |S̄Γ (i) is a full subtree, and because of the tree structure of Γ |S ,
Γ |S̄Γ (i)\S consists of a collection (might be empty) of disconnected full subtrees, i.e.,

Γ |S̄Γ (i)\S =
⋃q
k=1 Tk where Tk

⋂
Tl = ∅, k 6= l, and q = |[S̄Γ (i)\S]/Γ | is the number

of components in S̄Γ (i)\S. Hence,

S̄Γ (i) = S ∪

q⋃

k=1

Tk.

Applying again the full-tree efficiency of the tree value, we obtain that
∑

j∈S̄Γ (i)

tj(v,Γ )
FTE
= v(S̄Γ (i)),

and ∑

j∈Tk

tj(v,Γ )
FTE
= v(Tk), for all k = 1, . . . , q.

From the superadditivity of v and the last three equalities, it follows that

∑

j∈S

tj(v,Γ ) = v(S̄Γ (i))−

q∑

k=1

v(Tk) ≥ v(S).

Remark 1. The statement of Theorem 5 can also be obtained as a corollary of
the stability result proved in (Demange, 2004). Indeed, in a rooted forest every
connected component has a tree structure and, therefore, is t-connected. Whence,
for any rooted-forest digraph game the t-core coincides with the core of the Myerson
restricted game.

However, the following examples show that for t-stability of a superadditive di-
graph game the requirement on the digraph to be a rooted forest is non-reducible.
In Example 4 the tree value of a superadditive cycle-free but not strongly cycle-
free digraph game violates individual rationality and, therefore, does not meet the
second constraint of the weak t-core, while in Example 5 the tree value of a su-
peradditive strongly cycle-free game in which the graph contains two roots violates
weak efficiency.

Example 4. Consider a 4-person cycle-free superadditive digraph game 〈v,Γ 〉 with
v(24) = v(34) = v(234) = v(N) = 1, v(S) = 0 otherwise, and Γ given in Figure 4.

1

2 3

4

Fig. 4.

Then t(v,Γ ) = (−1, 1, 1, 0), whence t1(v,Γ ) = −1 < 0 = v(1). Remark that every
singleton coalition, in particular S = {1}, is t-connected.
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Example 5. Consider a 3-person cycle-free superadditive digraph game 〈v,Γ 〉 with
v(12) = v(13) = v(N) = 1, v(S) = 0 otherwise, and Γ given in Figure 5.

1 2

3

Fig. 5.

Then t(v,Γ ) = (1, 1, 0), whence t1(v,Γ ) + t2(v,Γ ) + t3(v,Γ ) = 2 > 1 = v(N).

A cycle-free digraph game 〈v,Γ 〉 is t-convex, if for all t-connected coalitions
T,Q ⊂ CΓ

t (N) such that T is a full t-connected set, Q is a full successors set, and
T ∪Q ∈ CΓ

t (N), it holds that

v(T ) + v(Q) ≤ v(T ∪Q) + v(T ∩Q). (15)

Theorem 6. The tree value on the subclass of t-convex strongly cycle-free digraph
games is weakly efficient.

Proof. Let 〈v,Γ 〉 ∈ GΓ

N be any t-convex strongly cycle-free digraph game. Assume
that Γ is connected, otherwise we apply the same argument to any component
C ∈ N/Γ . If there is only one root in Γ , it holds that

∑n
i=1 ti(v,Γ ) = v(N) and

the tree value is even efficient. So, suppose that there are q different roots r1, . . . , rq
in Γ for some q ≥ 2. Since Γ is connected, the roots in Γ can be ordered in such a
way that

j−1⋃

h=1

S̄Γ (rh) ∩ S̄Γ (rj) 6= ∅, for j = 2, ..., q.

For j = 1, ..., q let Tj =
⋃j
h=1 S̄Γ (rh). Then from the strongly cycle-freeness of Γ it

follows that for j = 2, ..., q there exists a unique ij ∈ N such that

Tj−1 ∩ S̄Γ (rj) = S̄Γ (ij).

By t-convexity of the digraph game 〈v,Γ 〉 it holds that

v(Tj−1) + v(S̄Γ (rj)) ≤ v(Tj) + v(S̄Γ (ij)), for j = 2, ..., q.

Since T1 = S̄Γ (r1) and Tq = N , then applying the last inequality successively q− 1
times we obtain

q∑

j=1

v(S̄Γ (rj)) ≤ v(N) +

q∑

j=2

v(S̄Γ (ij)).

Hence,

v(N)≥

q∑

j=1

v(S̄Γ (rj))−

q∑

j=2

v(S̄Γ (ij)).
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Since Γ is strongly cycle-free, for any i ∈ N\RΓ (N), node i has dΓ (i) different roots
as predecessor, which implies that the term v(S̄Γ (i)) appears precisely dΓ (i) − 1
times. Therefore,

v(N) ≥
∑

i∈RΓ (N)

v(S̄Γ (i))−
∑

i∈N\RΓ (N)

(
dΓ (i)−1

)
v(S̄Γ (i)).

The following example of a convex strongly cycle-free digraph game shows that
even under the assumption of convexity of a given digraph game, which is stronger
than t-convexity, one or more constraints for not being dominated in the definition
of the week t-core might be violated by the tree value, and therefore, the tree value
is not weakly t-stable.

Example 6. Consider a 5-person cycle-free convex digraph game 〈v,Γ 〉 with v(N) =
10, v(123) = v(1234) = v(1235) = 3, v(1345) = v(2345) = 2, v(S) = 0 otherwise,
and the strongly cycle-free digraph Γ given in Figure 6.

1 2

3

4 5

Fig. 6.

Then t(v,Γ ) = (1, 1, 0, 0, 0), whence, the total payoff of t-connected coalition S =
{1, 2, 3} t1(v,Γ ) + t2(v,Γ ) + t3(v,Γ )=2<3=v(123).

From (10) it follows that for a cycle-free (for simplicity connected) digraph game
〈v,Γ 〉 ∈ GΓ

N a necessary and sufficient condition for the weak efficiency of the tree
value is that

∑

i∈RΓ (N)

v(S̄Γ (i)) ≤ v(N) +
∑

i∈N\RΓ (N)

(
κN (i)−1

)
v(S̄Γ (i)). (16)

Since N =
⋃

i∈RΓ (N)

S̄Γ (i), the grand coalition equals the union of the successors sets

of all roots in the graph Γ . In case there is only one root in Γ , condition (16) is
redundant, because the left side is then equal to v(N). In case there is more than
one root in Γ , the different successors sets of the roots of Γ will intersect each other
and for any i ∈ N\RΓ (N) the number κN (i) − 1 is the number of times that the
successors set S̄Γ (i) of node i equals the intersection of successors sets of the roots of
Γ . Therefore, condition (16) is a kind of convexity condition for the grand coalition
saying that the sum of the worths of the successors sets of all the roots of the graph
should be less than or equal to the worth of the grand coalition (their union) plus
the total worths of their intersections. In a firm where any full successors set of a
root is a division within the firm and subdivisions that are intersections of several
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divisions are shared by these divisions, in (16) the left-side minus the sum in the
right-side can be economically interpreted as the total worths of the divisions when
they do not cooperate, while v(N) is the worth of the firm when the divisions do
cooperate. To have weak efficiency the latter value should be at least equal to the
former value. Remark that v(N) minus the total payoff at the tree value can be
interpreted as the net profit of the firm (or the synergy effect from cooperation)
that can be given to its shareholders.

3.3. Sink connectedness

We consider now another scenario of controlling cooperation in case of directed
communication and assume that in any coalition each player may be controlled
only by his successors and that nobody accepts that his former superior becomes
his equal partner if a coalition forms. This entails the assumption that the only
productive coalitions are the so-called sink connected, or simply s-connected, being
the connected coalitions S ∈ CΓ(N) that meet also the condition that for every
leaf i ∈ LΓ (S) it holds that i /∈ PΓ (j) for another leaf j ∈ LΓ (S). Similar to the
case of tree connectedness, every s-connected coalition inherits the subordination
of players prescribed by Γ in N , every component C ∈ N/Γ is s-connected, and
any full predecessors set in Γ is s-connected. We say that an s-connected coalition
is full s-connected, if it together with its leaves contains all predecessors of these
leaves. Observe that a full s-connected coalition is the union of several full prede-
cessors sets. For a cycle-free digraph Γ on N and a coalition S ⊆ N , let CΓ

s (S)
denote the set of all s-connected subcoalitions of S, [S/Γ ]s the set of maximally
s-connected subcoalitions of S, called the s-connected components of S, and [S/Γ ]si
the s-connected component of S containing player i ∈ S.

For efficiency of a value we require that each leaf of the given communication
digraph together with all his predecessors realizes the total worth they possess.
This generates the first property a value must satisfy, what we call maximal-sink
efficiency.

A value ξ on GΓ

N is maximal-sink efficient (MSE) if for every cycle-free digraph
game 〈v,Γ 〉 ∈ GΓ

N it holds that
∑

j∈P̄Γ (i)

ξj(v,Γ ) = v(P̄Γ (i)), for all i ∈ LΓ (N).

The next property, called the predecessor equivalence, says that if a directed
link is broken, each member of the full predecessors set of the origin of this link still
receives the same payoff.

A value ξ on GΓ

N is predecessor equivalent (PE) if for every cycle-free digraph
game 〈v,Γ 〉 ∈ GΓ

N it holds that for all (i, j) ∈ Γ

ξk(v,Γ\(i, j)) = ξk(v,Γ ), for all k ∈ P̄Γ (i).

Along with MSE we consider a stronger efficiency property, what we call full-sink
efficiency, that requires that every full predecessors set realizes its worth.

A value ξ on GΓ

N is full-sink efficient (FSE) if for every cycle-free digraph game
〈v,Γ 〉 ∈ GΓ

N it holds that
∑

j∈P̄Γ (i)

ξj(v,Γ ) = v(P̄Γ (i)), for all i ∈ N.
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It is easy to see that the assumption of sink connectedness in digraph Γ is
equivalent to the assumption of tree connectedness in the digraph Γ̃ composed by
the same set of links as Γ but with the opposite orientation. Moreover, each of
axioms MSE, FSE and PE with respect to any cycle-free digraph game 〈v,Γ 〉 ∈ GΓ

N

is equivalent to the corresponding MTE, FTE or SE axiom with respect to the
digraph game 〈v, Γ̃ 〉. In case of sink connectedness the last two observations allow
to obtain the following results straightforwardly from the results proved above in
Subsections 3.1. and 3.2. under the assumption of tree connectedness.

Proposition 2. On the class of cycle-free digraph games GΓ

N MSE and PE together
imply FSE.

MSE and PE uniquely define a value on the class of cycle-free digraph games.

Theorem 7. On the class of cycle-free digraph games GΓ

N there is a unique value
s that satisfies MSE and PE. For every cycle-free digraph game 〈v,Γ 〉 ∈ GΓ

N , the
value s(v,Γ ) satisfies the following conditions:

(i) it obeys the recursive equality

si(v,Γ ) = v(P̄Γ (i))−
∑

j∈PΓ (i)

sj(v,Γ ), for all i ∈ N ; (17)

(ii) it admits the explicit representation in the form

si(v,Γ ) = v(P̄Γ (i))−
∑

j∈PΓ (i)

κ̃i(j)v(P̄Γ (j)), for all i ∈ N, (18)

where for all i ∈ N , j ∈ PΓ (i),

κ̃i(j) =

n−2∑

r=0

(−1)rκ̃ri (j), (19)

and κ̃ri (j) is the number of tuples (i0, . . . , ir+1) such that i0 = j, ir+1 = i, ih ∈
PΓ (ih−1), h = 1, . . . , r + 1.

Before stating the next theorem providing simpler explicit representation of the
value s we introduce some additional notions and notation. Let

P 1
Γ
(i) =

{
j ∈ PΓ (i)\O

∗
Γ
(i) | P Γ (j, i) =

q⋃

h=1

P h,P h∩P l = ∅, h 6= l :

∀h = 1, ..., q, ∃kh ∈ S(P h)\{j, i} :

kh ∈ p, ∀p ∈ P h and ph∩pl = {j, i}, ∀ph ∈ P h, ∀pl ∈ P l, h 6= l
}
;

and
P 2
Γ
(i) = PΓ (i) \

(
O∗

Γ
(i) ∪ P 1

Γ
(i)

)
.

Both sets P 1
Γ
(i) and P 2

Γ
(i) are composed by predecessors of i that are not proper

superiors of i. P 1
Γ
(i) consists of any such j for which all paths from j to i can

be partitioned into a number of separate groups, might be only one group, such
that all paths in the same group have at least one common node different from
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j and i and paths from different groups do not intersect between j and i. Notice
that all j ∈ PΓ (i) \ O∗Γ (i) with di(j) = 1 belong to P 1

Γ
(i) since the unique proper

subordinate of j belongs to all paths p ∈ P Γ (j, i); in particular, it holds that
j ∈ P 1

Γ
(i), when there is only one path from j to i, i.e., when |P Γ (j, i)| = 1. From

here besides it follows that for all j ∈ P 2
Γ
(i), di(j) > 1. For every j ∈ P 1

Γ
(i) we

define the proper out-degree d̃i(j) of j with respect to i as the number of groups
P h, h = 1, ..., q, in the partition of P Γ (j, i). The subset of M̃Γ (j, i) ⊆ S(P Γ (j, i)),
j ∈ PΓ (i), composed by j, i, all proper intersection points in S(P Γ (j, i)) and all
proper superiors h ∈ O∗

Γ
(i)∩S(P Γ (j, i)) we call the lower covering set for P Γ (j, i).

Similarly to the definition of κ̃i(j) given by (19) we define

κ̃Mi (j) =
n−2∑

r=0

(−1)rκ̃r,Mi (j),

where κ̃r,Mi (j) counts only the tuples (i0, ..., ir+1) for which i0 = j, ir+1 = i, and
ih ∈ PΓ (ih−1) ∩ M̃Γ (j, i), h = 1, . . . , r + 1.

Theorem 8. For every cycle-free digraph game 〈v,Γ 〉 ∈ GΓ

N the value s given by
(18) admits the equivalent representation in the form

si(v,Γ ) = v(P̄Γ (i))−
∑

j∈O∗

Γ
(i)

v(P̄Γ (j))+

+
∑

j∈P 1
Γ
(i)

(d̃i(j)− 1)v(P̄Γ (j))−
∑

j∈P 2
Γ
(i)

κ̃Mi (j)v(P̄Γ (j)), for all i ∈ N. (20)

If the consideration is restricted to only strongly cycle-free digraph games, then
the above representation reduces to

si(v,Γ ) = v(P̄Γ (i))−
∑

j∈OΓ (i)

v(P̄Γ (j)), for all i ∈ N. (21)

For sink-forest digraph games defined by sink forest digraph structures that are
strongly cycle-free, the value given by (21) coincides with the sink value introduced
in (Khmelnitskaya, 2010). By that reason from now on we refer to the value s given
by (18), or equivalently by (20), as to the sink-tree value, or simply the sink value,
for cycle-free digraph games.

The sink value assigns to every player the payoff equal to the worth of his full
predecessors set minus the worths of all full predecessors sets of his proper superiors
plus or minus the worths of all full predecessors sets of any other of his predecessors
that are subtracted or added more than once. Moreover, for any player i ∈ N and
his predecessor j ∈ N that is not his proper superior, the coefficient κ̃i(j) indicates
the number of overlappings of full predecessors sets of all proper superiors of i at
node j. In fact a player receives what he contributes when he joins his predecessors
when only the full predecessors sets, that are the only efficient productive coalitions
under given assumptions, are counted. Since a root has no predecessors, a root just
gets his own worth. Furthermore, it is not difficult to check that the right-sides of
both formulas (20) and (21) being considered with respect not to coalitional worths
but to players in these coalitions contain only player i when taking into account all
pluses and minuses. Besides, according to (17) the sink value assigns to every player
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the worth of his full predecessors set minus the total payoff to his predecessors.
Wherefrom we obtain a simple recursive algorithm for computing the sink value
going downstream from the roots of the given digraph.

Example 7. Figure 7 provides an example of the sink value for a 10-person game
with cycle-free but not strongly cycle-free digraph structure.

The sink value may be computed in two different ways, either by the recursive
algorithm based on the recursive equality (17), or using the explicit formula repre-
sentation (20).

1 2

10

3 4

5

6

7

8 9

v(1) v(2)

v(13)−v(1)
v(124)−v(1)−v(2)

v(135)−v(13)

v(123456, 10)−v(135)−v(124)−

−v(12, 10)+2v(1)+v(2)
v(123457)−v(135)−

−v(124)+v(1)

v(12345678, 10)−v(123457)−

−v(123456, 10)+v(135)+v(124)+v(1) v(12343569, 10)−v(123456, 10)

v(12, 10)−v(1)−v(2)

Fig. 7.

The sink value not only meets FSE but FSE alone uniquely defines the sink
value on the class of cycle-free digraph games.

Theorem 9. On the class of cycle-free digraph games GΓ

N the sink value is the
unique value that satisfies FSE.

Corollary 3. FSE on the class of cycle-free digraph games GΓ

N implies not only
MSE but PE as well.

The next theorem derives the total sink value payoff for any s-connected coali-
tion.

Theorem 10. In a cycle-free digraph game 〈v,Γ 〉 ∈ GΓ

N , for any s-connected coali-
tion S ∈ CΓ

s (N) it holds that

∑

i∈S

si(v,Γ ) =
∑

i∈LΓ (S)

v(P̄Γ (i))−
∑

i∈S\LΓ (S)

(
κ̃S(i)−1

)
v(P̄Γ (i))−

∑

i∈P̄Γ (S)\S

κ̃S(i)v(P̄Γ (i)),

where
P̄Γ (S) =

⋃

i∈LΓ (S)

P̄Γ (i),
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κ̃S(i) =
∑

j∈S̄Γ (i)∩P̄Γ (S)

κ̃j(i), for all i ∈ P̄Γ (S),

while κ̃S(i) = 1 when d̃N (i) = 1, where for any s-connected coalition S ∈ CΓ

s (N),
for all i ∈ P̄Γ (S), d̃S(i) is the out-degree of i in the subgraph Γ |P̄Γ (S), i.e.,

d̃S(i) = |FΓ (i) ∩ P̄Γ (S)|,

in particular, d̃N (i) = d̃Γ (i) for all i ∈ N .
If the consideration is restricted to only strongly cycle-free digraph games, then

for any s-connected coalition S ∈ CΓ

s (N) it holds that

∑

i∈S

si(v,Γ )=
∑

i∈LΓ (S)

v(P̄Γ (i))−
∑

i∈S\LΓ (S)

(
d̃S(i)−1

)
v(P̄Γ (i))−

∑

i∈LΓ (P̄Γ (S)\S)

d̃S(i)v(P̄Γ (i)).

For any cycle-free digraph game 〈v,Γ 〉 ∈ GΓ

N the overall efficiency is given by

∑

i∈N

si(v,Γ ) =
∑

i∈LΓ (N)

v(P̄Γ (i))−
∑

i∈N\LΓ (N)

(
κ̃N (i)−1

)
v(P̄Γ (i)),

while if the consideration is restricted to only strongly cycle-free digraph games, the
last equality reduces to

∑

i∈N

si(v,Γ ) =
∑

i∈LΓ (N)

v(P̄Γ (i))−
∑

i∈N\LΓ (N)

(
d̃Γ (i)−1

)
v(P̄Γ (i)).

For a cycle-free digraph game 〈v,Γ 〉 ∈ GΓ

N , the s-core Cs(v,Γ ) is defined as the
set of component efficient payoff vectors that are not dominated by any s-connected
coalition,

Cs(v,Γ ) = {x ∈ IRN | x(C) = v(C), ∀C ∈ N/Γ ; x(S) ≥ v(S), ∀S ∈ CΓ

s (N)},

while the weak s-core C̃s(v,Γ ) as the set of weakly component efficient payoff vectors
that are not dominated by any s-connected coalition,

C̃s(v,Γ ) = {x ∈ IRN | x(C) ≤ v(C), ∀C ∈ N/Γ ; x(S) ≥ v(S), ∀S ∈ CΓ

s (N)}.

Theorem 11. The sink value on the subclass of superadditive sink-forest digraph
games is s-stable.

A cycle-free digraph game 〈v,Γ 〉 is s-convex, if for all s-connected coalitions
T,Q ⊂ CΓ

s (N) such that T is a full s-connected set, Q is a full predecessors set,
and T ∪Q ∈ CΓ

s (N), it holds that

v(T ) + v(Q) ≤ v(T ∪Q) + v(T ∩Q).

Theorem 12. The sink value on the subclass of s-convex strongly cycle-free digraph
games is weakly efficient.
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4. Sharing a river with multiple sources, a delta and possible islands

In (Ambec and Sprumont, 2002) the problem of optimal water allocation for a given
river with certain capacity over the agents (cities, countries) located along the river
is approached from the game theoretic point of view. Their model assumes that
between each pair of neighboring agents there is an additional inflow of water.
Each agent, in principal, can use all the inflow between itself and its upstream
neighbor, however, this allocation in general is not optimal in respect to total wel-
fare. To obtain a more profitable allocation it is allowed to allocate more water to
downstream agents which in turn can compensate the extra water obtained by side-
payments to upstream ones. The problem of optimal water allocation is approached
as the problem of optimal welfare distribution. In (van den Brink et al., 2007) it
is shown that the Ambec-Sprumont river game model can be naturally embed-
ded into the framework of a graph game with line-graph cooperation structure. In
(Khmelnitskaya, 2010) the line-graph river model is extended to the rooted-tree and
sink-tree digraph model of a river with a delta or with multiple sources, respectively.
We extend the line-graph, rooted-tree or sink-tree model of a river to the cycle-free
digraph model of a river with both multiple sources and a delta, and also possible
islands along the river bed as well.

Let N be a set players (users of water) located along the river from upstream
to downstream. Let eki ≥ 0, i ∈ N , k ∈ O(i), be the inflow of water in front of
the most upstream player(s) (in this case k = 0) or the inflow of water entering the
river between neighboring players in front of player i. Figure 8 provides a schematic
representation of the model.
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Fig. 8.

A river with multiple sources, a delta, and several islands along the river bed

Following (Ambec and Sprumont, 2002) it is assumed that each player i ∈ N
has a quasi-linear utility function given by ui(xi, ti) = bi(xi) + ti where ti is a
monetary compensation to player i, xi is the amount of water allocated to player i,
and bi : IR+ → IR is a continuous nondecreasing function providing benefit bi(xi) to
player i when he consumes the amount xi of water. Moreover, in case of a river with
a delta it is also assumed that if a splitting of the river into branches happens to
occur after a certain player, then this player takes, besides his own quota, also the
responsibility to split the rest of the water flow to the branches such to guarantee
the realization of the water distribution plan x∗ to his successors.
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The superadditive river game v ∈ GN introduced under the same assumptions
in (Khmelnitskaya, 2010) for a river with multiple sources or a delta defined as:

for any connected coalition S ⊆ N , v(S) =
∑

i∈S b
i(xSi ), where x

S ∈ IRs solves

max
x∈IRs

+

∑

i∈S

bi(xi) s.t.





∑

j∈P̄Γ (i)

xj ≤
∑

j∈P̄Γ (i)

∑

k∈O(j)

ekj ,

∑

j∈PΓ (i)∪B̄Γ (i)

xj ≤
∑

j∈PΓ (i)∪B̄Γ (i)

∑

k∈O(j)

ekj ,
∀i ∈ S,

and for any disconnected coalition S ⊂ N , v(S) =
∑

T∈CΓ (S)

v(T ),

suits to the case of a river with both multiple sources and a delta, and also possible
islands along the river bed as well. The tree and sink values proposed above can be
applied for the solution of the river game in the general case.
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