
APPLYING COMPONENT-BASED UML-DRIVEN
CONCEPTUAL MODELING IN SDBC

Boris Shishkov
Department of Computer Science, University of Twente, 5 Drienerlolaan, Enschede, The Netherlands

Email: b.b.shishkov@ewi.utwente.nl

Jan L.G. Dietz
Department of Software Technology, Delft University of Technology, 4 Mekelweg, Delft, The Netherlands

Email: j.l.g.dietz@ewi.tudelft.nl

Keywords: Software specification; Component; SDBC; UML

Abstract: Properly aligning business process modelling and software specification is crucial for correctly and
completely reflecting the business requirements in the design of a software system. Realizing a component-
based alignment between these two aspects seems adequate. The SDBC approach possesses a conceptual
framework, complemented by step-by-step methodological application guidelines, on how to accomplish
this. However, the SDBC framework is yet insufficiently elaborated in terms of (theoretically rooted)
concepts/definitions, which could be an obstacle for relating further SDBC to other relevant modelling
tools. Aiming at overcoming this, we propose in the current paper some theoretically rooted concepts which
are relevant to the approach and are as well useful regarding its application.

1 INTRODUCTION

The current Information and Communication
Technology (ICT) is of significant importance for
the proper flow of processes belonging to a number
of business domains. Software (ICT) applications
are to facilitate the utilization of ICT for the
mentioned purpose. Thus, more and more research
takes place on application development
methodologies, and also more and more industrial
projects appear related to this issue. However, often
such projects are characterized by unrealized goals,
low user satisfaction, and increasing budgets.

It is claimed that one frequent cause of software
project failure is the mismatch between the business
requirements and the actual functionality of the
delivered application. This problem relates to the
misconception that a business system (process) is a
kind of information system (process). Instead, they
are systems in different categories: social and
rational, respectively. Therefore, in order to
adequately reflect the requirements in the software
system-to-be, one needs to soundly align the
business process modelling and software
specification, mapping a pure business-oriented
model towards the specification of a software
system.

Realizing such an alignment in a component-
based way seems feasible and beneficial because
component-based business and software models
would allow for re-use, and also for good modelling
traceability, ease of modifiability and flexible
maintainability (Shishkov & Dietz, 2004-2). Next to
that, a business component would concern business
process modelling concepts while a software
component would concern software concepts; hence,
a rigorous mapping between the two would be a
good foundation for a business-software alignment.

However, to date the component paradigm has
only really penetrated the implementation and
deployment phases of the software life-cycle, and
does not yet play a major role in the earlier analysis
and design activities of large software projects. In
the software context, components are associated
mainly with the current ‘physical’ component
technologies, such as .NET, CORBA, and EJB.

Although some approaches, such as OMG MDA,
ODESSA, INSPIRE, and COMET, aim at
overcoming this, they have not completely
succeeded yet, as it is well-known. Hence, the
software community still misses modelling facilities
for adequately addressing the component paradigm
in the mentioned analysis and design phases,
concerning the business-software-alignment context.

417

This motivates the necessity to propose new
(component-based) modelling solutions related to
the mentioned phases and context.

The SDBC (SDBC stands for Software Derived
from Business Components) approach has been
introduced (Shishkov & Dietz, 2004-1; Shishkov &
Dietz, 2004-2), which is capable of adequately
addressing these issues by considering ‘logical’
components that represent the logical building
blocks of a software system. From this position,
SDBC proposes a mechanism for business-software
alignment. In particular, the approach allows for
deriving pure business process models (called
business coMponents) and reflecting them in
conceptual (UML-driven) software specification
models (called software coMponents). In the
business coMponent identification, SDBC follows a
multi-aspect business perspective, guaranteeing
completeness. In the business coMponent – software
coMponent mapping, SDBC follows rigorous rules,
guaranteeing adequate alignment. Being UML-
driven, SDBC is in tune with the latest software
design standards. The application of SDBC is
currently explored in a large Dutch insurance
company, and also through several test case studies.

This paper reports further SDBC-related studies.
In particular, it proposes several concepts/definitions
which are relevant to the SDBC approach,
discussing as well their usability with respect to its
application.

The outline of the paper is as follows: Section 2
suggests several concepts fundamentally important
for the SDBC approach. Section 3 provides
elicitation on their usability in applying the
approach. And finally, Section 4 contains the
conclusions.

2 ESSENTIAL CONCEPTS

As mentioned in the Introduction, this section is to
propose some fundamental SDBC-related concepts.

A system consideration would be needed first,
taking into account that in any (scientific) discipline,
particular kinds of systems need to be studied.
Concerning SDBC and in particular the need to align
business process modelling and software
specification, a consideration of two types of
systems would be required, namely business systems
and information systems. A clear delimitation
between the two is considered necessary, mainly
because of the (observed) misconception that a
business system is a kind of information system.
Instead, as already mentioned, they should be
considered in different ways. Although they both are
basically social systems, they differ in the kind of

production: business services and (internal)
information services, respectively (Dietz, 2003).

Before defining business system and information
system, we would have to propose our system
definition, adopted from the ‘classical’ system
definition of Bunge (Bunge, 1979):

Definition 1. Let T be a nonempty set. Then the
ordered triple σ = <C, E, S> is system over T if and
only if C (standing for composition) and E (standing
for environment) are mutually disjoint subsets of T
(i.e. C ∩ E = ∅), and S (standing for structure) is a
nonempty set of active relations on the union of C
and E. The system is conceptual if T is a set of
conceptual items, and concrete (or material) if T ⊆
Θ is a set of concrete entities, i.e. things.

Taking into account that, considering business
and software issues, SDBC approaches business
activities as realized by humans, and based on
Definition 1, we suggest the following business
system definition.

Definition 2. A system should be considered
being a business system if and only if it is composed
of physical persons (humans) collaborating among
each other through actions which are driven by the
goal of delivering business products to entities
belonging to the environment of the system.

As for the information system concept, it should
be considered not only in an ontological but also in a
functional perspective, because the functional aspect
is essential concerning the way in which an
information system supports (informationally) a
business system. Thus, we will propose an
ontological as well as a functional definition of
information system.

The ontological information system concept
should correspond to our viewing information
systems as composed of humans facilitated by (ICT)
applications, who collaborate in realizing internal
informational support to interorganizational
processes. Based on these considerations as well as
on Definition 1, we propose the following definition:

Definition 3. A system should be considered
being an information system if and only if it is
composed of humans (often facilitated by ICT
applications as well as technical and technological
facilities) collaborating among each other driven by
the goal of supporting informationally a
corresponding business system. Usually the business
system and the information system belong to the
same organization.

The functional information system concept
should correspond to the basic (well-known)
functions characterizing a (current) technological
support: related to data being created, processed,
distributed, and so on. For this reason, we have
adopted the following definition (Simon, 1996):

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

418

Definition 4. Concerning its functional
characteristics, an information system is a system
which manipulates data and normally serves to
collect, store, process and exchange or distribute
data to users within or between enterprises or to
people within wider society.

Based on the essential definitions set out above,
we proceed with introducing the business/software
coMponent concepts, starting with a consideration of
business coMponents, based on certain related
concepts presented below.

Adopting the DEMO transaction concept (Dietz,
2003), we define a business process as being a
structure of (connected) transactions that are
executed in order to fulfil a starting transaction.

Further on, considering a business sub-system as
being a system which is a part of a business system,
we propose the following business component
definition:

Definition 5. A business component is a business
sub-system that comprises exactly one business
process.

Considering SDBC, the theories behind it
(Shishkov & Dietz, 2004-2), and their way of
viewing a model, we regard a complete model as a
model that is elaborated at least in four perspectives
(Shishkov & Dietz, 2004-1), namely structural,
dynamic, factual, and communicative. Hence, we
propose the following definition for business
coMponent:

Definition 6. A business coMponent is a
complete model of a business component.

On the basis of these (introduced above)
concepts an also on our viewing an ICT application
as an implemented software product which realizes a
particular functionality supporting in this way the
humans who are elements of the composition of an
information system, we envision the relation
between a business coMponent and an information
system as shown in Figure 1.

As seen from the Figure, within SDBC, business
coMponents could be used to support the
specification of (ICT) applications, being themselves
identified based on corresponding business
components characterizing the (originally
considered) business system. This is how an
application which is intended to support
informationally a business system is specified being
soundly and methodologically rooted in a relevant
business process model.

From this perspective, a relevant ontological
software component definition (Shishkov & Dietz,
2004-2) is:

Definition 7. Software components are
implemented pieces of software, which represent
parts of an ICT application, and which collaborate

among each other driven by the goal of realizing the
functionality of the application.

BUSINESS SYSTEM INFORMATION SYSTEM <I>

business
component A

business
coMponent T

ICT application Z
support

support

specification support

modelling

Figure 1: Business coMponents’ supporting the

applications’ specification

Since the software component concept concerns

the implementation phase, we would need to
propose also a functional definition:

Definition 8. Functionally, a software component
is a part of an ICT application, possessing a clearly
defined function and interface to the other parts of
the application.

Since any support from a business coMponent
would concern the specification phase, we should
(thus) consider another relevant concept. Such a
concept must refer to the logical application building
blocks (mentioned before). We introduce the term
‘software coMponent’ to reflect the logical aspect:

Definition 9. A software coMponent is a
conceptual specification model of a software
component.

In summary, we have defined (in this section)
some concepts having a fundamental relevance to
the SDBC approach and its application.

In the following section, we will relate these
concept so the application of the approach.

3 THE CONCEPTS AND SDBC

Aiming at adequately relating the concepts,
introduced in the previous section, to the SDBC
approach and its application, we will briefly
summarize the outline of SDBC and elaborate on the
usefulness (in this context) of the mentioned
concepts. We will realize this with the help of Figure
2. There we have used the following abbreviations:
bc – business component; bk – business coMponent;
glbk – general business coMponent; gcbk – generic
business coMponent; ssm – software specification
model; sc – software component; sk – software
coMponent. For more information on SDBC and
also on those of the above terms which have not
been explained in the previous section, interested
readers are referred to (Shishkov & Dietz, 2004-1;
Shishkov & Dietz, 2004-2).

APPLYING COMPONENT-BASED UML-DRIVEN CONCEPTUAL MODELING IN SDBC

419

Figure 2: SDBC – outline

As seen from the Figure, we consider a particular

business system from which a business
component(s) is to be identified, using for this
purpose the SCI modelling technique (Shishkov &
Dietz, 2004-2) and other useful (modelling) tools.
The component should be then reflected in a
relevant model – a business coMponent. Another
way for arriving at a business coMponent is by
applying re-use: either extending a general business
coMponent or parameterizing a generic business
coMponent. DEMO and other related modelling
tools are relevant as far as business coMponents are
concerned. The business coMponent should be then
elaborated with the domain-imposed requirements,
for the purpose of adding elicitation on the particular
context in which its corresponding business
component exists within the business system (from
which it has been identified). Then, a mapping
towards a software specification model should take
place, driven by the DEMO-UML transformation
(Shishkov & Dietz, 2004-3). The mentioned
requirements as well as the user-defined
requirements are to be considered here, since the
derived software model should reflect not only the
original business features but also the particular user
demands towards the software system-to-be. The
(UML-based) software specification model would
need then a precise elaboration so that it provides
sufficient elicitation in terms of structure, dynamics,
data, and collaboration. It needs also to be
decomposed into a number of software coMponents
reflecting functionality pieces. These coMponents
are then to undergo realization and implementation,
being reflected (in this way) in software
components. This final set of components might
consist of such components which are implemented
(using software component technologies, such as
.NET or EJB, for instance) based on corresponding
software coMponents and such components which

are purchased. Finally, the (resulting) component-
based application would support informationally the
target business system, by automating anything that
concerns the considered business component
(identified from the mentioned system).

4 CONCLUSIONS

This paper has reported further SDBC-related
studies, by proposing relevant concepts and
providing elicitation on their usability in applying
the SDBC approach.

The paper has brought additional evidence on the
values of SDBC, following other published results
(Shishkov & Dietz, 2004-1; Shishkov & Dietz,
2004-2). All these reported results are supported by
case studies such as a case carried out in a large
Dutch insurance company and a cultural-heritage-
related case considered in another paper within the
current Proceedings. This inspires the authors to go
forward in further developing the conceptual and
application potentials of the SDBC approach.

A significant distinguishable value of the
approach is its being capable of adequately aligning
in a component-based way business process
modelling and software specification.

REFERENCES

Bunge, M.A. Treatise on basic philosophy, Vol. 4:
Ontology II: A world of systems. Reidel Publishing
Company, Dordrecht, 1979.

Dietz, J.L.G. The atoms, molecules, and fibers of
organizations. Data & Knowledge Engineering, vol.
47, pp 301-325, 2003.

Shishkov, B. and J.L.G. Dietz, 2004-1. Aligning business
process modelling and software specification in a
component-based way, the advantages of SDBC. In
ICEIS’04, 6th International Conference on Enterprise
Information Systems. ICEIS Press.

Shishkov, B. and J.L.G. Dietz, 2004-2. Design of software
applications using generic business components. In
HICSS’04, 37th Hawaii International Conference on
System Sciences. IEEE Computer Society Press.

Shishkov, B. and J.L.G. Dietz, 2004-3. Deriving use cases
from business processes, the advantages of DEMO.
Enterprise Information Systems V, Edited by O. Camp,
JB.L. Filipe, S. Hammoudi, and M. Piattini, Kluwer
Academic Publishers, Dordrecht/Boston/London, 2004.

Simon, E. Distributed information systems: From
client/server to distributed multimedia. McGraw-Hill
International Ltd., 1996

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

420

